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Abstract.  The influence mechanism of mean value components, noted as P0, on POD applications for 
complete random fields PC(t) and fluctuating random fields PF(t) are illustrated mathematically. The critical 
philosophy of the illustration is introduction of a new matrix, defined as the correlation function matrix of P0, 
which connect the correlation function matrix of PC(t) and PF(t), and their POD results. Then, POD analyses 
for several different wind pressure fields were presented comparatively as validation. It's inevitable 
mathematically that the first eigenmode of PC(t) resembles the distribution of P0 and the first eigenvalue of 
PC(t) is close to the energy of P0, due to similarity of the correlation function matrixs of PC(t) and P0. 
However, the viewpoint is not rigorous mathematically that the first mode represents the mean pressure and 
the following modes represent the fluctuating pressure when PC(t) are employed in POD application. When 
PC(t) are employed, POD results of all modes would be distorted by the mean value components, and it’s 
impossible to identify P0 and PF(t) separately. Consequently, characteristics of the fluctuating component, 
which is always the primary concern in wind pressure field analysis, can only be precisely identified with P0 
excluded in POD. 
 

Keywords:  POD; influence mechanism; mean value components; complete fields; fluctuating fields; 

eigenmodes; eigenvalues 

 
 
1. Introduction 
 

In wind engineering, it’s always a challenge to analyze and capture the characteristics of 

random fluctuations of the wind pressure fields on bluff bodies which are complicated functions of 

both time and space, because of the turbulent incoming flow, flow separation, flow reattachment, 

vortex shedding, wake flow effects, aeroelastic effects and so on (Kareem and Cermak 1984, Chen 

et al. 2004, Li et al. 2012). Among many techniques, proper orthogonal decomposition (POD) 

provides a unique tool to analyze the temporal and spatial characteristics of complex random fields, 

which is also known as Karhunen-Loève decomposition (KLD) or principal component analysis 

(PCA). The principles of POD approach and its origin, evolution, and applications in fluid 

mechanics have been elaborated in detail by many researchers (Lumley 1970, Loève 1978, Tamura 
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et al. 1999, Liang et al. 2002, Chen et al. 2004, Taylor and Glauser 2004, Carassale et al. 2007, 

Solari et al. 2007, Li et al. 2012, Cheng et al. 2015) and won’t be represented repeatedly. 

The most striking feature of POD is that it detects a new coordinate system which can represent 

the original fluctuating fields and this coordinate system is proved to be the most efficient. In other 

words, POD technique could represent a random field, which is time-space coupled, as a linear 

combination of uncoupled space vectors and time series. The space vectors and time series, always 

referred as to eigenmodes and principal coordinates separately, could be obtained from the random 

field itself easily. More importantly, these eigenmodes are orthogonal and principal coordinates are 

uncorrelated. According to this feature, POD method can identify the characteristics hidden in the 

random fluctuations and thus help us to understand the phenomena better (Holmes 1990, 

Davenport 1995, Tamura et al. 1999, Chen et al. 2004, Li et al. 2012). This feature is the powerful 

foundation for the ordinary and extended applications of POD. Owning to the orthogonality of 

eigenmodes and principal coordinates, POD method provides an efficient method of capturing the 

dominant components of a complex random field with only very few lower modes, and then the 

amount of data needed to be stored could be greatly compressed (Bienkiewicz et al. 1993, Tamura 

et al. 1999, Chen et al. 2004, Chen et al. 2011). This is also helpful for the reconstruction and 

extrapolation of random fields (Solari and Tubino 2002, Chen et al. 2004, Hoa 2009, Chen et al. 

2011). According to the eigenmodes and principal coordinates, physical flow mechanisms 

(Kareem and Cermak 1984, Baker 2000, Solari et al. 2007, Wang et al. 2010) and wind-excitation 

effects (Uematsu et al. 2001, Carassale et al. 2007, Solari et al. 2007, Tubino and Solari 2007, 

Fiore and Monaco 2009, Hoa 2009) could be further discussed and interpreted. 

Although widely used, there is still confusion in the practical application of POD technique: 

with or without the inclusion of mean value components of wind pressures fields. Some 

researchers employed POD with the mean value components included (Bienkiewicz et al. 1993, 

Bienkiewicz et al. 1995, Davenport 1995, Jeong et al. 2000), some without (Holmes 1990, 

Kikuchi et al. 1997, Carassale et al. 2007), and some even no explicit descriptions on this question 

(Letchford and Mehta 1993, Tamura et al. 1997, Baker 2000, Chen et al. 2011). Evidently, with or 

without the inclusion of mean value components will give different POD parameters, such as 

eigenmodes, eigenvalues and principal coordinates, and inevitably distorted interpretations on 

these POD parameters. The further exploration of the physical flow mechanism would also be 

confused by these two series of POD parameters. A misconception is that the first mode represents 

the mean pressure and the following modes represent the fluctuating pressure when the mean value 

components are included in the POD application (Bienkiewicz et al. 1993, Bienkiewicz et al. 1995, 

Tamura et al. 1999, Chen et al. 2004, Carassale et al. 2007). Straightforward seemingly, but this 

viewpoint is not rigorous according to mathematical explanation, as discussed later. 

