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Abstract.  In this paper, a hyperbolic shear deformation beam theory is developed for free vibration 
analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of 
transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on 
the surfaces of the beam without using shear correction factors. The material properties of the functionally 
graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of 
the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present 
refined beam theory, the equations of motion are derived from Hamilton’s principle. Navier type solution 
method was used to obtain frequencies. Illustrative examples are given to show the effects of varying 
gradients and thickness to length ratios on free vibration of functionally graded sandwich beams. 
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1. Introduction 
 

In recent years, the application of functionally graded (FG) sandwich structures in aerospace, 

marine, civil construction is growing rapidly due to their high strength-to-weight ratio. There exist 

two common types: sandwich structures with FG core and sandwich structures with FG skins. 

With the wide application of FG sandwich structures, understanding vibration of FG sandwich 

structures becomes an important task. Aydogdu and Taskin (2007) investigated the free vibration 

behavior of a simply supported FG beam by using Euler- Bernoulli beam theory, parabolic shear 

deformation theory and exponential shear deformation theory. Sallai et al. (2009) investigated the 

static responses of a sigmoid FG thick beam by using different beam theories. Ying et al. (2008) 

obtained the exact solutions for bending and free vibration of FG beams resting on a 

Winkler-Pasternak elastic foundation based on the two- dimensional elasticity theory by assuming 

that the beam is orthotropic at any point and the material properties vary exponentially along the 

thickness direction. Şimşek (2010) studied the dynamic deflections and the stresses of an FG 

simply-supported beam subjected to a moving mass by using Euler-Bernoulli, Timoshenko and the 

higher order shear deformation theories by considering the centripetal, inertia and Coriolis effects 
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of the moving mass. Thai and Vo (2012) presented a Bending and free vibration of functionally 

graded beams using various higher-order shear deformation beam theories. Taj et al. 2013 

conducted static analysis of FG plates using higher order shear deformation theory. Recently, 

Tounsi and his co-workers (Hadji et al. 2011, Houari et al. 2011, El Meiche et al. 2011, Bourada et 

al. 2012, Tounsi et al. (2013), Klouche Djedid et al. 2014, Nedri et al. 2014, Ait Amar Meziane et 

al. 2014, Draiche et al. 2014, Sadoune et al. 2014, Zidi et al. (2014), Ait Yahia et al. 2015, 

Belkorissat et al. 2015) developed a new shear deformation plates theories involving only four 

unknown functions. Vo et al. (2014) investigated the finite element model for vibration and 

buckling of functionally graded sandwich beams based on a refined shear deformation theory. 

Bennai et al. (2015) presented a new higher-order shear and normal deformation theory for 

functionally graded sandwich beams. Vo et al. (2015) developed a quasi-3 D theory for vibration 

and buckling of functionally graded sandwich beams. Kar et al. (2015) investigated the large 

deformation bending analysis of functionally graded spherical shell using FEM. Gan et al. (2015) 

studied the dynamic response of non-uniform Timoshenko beams made of axially FGM subjected 

to multiple moving point loads. Hassaine Daouadji et al. (2015) developed an analytical solution 

of nonlinear cylindrical bending for functionally graded plates. Bouderba et al. (2013) studied the 

thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic 

foundations. Hebali et al. (2014) studied the static and free vibration analysis of functionally 

graded plates using a new quasi-3D hyperbolic shear deformation theory. Belabed et al. (2014) 

presented an efficient and simple higher order shear and normal deformation theory for 

functionally graded material (FGM) plates. Bousahla et al. (2014) used a novel higher order shear 

and normal deformation theory based on neutral surface position for bending analysis of advanced 

composite plates. Larbi Chaht et al. (2015) presented the bending and buckling analyses of 

functionally graded material (FGM) size-dependent nanoscale beams including the thickness 

stretching effect. Al-Basyouni et al. (2015) investigated a size dependent bending and vibration 

analysis of functionally graded micro beams based on modified couple stress theory and neutral 

surface position. Bourada et al. (2015) used a new simple shear and normal deformations theory 

for functionally graded beams. Hamidi et al. (2015) used a sinusoidal plate theory with 

5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich 

plates. Mahi et al. (2015) investigated a new hyperbolic shear deformation theory for bending and 

free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. 