Actually, whether the mean value components should be included is a critical question for POD 

application on random fields, such as wind pressure fields. This question has been investigated in 

several studies (Tamura et al. 1999, Chatterjee 2000, Chen et al. 2004, Carassale et al. 2007). 

However, most studies just gave superficial analyses through comparative study: merely exhibiting 

differences between the two series of POD parameters acquired from the random fields with or 

without the mean value components. These comparative studies failed to reveal the influence 

mechanism of mean value components on the application of POD, due to the missing of 

fundamental mathematical analysis. The present work is motivated by this question and this study 

just focuses on the applications of POD on wind engineering, although it has been applied in many 

fields including random variable, signal analysis, process identification, and so on (Chen et al. 

2011). 
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2. POD method 
 

Let P(t) be an arbitrary random wind pressure field on a bluff body in three-dimensional space. 

No matter its mean value is zero or not, it could be written as 

P(t) = {p(x1, t), p(x2, t), …, p(xn, t)}
T                   (1) 

where xi = (xi, yi, zi) denotes the position of i-th pressure tap (i=1, 2, …, n) and n is the number of 

pressure time series used in the ensemble of the pressure field. In an appearance sense, P(t) could 

be regarded as a column vector in n-dimension. 

According to the POD approach, the eigenmode ϕ (i.e., eigenvector) of a random field could be 

obtained easily from Eq. (2). 

 RΦ = ΦΛ                             (2) 

In Eq. (2), R is the spatial correlation function matrix of P(t) and R is a n×n square matrix. Rij, 

an element of R and calculated by Eq. (3), is the zero-time-lag correlation function of wind 

pressure time series between tap i and j. ϕi and λi denote the i-th eigenvector and i-th eigenvalue of 

the matrix R respectively. The eigenvectors and eigenvalues could also be assembled in matrix Φ 

= {ϕ1, ϕ2, …, ϕn} and diagonal matrix Λ = diag(λ1, λ2, …, λn) respectively. Thus, the principle of 

POD technique is also regarded as an eigenvalue problem essentially, and Lumley (1967), Loève 

(1978), Bienkiewicz et al. (1993), Tamura et al. (1999), Chen et al. (2004) have presented more 

detailed elaboration of the basic definition and principle of POD. In application, eigenvectors are 

always normalized to have Euclidean length equal to one, i.e., ϕi
T
ϕi = 1.0, and the eigenvalues are 

ordered decreasingly, for convenience and comparison. This is also adopted in the following study. 

Rij = E[p(xi, t)p(xj, t)]                           (3) 

According to Eq. (3), the spatial correlation function matrix R of P(t) is a real symmetric 

matrix. Then, its eigenvector matrix Φ must exist and is orthogonal, i.e.  

ϕi
T
ϕj = δij  or Φ

T = Φ-1                      (4) 

and δij is Kronecker's delta. 

Because of orthogonality, the n eigenvectors, ϕ1, ϕ2, …, ϕn, constitute an independent basis (or 

a set) for n-dimensional vector space, Vn, and therefore any vector in Vn could be expressed by 

linear combination of vectors in this basis. For example, at a specified time point, td, the random 

field P(t) is regressed into a n-dimensional vector, noted as P(td). Apparently, P(td) belongs to Vn 

and could be built by linear combinations of the n eigenvectors as 

d i d i

1

( ) ( )
n

i

t a t


P   or P(t) = Φa(t)               (5) 

where ai(td) is the linear-combination-coefficient of vector ϕi at time point td; a(t) = {a1(t), a2(t), …, 

an(t)}
T is the assemblage of ai(t), in the same form of P(t). ai(t) is the time-series-coefficient of 

mode ϕi, which is also named as the i-th principal coordinate. 

Actually, P(t) could be built by any basis of V
n mathematically, such as Fourier series, or 

Legendre polynomials, or Chebyshev polynomials and so on (Chatterjee 2000), with the 

combination of corresponding time coordinates. However, the POD technique, employing 

eigenvectors of the spatial correlation function matrix R of P(t) as the basis, provides better 

interpretations on the temporal and spatial underlying features of the random field P(t). 
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Since Φ is orthogonal and is extracted from R, ai(t) could be calculated by Eq. (6) and a(t) 

could be written as Eq. (7) according to Eqs. (4) and (5). Moreover, a(t) is also uncorrelated and 

the mean square of ai(t) is the i-th eigenvalue of the matrix R (Eq. (8)). 

ai(t) = ϕi
T
P(t)                      (6) 

a(t) = ΦT
P(t)                            (7) 

E[ai(t)aj(t)] = ϕi
T
Rϕj = λiδij                    (8) 

The energy of a time series is always defined as its mean square in stochastic engineering. 