Attia et al. (2015) studied the free vibration analysis of functionally graded plates with 

temperature-dependent properties using various four variable refined plate theories. Bennoun et al. 

(2016) developed a novel five variable refined plate theory for vibration analysis of functionally 

graded sandwich plates. Bellifa et al. (2016) developed the bending and free vibration analysis of 

functionally graded plates using a simple shear deformation theory and the concept the neutral 

surface position. Bounouara et al. (2016) used a nonlocal zeroth-order shear deformation theory 

for free vibration of functionally graded nanoscale plates resting on elastic foundation. Bouderba 

et al. (2016) investigated the thermal stability of functionally graded sandwich plates using a 

simple shear deformation theory. 

In this work, a hyperbolic shear deformation beam theory is presented to study the free 

vibration response of FG sandwich beams. The most interesting feature of this theory is that it 

accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies 

the zero traction boundary conditions on the top and bottom surfaces of the beam without using 

shear correction factors. Material properties of the sandwich beam faces are assumed to vary in the 

thickness direction only according to power-law form distribution in terms of the volume fractions 
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of the constituents. The core layer is still homogeneous and made of an isotropic material. Then, 

the present theory together with Hamilton’s principle, are employed to extract the motion 

equations of the functionally graded sandwich beams. Analytical solutions for free vibration are 

obtained. Numerical examples are presented to verify the accuracy of the present theory. 

 

 

2. Problem formulation 
 

Consider a FG sandwich beam, composed of ’’Layer 1’’, ’’Layer 2’’, and ’’Layer 3’’, as shown 

in Fig. 1. The x , y , and z  axes are taken along the length (L), width (b), and height (h) of the 

beam, respectively. The core of sandwich beam is fully metal or ceramic and skins are composed 

of a FG material across the beam depth. The vertical positions of the bottom and top, and of the 

two interfaces between the layers are denoted by ,
2

=,,,
2

= 3210

h
hhh

h
h  respectively.  

 

2.1 Material properties 
 

The effective material properties for each layer, like Young’s modulus E and mass density  , 

can be expressed as 

  )(

212

)(  )( nn VPPPzP                          (1) 

where tP  and bP  denote the material property located at the skins and at the core, respectively. 

The volume fraction function )(nV  defined by the power-law form as follows 

 

 

 

Fig. 1 Geometry and coordinate of a FG sandwich beam. 
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where k  is a power-law index which is positive. 

 

 

2.2 Kinematics and constitutive equations 
 
The displacement field of the present refined beam theory can be obtained as 

x

w
)z(f

x

w
z)t,x(u)t,z,x(u sb

0
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


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)t,x(w)t,x(w)t,z,x(w sb                            (3b) 

where z)(f  is a hyperbolic shape function. The function z)(f  is chosen in the form (Kettaf et 

al. 2013) 
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The strains associated with the displacements in Eq. (3) are 

s
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)z('f1)z(g   and 
dz

)z(df
)z('f                       (5d) 

The state of stress in the beam is given by the generalized Hooke’s law as follows 

 
x

n

x zQ   )(11  and 
 

xz

n

xz zQ   )(55                     (6a) 

where 
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  )()(11 zEzQ n  and 
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                  (6b) 

 
2.3 Equations of motion 
 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Thai and Vo 2012) 

           0
2
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t

t

dtTU                              (7) 

where t  is the time; 1t  and 2t  are the initial and end time, respectively; Uδ  is the virtual 

variation of the strain energy and T   is the virtual variation of the kinetic energy. The variation 

of the strain energy of the beam can be stated as 
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where N , bM , sM  and Q  are the stress resultants defined as 
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The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t ; 

)z(  is the mass density; and ( 0I , 
1I , 

1J , 
2I , 

2J , 
2K ) are the mass inertias defined as 
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2

2

22
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n
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dzzfzfzfzKJIJII               (11) 

Substituting the expressions for U   and T   from Eqs. (11) and (14) into Eq.(7) and 

integrating by parts versus both space and time variables, and collecting the coefficients of 0 u , 

bw  , and sw  , the following equations of motion of the functionally graded beam are obtained 
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Eqs. (12) can be expressed in terms of displacements ( sb0 w,w,u ) by using Eqs. (5), (6) and 

(9) as follows  
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where 11A , 11D , etc., are the beam stiffness, defined by 
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3. Analytical solution 
 
The equations of motion admit the Navier solutions for simply supported beams. The variables 

0u , bw , sw  can be written by assuming the following variations 
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where mU , bmW , and smW  are arbitrary parameters to be determined, is the eigenfrequency 

associated with m th eigenmode, and L/m .  