Owning to the uncorrelation of a(t), the energy or the mean square of wind pressure at a point k 

could be expressed as 

2

k k i j i k j k i i k

1 1 1

E[p( , )p( , )] E[ a ( )a ( )]
n n n

i j i

t t t t   
  

  x x ， ， ，

             (9)

 

where ϕi, k is the k-th element in eigenvector ϕi. 

Furthermore, the total energy of the original field P(t), S, could be defined as the sum of energy 

at all pressure points. According to Eq. (8), Eq. (9) and the orthogonality of matrix R, S is equal to 

the sum of the eigenvalues, which means S is also equal to the sum of the mean squares of the 

principal coordinates 

T 2

k k i j i j i i

1 1 1 1 1 1

E[p( , )p( , )] E[ a ( )a ( )] = E[ a ( )]
n n n n n n

k i j i i i

S t t t t t
     

      x x  

        (10)

 

As a result, the contribution of an eigenmode ϕi to the original random field could be measured 

by its eigenvalue λi which is an index of the energy stored in eigenmode ϕi, and this is the 

fundamental advantage to use the eigenvector extracted from R as the basis. In addition, ai(t) 

would not be zero in the whole time-series for a random fluctuating field P(t), so it can be deduced 

from Eq. (8) that λi would always be positive. This means every eigenmode ϕi contributes to the 

whole field more or less and R is a positive-definite matrix (Hoa 2009). 

Similar to the classical mode superposition method in the analysis of structural dynamic 

responses, reconstruction of the original field P(t) by limited number of dominant lower 

eigenmodes would be usually accurate enough in engineering sense because of the decreasing 

eigenvalue order, as 

i i

1

( ) a ( ) ( )
M

i

t t M n


 P 

                         (11)
 

It means that the POD technique can greatly reduce the amount of data that needs to be stored to 

re-examine the random wind pressure. The number of eigenmodes that need to be considered can be 

estimated by the individual proportion wi and the accumulative proportion wM, which are defined as 

(Tamura et al. 1999, Chen et al. 2011) 

i

i M i

1

;
M

i

w w w
S





 
                           (12)

 

As stated in the beginning, P(t) is an arbitrary random wind pressure field, so the procedure of 

POD technique is valid whether the mean value of P(t) is zero or not. In practice, the random wind 

pressure fields obtained directly from wind tunnel model, prototype or simulated by CFD are 
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non-zero-mean inevitably. Thus there would be two conditions for the P(t) in practical application: 

PC(t), the complete random field containing the mean value component, noted as P0, and PF(t), just 

the fluctuating field, as written below 

P0(t) = P0(xi)                              (13) 

PC(t) = P0 + PF(t) = P0(xi) + PF(xi, t)                   (14) 

where PC(t), PF(t), P0 are all column vector in n-dimension, just like P(t) in Eq. (1). In addition, the 

relationship of the total sums of the mean-square field of PC(t) and PF(t) can be written as 

2

C k C k F k F k 0 k

1 1 1

[ ( , ) ( , )] [ ( , ) ( , )] ( )
n n n

k k k

E t t E t t
  

   P x P x P x P x P x        (15) 

Another, The time-mean-value of ai(t) could be wrote as Eq. (16). Obviously, ai(t) would be 

zero-mean time series if P(t) is a zero-mean field as PF(t). 

T T

i i i 0E[a ( )] E[ ( )]t t P P 
                        (16) 

Evidently, POD could be applied both on PC(t) or PF(t), i.e., Eqs. (2)-(10) are valid whether the 

mean components exist or not. However, the two conditions of data sources will give different 

correlation function matrix, different POD results, such as eigenmodes, eigenvalues and principal 

coordinates, and further different interpretation of the random field. 

According to Eq. (3), the spatial correlation function matrix R could be noted as RC for PC(t) or 

RF for PF(t). So, a question or confusion is brought up: Which matrix should be chose for 

subsequent procedures of POD technique for reasonable and accurate interpretation of the random 

field PC(t), RC or RF? This is a critical question for POD applications, not only in its application in 

wind engineering. 

Meanwhile, some illustrations and applications (Kikuchi et al. 1997, Carassale et al. 2007) 

holds the opinion that the matrix used in POD technique for P(t) should be the spatial covariance 

matrix, noted as Q, but not the spatial correlation function matrix, R. The element of Q is written 

as 

Qij = E[(p(xi, t)-p0(xi, t))(p(xj, t)-p0(xj, t))]             (17) 

Obviously, matrix QC of PC(t) is equal to QF of PF(t), so matrix Q can represent both QC and QF 

and matrix Q is used in the following discussion. Moreover, Q is mathematically equal to RF of 

PF(t). When Q but not R is used in the procedure of POD application for PC(t), this situation is 

essentially that RF is used for PF(t). Then, the foregoing question could be stated as another but 

essentially the same question: Which matrix of PC(t)should be used, R or Q? 

Apparently, the differences between RC and RF (i.e., R and Q) stem from the presence of mean 

value components, as well as the differences between POD results and interpretations of the 

random field. Therefore, the influence mechanism of mean value components on the application of 

POD for random fields is the key for the two questions. For POD technique which is a 

mathematical method essentially, the influence mechanism should be elaborated mathematically as 

well. Otherwise, the physical interpretation of the POD eigenmodes would also be fictitious 

(Holmes et al. 1997, Hoa 2009). 
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3. Influence mechanism of mean value components 
 

The influence mechanism of mean value components on the application of POD for random 

fields should be illustrated through the sources of the POD parameters such as the eigenmodes, 

eigenvalues and principle coordinates, not only through the differences of these POD parameters. 

To illustrate the influence mechanism of mean value components, P0 is presumed to be static 

time series or a static determined field, noted as P0(t)=P0, similar but different from PC(t) or PF(t) 

which are random fields. Then, a new matrix R0 is introduced and defined as 

R0 = P0P0
T                              (18) 

and R0 could be named as the correlation function of the mean value components P0 or P0(t) 

analogously. 

Apparently, the rank of matrix R0 is one, which means that there is only one non-zero 

eigenvalue λ1
0 expressed as 

0 T 2

1 0 0 0 k

1

( )
n

k

p


 P P x                         (19) 

and λ1
0 is equal to the energy of P0, noted as S0, according to Eq. (10). Then, its corresponding 

normalized eigenvector ϕ1
0 is 

0 0 0

1
T 0

0 0 1
 

P P

P P


                          (20)

 

which is proportional to P0. Of course there are still other n-1 eigenvectors for R0 because R0 is 

also a real symmetric matrix, just as the spatial correlation function matrix R in Eq. (3). However, 

it should be emphasized that the following n-1 eigenvectors ϕi
0 (i ≥ 2) are not determinate because 

their eigenvalues are all equal to zeros. In other words, any ϕi
0 (i ≥ 2) meets the following equation 

can be eigenvector of R0. 

0 0 0 0

1 i i j ij0 ( , 2)and i j     
                  (21)

 

On the other hand, because the fist eigenvector ϕ1
0 contains the whole energy of P0, the energy 

of each following eigenvectors ϕi
0, or λi

0 (i ≥ 2) must be zero. Thus, the following eigenvectors ϕi
0 

(i ≥ 2) has no meaning for P0, no matter what values they are. 

Moreover, if P0 is regarded as a field, static although, it could also be demonstrated by POD 

technique. Its POD parameters could also be attracted from R0 and exhibits some special features. 

According to Eq. (5), there are n eigenvectors and corresponding principle coordinates for a 

random field such as PC(t) or PF(t). For a static field P0, however, Eq. (5) could be wrote as 

0 0 0 0 0 0

0 i i 1 1 1 1

1

n

i

a a


  P   

                        (22)

 

according to Eq. (20). It means that a static field P0 could be demonstrated by just one eigenvector, 

ϕ1
0. Its corresponding principle coordinate is 0 0

1 1=a  , which could be regarded as a static time 

series. Also, the following principle coordinate 
0

i =0a  (i ≥ 2) because λi
0
 = 0. 

Furthermore, there is still a relationship among R0, RC and M (or RF) that could be expressed 
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as 
RC = M (or RF) + R0                       (23) 

which could be deduced from Eq. (3), Eqs. (14), (17) and (18) easily. Another, the following 

equation could be got from Eqs. (10), (15) and (19) 

C F 0 0

1(or )S S S                               (24)  

where SC and SF represent the total energy of PC(t) and PF(t) respectively. 

It has been reported repeatedly that the first eigenvalue got from RC, i.e., λ1
C, is almost equal to 

λ1
0 and the first eigenmode from RC, i.e. ϕ1

C, is always similar to the distribution of P0 (Tamura et 

al. 1999, Chen et al. 2004). These phenomena are inevitable not only physically but also 

mathematically. For an ordinary wind pressure field, the complete random field PC(t) is always 

dominated by the static field P0, even there are extreme fluctuations at certain points. Therefore, 

most elements in RC would be approximately equal to the corresponding elements in R0, and then, 

just minute disparity could be detected between the eigenvalues and eigenvectors got from RC and 

R0, especially for the first mode. So, the gap between λ1
C and λ1

0 is minor, as well as the deviation 

between ϕ1
C and ϕ1

0. Given the relationship between ϕ1
0 and P0 (Eq. (20)), almost identical 

distribution of ϕ1
C and P0, excluding their amplitudes, would be logically reasoned. Furthermore, 

other corresponding eigenvalues of RC and R0 would still be close to each other because of the 

similarity between RC and R0. It means λi
C (i ≥ 2) would be near zero because λi

0 = 0 (i ≥ 2), and 

this is also a well-known POD result for RC. Eventually, it’s believed sometimes that the first 

mode represents the mean pressure and the following modes represent the fluctuating pressure 

when PC(t) and RC are employed in the POD application. 