Substituting the expansions of 0u , bw , sw  from Eqs. (15) into the equations of motion Eq. 

(13), the analytical solutions can be obtained from the following equations 
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 2
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   2
6133 IIm   

 
 
4. Results and discussion 

 
In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theories in predicting the free vibration responses of simply supported FG beams. The 

FG beam is taken to be made of aluminum and alumina with the following material properties: 

Ceramic ( CP : Alumina, Al2O3): 380cE GPa; 3.0 ; 3960c kg/m3. 

Metal ( MP : Aluminium, Al): 70mE  GPa; 3.0 ; 2702m kg/m3. 
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And their properties change through the thickness of the beam according to power-law. For 

convenience, the following dimensionless form is used 

m

m

Eh

L 


2 
  

4.1 Results for free vibration analysis 
 
For free vibration analysis, different types of FG sandwich beams are considered. Table 1 and 2 

shows the nondimensional fundamental frequencies   of FG beams with both hardcore and 

softcore. The obtained results are compared with those of of Vo et al. (2014) and Bennai et al. 

(2015) for different values of power law index k  and span-to-depth ratio hL / .  
 

Table 1 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with 

homogeneous hardcore ( )5=/ hL  

k Theory 
  

1-0-1 2-1-2 1-1-1 1-2-1 1-8-1 

0 

CBT 5.3953 5.3953 5.3953 5.3953 5.3953 

Vo et al. (2014) 5.1528 5.1528 5.1528 5.1528 5.1528 

Bennai et al. (2015) 5.1529 5.1529 5.1529 5.1529 5.1529 

Present 5.1529 5.1529 5.1529 5.1529 5.1529 

0.5 

CBT 4.2640 4.3772 4.4796 4.6432 5.0469 

Vo et al. (2014) 4.1268 4.2351 4.3303 4.4798 4.8422 

Bennai et al. (2015) 4.1270 4.2353 4.3305 4.4799 4.8425 

Present 4.1272 4.2354 4.3305 4.4797 4.8419 

1 

CBT 3.6706 3.8314 3.9859 4.2394 4.8661 

Vo et al. (2014) 3.5735 3.7298 3.8755 4.1105 4.6084 

Bennai et al. (2015) 3.5730 3.7302 3.8754 4.1108 4.6091 

Present 3.5739 3.7301 3.8757 4.1104 4.6791 

2 

CBT 3.1377 3.3068 3.4976 3.8322 4.6835 

Vo et al. (2014) 3.0680 3.2365 3.4190 3.7334 4.5142 

Bennai et al. (2015) 3.0672 3.2368 3.4187 3.7336 4.5151 

Present 3.0687 3.2370 3.4193 3.7333 4.5136 

5 

CBT 2.8082 2.8953 3.0741 3.4517 4.5031 

Vo et al. (2014) 2.7446 2.8439 3.0181 3.3771 4.3501 

Bennai et al. (2015) 2.7433 2.8436 3.0178 3.3770 4.3511 

Present 2.7457 2.8447 3.0186 3.3771 4.3495 

10 

CBT 2.7688 2.7839 2.9306 3.3018 4.4237 

Vo et al. (2014) 2.6932 2.7355 2.8808 3.2356 4.2776 

Bennai et al. (2015) 2.6918 2.7353 2.8806 3.2353 4. 2782 

Present 2.6945 2.7365 2.8815 3.2358 4.2769 
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An excellent agreement between the present solutions and results of Vo et al. (2014) and 

Bennai et al. (2015) is found. It should be remembered that the frequencies predicted by the shear 

deformable beam theories are smaller than those predicted by the classical beam theory and the 

difference between the frequencies of CBT and the shear deformable beam theories decreases as 

the value of hL /  increases (see Tables 1-4). 

Figs. 2 and 3 depict the fundamental frequencies parameters versus the material parameter k  

of simply supported power-law (2-1-2) FG sandwich beams with both homogeneous hardcore and 

softcore, respectively. It can be seen, that as the power law index increases, the natural frequencies 

decrease for sandwich beams with hardcore and increase for sandwich beams with softcore. 