However, it should be noted that λ1
C and λ1

0 are just close but not equal to each other because of 

the existence of fluctuating signals in RC, as well as the distributions of P0 and ϕ1
C. Therefore, the 

opinion couldn’t be accepted that the first eigenmode ϕ1
C and eigenvalue λ1

C represent the mean 

component P0 when RC is employed in POD application. Apparently, it could be deduced that the 

gap between λ1
C and λ1

0 would be widen with the increase of the fluctuating signals in PC(t)}, as 

shown in Table 3 in the following illustration, as well as the deviation between ϕ1
C and ϕ1

0. The 

deviation between arbitrary two vectors, such as ϕ1
C and ϕ1

0, is measured by L1 norm and L2 norm 

of their difference vector ϕ1
C-0, also known as Minkowski distance, shown as 

C-0 C-0 2

1 1 j 2 1 j

1 1

| |; ( | | )
n n

j j

L L 
 

  ， ，

                      (25)

 

in which C-0 C 0

1 j 1 j 1 j   ， ， ，  is the j-th element in vector ϕ1
C-0. 

If this is the case, actually as it is, it’s also not rigorous to say that the following n-1 

eigenmodes ϕi
C and eigenvalues λi

C (i ≥ 2) represent the fluctuating component PF(t). This could 

be explained in two senses. In mathematics, there must be at least n eigenvectors for the precise 

reconstruction of the original n-dimension random field P(t) according to Eq. (5). Therefore, n-1 

eigenvectors can’t represent a n-dimension random field, such as eigenmode ϕi
C (i ≥ 2) for PF(t), 

no matter what linear-combination-coefficients are employed. On the other hand, there is no 

reasonable interpretation on ϕi
C (i ≥ 2) because ϕi

C would be disturbed inevitably by ϕi
0 (i ≥ 2) 

which is meaningless and indeterminate for P0. 

Consequently, POD technique is a wonderful tool to analyze the structures of complex random 

fields but should be used and interpreted properly. The structure of fluctuating component PF(t) is 
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always the primary concern in wind pressure field analysis and it is expected that the mean 

component P0 and the fluctuating component PF(t) could both be precisely identified from the 

eigenmodes and eigenvalues. Unfortunately, this is impossible when matrix RC is employed in 

POD application because its eigenmodes and eigenvalues are mixed by the accompanying 

presences of P0 and PF(t). In other words, it is just correct in mathematics but not practical for 

application using RC in POD because the POD parameters are global reflection of PC(t). If RF of 

PF(t) (i.e., M of PC(t)) is employed, however, the POD results would be pure reflection of the 

fluctuating component PF(t). This mathematical illustration draws a viewpoint that the presence of 

R0 in RC, i.e., the presence of P0 in PC(t), disturbs the eigenmodes and eigenvalues of RC which are 

expected to reflect the structure of PF(t). Actually, this viewpoint has been reported by Tamura et 

al. (1999) and Chen et al. (2004), but neither illustrated the influence mechanism of mean value 

components mathematically. 

 
 
4. POD analysis for several wind pressure fields 

 
4.1 Experimental configuration 
 

As examples demonstrating the influence mechanism of mean value components on the 

application of POD for random fields, POD analysis for wind pressure fields on a cooling tower 

and a closed box girder which exhibit quite different cross sections are presented here. 

Wind pressure fields were obtained through rigid model tests in wind tunnel. Model dimensions 

of the cooling tower and the closed box girder section were shown in Fig. 1, as well as the pressure 

tap layouts. The model scale is 1/200 for the cooling tower and 1/60 for the box girder section. The 

surface roughness of the cooling tower model was changed to compensate the Reynolds number 

effect. In order to highlight the influence mechanism of mean value components, wind pressure 

field of a section but not the whole model surface was employed in POD analysis. Pressure taps of 

cooling tower locate in two sections and 36 taps distribute uniformly for each section. The length 

of the closed box girder model is 280 cm and all the 60 pressure taps locate in the middle section. 

These two model tests were conducted at Tongji University, cooling tower test in wind tunnel TJ-3 

and box girder test in wind tunnel TJ-2 separately. The wind pressure was measured 

simultaneously at all points using the multi-channel simultaneous fluctuating pressure 

measurement system. The wind environment for cooling tower model was simulated as a suburban 

terrain with the power-law index of the mean wind speed profile 0.16. Apparently, the wind 

pressure fields of section A and section B are similar. However, the proportion of mean pressure 

components of section A is lower than that of section B, because the turbulence intensity decreases 

with height. For the box girder model, there are two types of wind environment, smooth flow and 

turbulent flow with turbulence intensity 0.15. Accordingly, two types of wind pressure fields 

would be obtained from the box girder model and their proportions of mean pressure components 

are different. Finally, each model has two types of wind pressure fields. 

 

4.2 Distribution of wind pressure coefficient 
 

Figs. 2 and 3 show the mean and the fluctuating wind pressure coefficients (noted as CP and σP) 

of the two models. They are the temporal mean and the standard deviation of the wind pressure at 

each point respectively. For the box girder model test, the incoming flow is uniform along the 
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height in wind tunnel TJ-2, so its coefficients are normalized by the mean velocity pressure of 

incoming flow. For the cooling tower model test, however, the coefficients of the two sections are 

normalized by the mean velocity pressure of incoming flow at each section elevation, on account 

of the wind profile. Therefore, the mean coefficients of the two stagnation points both approximate 

to 1.0. 

For the cooling tower model, wind pressure distributions of section A and section B are similar, 

especially the mean pressure distribution, since they are both circular sections. Both the mean and 

fluctuating pressure distributions are typical patterns of flow around circular cylinder. Fluctuating 

coefficients σP of section A are higher than those of section B due to the turbulence intensity 

decreasing with height. For the box girder model, there is no obvious difference between the mean 

pressure distributions of the two flow conditions, but the fluctuating pressure distributions are 

quite different. In smooth flow, the fluctuating pressures are quite minor around the whole box 

girder surface except near tap 10 and tap 57 where wake vortexes shed. In turbulent flow, however, 

the fluctuating pressures are noticeable around the upstream half surface due to the incoming 

turbulence. 
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(a) profile of cooling tower model 

 
(b) section of closed box girder model 

Fig. 1 Pressure measurement model (unit: mm) 
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Fig. 2 Wind pressure coefficients of the two sections on the cooling tower model 
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Fig. 3 Wind pressure coefficients of the box girder model in two flows 

 

 

4.3 POD results analysis 
 

The following presentation will elaborate the influence mechanism in detail according to the 

POD results got from RC and RF. Tables 1 and 2 give the first five eigenvlaues, and Figs. 4 and 5 

describe the first three eigenmodes for the two models. The eigenmodes of the two sections of the 

cooling tower model are similar because of the similar wind flows around the two sections, so only 

the eigenmodes of Section B are plotted in Fig. 4. As shown by other authors (Tamura et al. 1999, 

Chen et al. 2004), when the mean value is included, as stated in Section 3, λ1
C and λ1

0 are close to 

each other (Column 4 of Table 3), and the first eigenmode ϕ1
C is similar to the mean pressure 

distribution P0: eigenmodes ϕ1
C
 and ϕ1

0
 are shown almost as one in Figs. 4(a) and 5(a). 
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Table 1 The first 5 eigenvalues from RC and RF for cooling tower model 

Mode 

(i) 

RC: mean value included RF: mean value excluded 

Section A 

(Total energy, SC: 14.559) 

Section B 

(Total energy, SC: 20.228) 

Section A 

(Total energy, SF: 0.510) 

Section B 

(Total energy, SF: 0.479) 

Eigenvalue 

λi
C 

Proportion 

(%) 

Eigenvalue 

λi
C 

Proportion 

(%) 

Eigenvalue 

λi
F 

Proportion 

(%) 

Eigenvalue 

λi
F 

Proportion 

(%) 

1 
14.197 

(λ1
0 = 14.047) 

97.51 
19.870 

(λ1
0 = 19.745) 

98.23 0.161 31.624 0.134 27.963 

2 0.078 0.54 0.060 0.29 0.076 14.947 0.055 11.490 

3 0.069 0.48 0.048 0.24 0.063 12.373 0.048 10.034 

4 0.052 0.36 0.045 0.22 0.049 9.681 0.041 8.496 

5 0.022 0.15 0.033 0.17 0.021 4.066 0.033 6.817 

 
Table 2 The first 5 eigenvalues from RC and RF for box girder model 

Mode 

(i) 

RC: mean value included RF: mean value excluded 

Smooth flow 

(Total energy, SC: 8.728) 

Turbulent flow 

(Total energy, SC: 8.093) 

Smooth flow 

(Total energy, SF: 0.080) 

Turbulent flow 

(Total energy, SF: 1.616) 

Eigenvalue 

λi
C 

Proportion 

(%) 

Eigenvalue 

λi
C 

Proportion 

(%) 

Eigenvalue 

λi
C 

Proportion 

(%) 

Eigenvalue 

λi
C 

Proportion 

(%) 

1 
8.654 

(λ1
0 = 8.647) 

99.16 
6.752 

(λ1
0 = 6.476) 

83.42 0.050 62.36 1.106 68.41 

2 0.047 0.53 1.021 12.61 0.006 7.64 0.201 12.42 

3 0.004 0.04 0.085 1.06 0.003 4.38 0.084 5.19 

4 0.003 0.04 0.069 0.85 0.003 3.21 0.069 4.27 

5 0.003 0.03 0.050 0.62 0.002 3.00 0.044 2.74 

 
Table 3 Results analysis of the first mode from RC 

Model condition S
F
/S

C
 

(%) 

λ1
C
/S

C 

(%) 