 

 
Table 2 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with 

homogeneous hardcore ( )20=/ hL  

 

 

 

k Theory 
  

1-0-1 2-1-2 1-1-1 1-2-1 1-8-1 

0 

CBT 5.4777 5.4777 5.4777 5.4777 5.4777 

Vo et al. (2014) 5.4603 5.4603 5.4603 5.4603 5.4603 

Bennai et al. (2015) 5.4603 5.4603 5.4603 5.4603 5.4603 

Present 5.4603 5.4603 5.4603 5.4603 5.4603 

0.5 

CBT 4.3244 4.4389 4.5429 4.7094 5.1212 

Vo et al. (2014) 4.3148 4.4290 4.5324 4.6979 5.1067 

Bennai et al. (2015) 4.3148 4.4290 4.5324 4.6979 5.1067 

Present 4.3148 4.4290 4.5325 4.6979 5.1066 

1 

CBT 3.7214 3.8838 4.0404 4.2979 4.9365 

Vo et al. (2014) 3.7147 3.8768 4.0328 4.2889 4.9233 

Bennai et al. (2015) 3.7146 3.8768 4.0328 4.2889 4.9233 

Present 3.7147 3.8768 4.0328 4.2889 4.9233 

2 

CBT 3.1812 3.3514 3.5443 3.8837 4.7501 

Vo et al. (2014) 3.1764 3.3465 3.5389 3.8769 4.7382 

Bennai et al. (2015) 3.1763 3.3465 3.5389 3.8769 4.7382 

Present 3.1764 3.3466 3.5389 3.8769 4.7381 

5 

CBT 2.8483 2.9346 3.1149 3.4972 4.5661 

Vo et al. (2014) 2.8439 2.9310 3.1111 3.4921 4.5554 

Bennai et al. (2015) 2.8438 2.9310 3.1110 3.4921 4.5554 

Present 2.8440 2.9311 3.1111 3.4921 4.5554 

10 

CBT 2.8094 2.8221 2.9696 3.3451 4.4851 

Vo et al. (2014) 2.8439 2.9310 3.1111 3.4921 4.5554 

Bennai et al. (2015) 2.8040 2.8188 2.9661 3.3406 4.4749 

Present 2.8042 2.8189 2.9662 3.3406 4.4749 
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Table 3 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with 

homogeneous softcore ( )5=/ hL  

 

 
Table 4 Non-dimensional fundamental natural frequencies of simply supported FG sandwich beams with 