1-λ1
0
/λ1

C
 

(%) 

L1 in Eq. (25) 1-(λ1
0
+λ1

F
)/λ1

C
 

(%) 

Box girder model in smooth flow 0.91 99.16 0.09 0.007 -0.49 

Section B of cooling tower model 2.37 98.23 0.63 0.008 -0.05
*
 

Section A of cooling tower model 3.05 97.51 1.05 0.012 -0.08
*
 

Box girder model in Turbulent flow 19.97 83.42 4.08 0.236 -12.29 

Note: * in column 6 indicates ϕ1
F
and ϕ1

C
 are similar. 
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Fig. 4 Mode distributions for section B of cooling tower model 
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Fig. 5 Mode distributions for box girder model in turbulent flow 

 

 

Moreover, the first eigenvalue λ1
C is outstanding extremely and almost equal to the total mean 

square of the complete random field SC: the energy proportion of the first eigenmode, i.e., λ1
C/SC, 

are higher than 97% because of the vastly dominated mean value components in the complete 

pressure fields, except the box girder model in turbulent flow, 83.42%, which is attributable to the 

more fluctuating pressure than other three situations, as shown in the first column of Table 3. 

Actually, λ1
C/SC would decreases with the increase of the fluctuating component in the complete 

pressure signal, i.e., SF/SC (Table 3). Also, the gap between λ1
0 and λ1

C, noted as 1-λ1
0/λ1

C in Table 3, 

is widen with the increase of SF/SC, as stated in Section 3, as well as the gap between ϕ1
C and ϕ1

0 

measured by L1 in Eq. (25). Thus it can be seen that the higher mean value component in PC(t), the 

greater of its domination on the first mode. Despite the fist mode result dominated by the mean 

value component, other mode results would also be influenced by the mean value component if it 
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is included in POD application. So the following mode results from RC and RF are still different, 

including eigenvalues and eigenmodes, as shown in Tables 1 and 2, Figs. 4 and 5.  

A confounding phenomenon is a desired entry point. It can be seen in Figs. 4 and 5 that there 

are some eigenmodes got from RF are close to those got from RC. For example, ϕ1
C to ϕ3

C in Fig. 

4(a) and ϕ1
F to ϕ3

F in Fig. 4(b), ϕ2
C in Fig. 5(a) and ϕ1

F in Fig. 5(b), ϕ3
C in Fig. 5(a) and ϕ3

F in Fig. 

5(b). The similarity lies just in mathematical result, but the influence mechanism of mean value 

components could be draught, as well as some physical interpretation of the wind pressure 

characteristics. 

The similarity of ϕ1
F and ϕ1

C, which is valid for the two sections of cooling tower model but 

not valid for the box girder model, indicates ϕ1
F is similar to ϕ1

0 because ϕ1
C is always close to ϕ1

0. 

Therefore, in the POD analysis of PC(t), ϕ1
C actually represents the mean pressure distribution P0 

and the dominant spatial component of PF(t)} meanwhile, i.e., both ϕ1
0 and ϕ1

F. Therefore, if this 

is the case, the opinion would be untenable that the first mode represents the mean pressure and 

the following modes represent the fluctuating pressure when RC are used in POD application. This 

can also be proved by the eigenvalues of λ1
C and the sum of λ1

0 and λ1
F. When ϕ1

F and ϕ1
C are 

close, the gap between λ1
C and the sum of λ1

0 and λ1
F would be even smaller than the gap between 

λ1
C and λ1

0, as shown in column 4 and column 6 in Table 3 for the cooling tower model. 

Additionally, the first principle coordinates got from RC and RF almost appear as one in Fig. 6. 

Actually, the similarity of ϕ1
C and ϕ1

F, is just a coincidence mathematically but reveal a special 

feature of the random field physically: the similarity of ϕ1
F and ϕ1

0. 

 

 

 

Fig. 6 Principle coordinate a1(t) and its power spectral density got from RC and RF for section A of cooling 

tower model (the mean component of a1(t) from RC is excluded) 
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Fig. 7 Vector norms of the difference of corresponding modes from RC and RF of cooling tower model 

 

 

In an extreme condition, when ϕ1
F is equal to ϕ1

0, Eq. (26) can be deduced from Eq. (2), Eq. (7), 

Eqs. (21)-(23). Of course λi
0 and ai

0 are all zero for i ≥ 2 as stated in Section 3. It can be further 

deduced that the POD result of RF and R0 can be superposed for RC only if ϕ1
F is equal to ϕ1

0. 

F 0 C C 0 F C 0 F

i i i i i i i i ia ( ) a ( ) a ( )and and t t t                       (26) 

In fact, the equality of ϕ1
F and ϕ1

0 is just a hypothesis and not practical for random fields, but 

this extreme condition can explain why λ1
C and the sum of λ1

0 and λ1
F are closer than λ1

C and λ1
0 

when ϕ1
F is similar to ϕ1

0. 