homogeneous softcore ( )20=/ hL  

k Theory 
  

1-0-1 2-1-2 1-1-1 1-2-1 1-8-1 

0 

CBT 2.8034 2.8034 2.8034 2.8034 2.8034 

Vo et al. (2014) 2.6773 2.6773 2.6773 2.6773 2.6773 

Bennai et al. (2015) 2.6774 2.6774 2.6774 2.6774 2.6774 

Present 2.6774 2.6774 2.6774 2.6774 2.6774 

0.5 

CBT 4.8058 4.6979 4.5838 4.3727 3.6851 

Vo et al. (2014) 4.8683  4.7368 4.6050 4.3814 3.7101 

Bennai et al. (2015) 4.4427  4.3046 4.1839 3.9921 3.4342 

Present 4.4386 4.2993 4.1791 3.9898 3.4355 

1 

CBT 5.2408 5.1686 5.0670 4.8491 4.0231 

Vo et al. (2014) 5.1002  5.0012 4.8815 4.6512 3.9296 

Bennai et al. (2015) 5.1108  5.0190 4.8984 4.6677 3.9344 

Present 4.8471 4.7090 4.5765 4.3601 3.7081 

2 

CBT 5.4609 5.4534 5.3881 5.1982 4.3118 

Vo et al. (2014) 5.1880  5.1603 5.0703 4.8564 4.1139 

Bennai et al. (2015) 5.1916  5.1644 5.0769 4.8646 4.1140 

Present 5.0895 4.9864 4.8608 4.6347 3.9319 

5 

CBT 5.4992 5.5760 5.5669 5.4353 4.5566 

Vo et al. (2014) 5.1880 5.1603 5.0703 4.8564 4.1139 

Bennai et al. (2015) 5.1848  5.1966 5.1301 4.9326 4.1855 

Present 5.1851 5.1507 5.0557 4.8405 4.1149 

10 

CBT 5.4647 5.5814 5.6026 5.5067 4.6537 

Vo et al. (2014) 5.1848 5.1966 5.1301 4.9326 4.1855 

Bennai et al. (2015) 4.4557  4.3184 4.1968 4.0016 3.4379 

Present 5.1833 5.1886 5.1163 4.9152 4.1859 

k Theory 
  

1-0-1 2-1-2 1-1-1 1-2-1 1-8-1 

0 

CBT 2.8462 2.8462 2.8462 2.8462 2.8462 

Vo et al. (2014) 2.8371 2.8371 2.8371 2.8371 2.8371 

Bennai et al. (2015) 2.8371 2.8371 2.8371 2.8371 2.8371 

Present 2.8371 2.8371 2.8371 2.8371 2.8371 
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Fig. 2 Variation of fundamental frequencies   versus the material parameter k  for (2-1-2) simply 

supported FG sandwich beams with homogeneous hardcore 

0.5 

CBT 4.8854 4.7762 4.6602 4.4453 3.7442 

Vo et al. (2014) 4.8579  4.7460 4.6294 4.4160 3.7255 

Bennai et al. (2015) 4.8582  4.7465 4.6297 4.4161 3.7257 

Present 4.8576 4.7456 4.6290 4.4158 3.7256 

1 

CBT 5.3283 5.2564 5.1536 4.9317 4.0889 

Vo et al. (2014) 5.2990  5.2217 5.1160 4.8938 4.0648 

Bennai et al. (2015) 5.2996  5.2220 5.1165 4.8941 4.0647 

Present 5.2986 5.2209 5.1152 4.8932 4.0649 

2 

CBT 5.5512 5.5462 5.4811 5.2884 4.3836 

Vo et al. (2014) 5.5239  5.5113 5.4410 5.2445 4.3542 

Bennai et al. (2015) 5.5244  5.5118 5.4415 5.2448 4.3541 

Present 5.5235 5.5103 5.4398 5.2435 4.3543 

5 

CBT 5.5873 5.6696 5.6626 5.5303 4.6337 

Vo et al. (2011) 5.5645  5.6382 5.6242 5.4843 4.5991 

Bennai et al. (2015) 5.5648  5.6387 5.6247 5.4847 4.5991 

Present 5.5643 5.6374 5.6229 5.4828 4.5991 

10 

CBT 5.5505 5.6739 5.6983 5.6029 4.7329 

Vo et al. (2014) 5.5302  5.6452 5.6621 5.5575 4.6960 

Bennai et al. (2015) 5.5303  5.6459 5.6627 5.5579 4.6961 

Present 5.5301 5.6445 5.6609 5.5559 4.6960 
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Fig. 3 Variation of fundamental frequencies ω  versus the material parameter k  for (2-1-2) simply 

supported FG sandwich beams with homogeneous softcore 

 

 

In Fig. 4 and 5 the variations of non-dimensional fundamental frequencies of a FG sandwich 

beams with homogeneous hardcore and softcore, respectively for different power law index k  

versus the span-to-height ratio using the present theory are given. It is shown that the natural 

fundamental frequencies decrease with the decrease of the material rigidity, which is due to the 

increase of k  for FG sandwich beams with homogeneous hardcore or the decrease of k  for FG 

sandwich beams with homogeneous. 
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Fig. 4 Fundamental frequency   as a function of span-to-height ratio hL /  of symmetric FGM 

sandwich beam (2-1-2) with homogeneous hardcore for various values of k  
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Fig. 5 Fundamental frequency   as a function of span-to-height ratio hL /  of symmetric FGM 

sandwich beam (2-1-2) with homogeneous hardcore for various values of k  

 

 

5. Conclusions 
 

A new hyperbolic shear deformation theory for the free vibration analysis of FG sandwich 

beams is developed. The theory accounts for parabolic distribution of the transverse shear strains 

and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear 

correction factors. It is based on the assumption that the transverse displacements consist of 

bending and shear components. Based on the present beam theory, the equations of motion are 

derived from Hamilton’s principle. Numerical examples show that the proposed theory gives 

solutions which are almost identical with those obtained using other shear deformation theories. 
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