Furthermore, due to the similarity of ϕ1
F and ϕ1

C for the two sections of cooling tower model, 

most of their following eigenmodes and eigenvalues are close to each other correspondingly as 

well, and this can also be explained by Eq. (26). The similarity between eigenmodes can be 

measured by L1 and L2 norms of vector ϕi
C-F, which is the difference vector of ϕi

C and ϕi
F and 

could be defined by Eq. (25) analogously. The two norms are shown in Fig. 7 and the lower norm 

value implies the greater similarity between ϕi
C and ϕi

F. It can be seen from Fig. 4 that the top 

three eigenmodes are similar, and their norm values are higher than most other following modes. 

Therefore, it can be deduced that almost all ϕi
C and ϕi

F resemble to each other correspondingly. 

The similarity between the following eigenmodes can also be confirmed by the eigenvalues listed 

in Table 1: λi
C and λi

F are close to each other for i=2~5. The following principle coordinates got 

from RC and RF are close as well. 

Finally, when ϕ1
F and ϕ1

C are similar, it means the dominant spatial component of PF(t) 

resembles the mean pressure distribution P0, and the first eigenmode of PC(t) would represent both 

ϕ1
0 and ϕ1

F approximately. In other words, the POD results of PC(t) could be deemed as the 

superposition of those of P0 and PF(t) for easer interpretation. 

For the box girder model, their ϕ1
F and ϕ1

C (ϕ1
0) are quite different from each other. In this case, 

the first eigenmode of PC(t) just mainly represent P0 as usual but not the superposition of ϕ1
0 and 

ϕ1
F, and its following eigenmodes mainly represent PF(t). Accidentally, there would be some 

similar eigenmodes between ϕi
C (2 ≤ i ≤ n) and ϕi

F (1 ≤ i ≤ n), such as ϕ2
C and ϕ1

F, ϕ3
C and ϕ3

F for 

the box girder model in turbulent flow (Fig. 5), and their corresponding eigenvalue are close as 

well (Table 2). However, the similarity between the following modes has no further sense. 

5. Conclusions 
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The influence mechanism of mean value components on POD applications for random fields 

with or without the mean value components included are illustrated mathematically, based on the 

principles of POD method and matrix analysis. The introduction of a new matrix R0 and its POD 

results are the critical philosophy in the illustration, which is defined as the correlation function of 

the mean value component P0. Then, POD analyses for several different wind pressure fields, with 

or without the mean value components, were presented comparatively as convincing examples. 

The following well-known POD result characteristics for RC are inevitable on account of the 

mathematical illustration, such as the similarity between ϕ1
C and P0 (i.e., ϕ1

0), close values of λ1
C 

and the energy of P0 (i.e., λ1
0), nearly zero λi

C (i ≥ 2). Firstly, for matrix R0, there is only one 

non-zero eigenvalue λ1
0 which is equal to the energy of P0 and its eigenmode ϕ1

0 is proportional to 

P0. Secondly, most elements in RC would be approximately equal to the corresponding elements in 

R0, because PC(t) is always dominated by P0 for an ordinary wind pressure field. Therefore, just 

minute disparity could be detected between the eigenvalues and eigenvectors got from RC and R0, 

especially for the first mode. Nevertheless, there is no reasonable interpretation on ϕi
C (i ≥ 2) 

because ϕi
C would be disturbed inevitably by ϕi

0 (i ≥ 2) which is meaningless and indeterminate 

for P0. 

Due to the well-known POD result characteristics, a misconception maybe accepted carelessly 

that the first mode represents the mean pressure and the following modes represent the fluctuating 

pressure when PC(t) are employed in the POD application. However, this viewpoint is not rigorous 

according to the mathematical explanation. The distributions of ϕ1
C and P0 are just close to each 

other, as well as the values of λ1
C and the energy of P0. The similarity of POD results, either ϕ1

C 

and ϕ1
0 or λ1

C and λ1
0, stems from the similarity of RC and R0. If PF(t) increases in PC(t), the 

similarity of RC and R0 would decrease, as well as the POD results. 

In a special condition, when ϕ1
F and ϕ1

0 resemble to each other, ϕ1
C would also resemble to 

them; λ1
C would be closer to the sum of λ1

0 and λ1
F than λ1

0 alone. In other words, the POD results 

of PC(t) could be deemed as the approximate superposition of those of P0 and PF(t) for easer 

interpretation. In this condition, it would be more absurd to say the first mode represents the mean 

pressure and the following modes represent the fluctuating pressure if PC(t) are employed in the 

POD application. 

As a mathematical technique, POD could be applied on PC(t) or PF(t) no matter P0 exists or not. 

When RC are employed in POD, the POD results are global reflection of PC(t), and it’s impossible 

to precisely identify P0 and PF(t) separately. Consequently, characteristics of the fluctuating 

component PF(t), which is always the primary concern in wind pressure field analysis, can only be 

precisely identified when RF (i.e., M of PC(t)) is employed in POD. 
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