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Abstract. A preconditioning technique is presented for a simultaneous solution to wind-membrane 
interaction. In the simultaneous equations, a linear elastic model was employed to deal with the 
fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the specified 
boundary conditions at the interface and strongly coupled simultaneous equations are derived after space and 
time discretization. An initial linear elastic model preconditioner and modified one were derived by treating 
the linearized elastic model equation as a saddle point problem, respectively. Accordingly, initial and 
modified fluid-structure interaction (FSI) preconditioner for the simultaneous equations were derived based 
on the initial and modified linear elastic model preconditioners, respectively. Wind-membrane interaction 
analysis by the proposed preconditioners, for two and three dimensional membranous structures respectively, 
was performed. Comparison was made between the performance of initial and modified preconditioners by 
comparing parameters such as iteration numbers, relative residuals and convergence in FSI computation. 
The results show that the proposed preconditioning technique greatly improves calculation accuracy and 
efficiency. The priority of the modified FSI preconditioner is verified. The proposed preconditioning 
technique provides an efficient solution procedure and paves the way for practical application of 
simultaneous solution for wind-structure interaction computation. 
 

Keywords: membrane structures; wind loading; fluid-structure interaction; simultaneous solution; 

preconditioning technique 

 
 
1. Introduction 
 

Fluid-structure interaction between wind and membrane structures is recognized as one of the 

most significant, yet not comprehensively studied, issues in the wind-resistant behaviour of 

flexible building structures. Numerical simulation has become a vigorous tool for fluid-structure 

interaction computation due to rapid progress in hardware and software of computers (Dagnew and 

Bitsuamlak 2013, 2014). Currently, numerical simulation methods fall into three categories, 

partitioned solutions with loosely-coupling method (Borna et al. 2013), partitioned solutions with 

strongly-coupling method and simultaneous solutions (Hermann and Jan 2002, 2003). In 

loosely-coupling partitioned solutions schemes, separate solvers for fluid and structure are 
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employed once per time step, resulting in a time lag between both continua, whereas 

strongly-coupling partitioned solutions require an additional iteration loop based on the partial 

solvers, which demonstrate better convergence and stability characteristics, but additional 

numerical efforts are needed. Simultaneous procedures solve the coupled system in a single 

iteration loop with consistent time integration schemes for all physical fields, resulting in 

time-accurate coupled solutions (Namkooong et al. 2005). In other words, an anthology of 

numerical simultaneous solution is applied to FSI of membrane structures under wind actions, 

including formulating the fluid-structure system in the form of simultaneous equations, and 

solving it simultaneously (Degroote et al. 2009, Habchi et al. 2013). 

Most of the current studies on FSI of membrane structures, with numerical simulation, adopt 

partitioned solutions with loose-coupling or strong-coupling methods. Studies on simultaneous 

solution method have been rather limited (Habchi et al. 2013, Hachem et al. 2013). However, the 

limited study has shown its superiority in stability and accuracy in computation (Habchi et al. 

2013, Michler et al. 2004) over partitioned solutions. Thus, for membrane structures undergoing 

large-displacement, a simultaneous solutions is preferable for wind-membrane structure interaction 

analysis since it ensures better stability and convergence.   

One of the key aspects in fluid-structure interaction computation is data transfer at 

fluid-structure interface. Sun and Gu (2014) proposed a linear elastic model to deal with the fluid 

deformation to derive a single equation system for a simultaneous solution to compute 

wind-membrane interaction. For the simultaneous solution procedure, Newton’s method is usually 

needed to linearize the simultaneous equations of the coupled system. In spite of its superiority in 

accuracy and stability of simultaneous solution method, large amounts of computational efforts are 

consumed on repeated integration of Jacobian matrix and Newton modification of the linearized 

simultaneous equations, which probably result in ill-conditioned of the linearized equations and 

inefficiency of simultaneous solution procedure. Thus, it is among the top priorities to solve the 

simultaneous equations effectively. Generalized minimum residual algorithm (GMRES for short), 

an iteration method, is one of Krylov subspace projections methods that commonly used to solve 

large asymmetric linear equations, exactly the case of linearized simultaneous equations 

(Manguoglu et al. 2011). A preconditioning technique, aggregating eigenvalues of linear iteration 

matrix to diminish computation time when solving linear equations, is usually required to 

accelerate convergence for the method. 

For fluid-structure interaction, some preconditioning techniques have been proposed to solve 

the linearized nonlinear equations based on the current studies, which can fall into three categories. 

The first category is the preconditioning technique that modifies the boundary conditions at the 

fluid-structure interface, among which Dirichlet-Neumann boundary preconditioner is commonly 

used. The advantage of the method lies in its usage of existing CFD and CSD module and as a 

result, it is usually employed in partitioned solutions with loosely-coupling method (Heil et al. 

2008). The second category is Schur preconditioner. Barker and Cai (2009, 2010) proposed 

preconditioner based on Newton-Krylov-Schwarz algorithm. In Barker and Cai (2009), Schwarz 

domain decomposition was adopted to solve strongly coupled equations. In Barker and Cai (2010), 

additional Schwarz preconditioner with double-layer computation method was proposed based on 

Krylov subspace solver. The third method is to employ blocked triangle preconditioner. Badia et al. 

(2008a, b) proposed incomplete LU decomposition (ILU for short) preconditioner and inaccurate 

blocked LU decomposition preconditioner to solve strongly coupled equations. In spite of the 

proposed preconditioners for strongly-coupled methods, they are only aimed at separate fluid 

solver or structural solver, that is, the preconditioners could be only used for fluid domain or 
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structural domain. Meanwhile, the preconditioners have not been validated for wind-membrane 

interaction computation due to large added-mass effect resulted from light weight of the membrane 

structures.  

Linear elastic model was proposed to deal with the fluid domain deformation and strongly 

coupled simultaneous equations were derived by the authors of this paper (Sun and Gu 2014). The 

objective of this paper is to study preconditioning technique for the proposed strongly coupled 

simultaneous equations to solve the nonlinear equations efficiently and study wind-membrane 

interaction in a more accurate manner. A Lagrange multiplier is introduced to impose the boundary 

conditions on the fluid-structure interface. An initial linear elastic model preconditioner and 

modified one is derived by treating the linearized elastic model equation as a saddle point problem, 

respectively. The fluid-structure interaction (FSI) preconditioning matrix for the simultaneous 

equations is then derived based on the initial and modified linear elastic model preconditioning 

matrix. Wind-membrane interaction for two and three dimensional membrane structures using the 

proposed preconditioner were computed. The performance and efficiency of the preconditioners 

was evaluated. 

 

 

2. Governing equations for fluid-structure interaction system 
 

2.1 Governing equations  
 

The incompressible viscous fluid is governed by the Navier–Stokes equations, consisting of 

momentum conservation and continuity equation. The governing equations for the structure are 

described by a total Lagrange (T.L.) formulation and a large deformation theory. A linear elastic 

model is introduced to deal with the data transfer at the interface, which is governed by 

semi-discretized finite element equations. These equations can be found in Sun and Gu (2014). 

 

2.2 Coupling conditions 
 
Each node i of the fluid, structure and linear elastic model is assumed to be connected with the 

fixed material point on the fluid-structure interface. The material point is denoted by its Lagrange 

coordinates 
i , then the coupling conditions on the fluid-structure interface can be written as 

)())(),(),(( 321  IIIIES uu  , on
I                   (1) 

FSI FSI

f sν ν ,on I                               (2)  

( ( )) ( ( )) 0FSI FSI

s I s f I f    σ u n σ u n , on I                   (3)  

where ESu denotes the displacement vector of the linear elastic model, Iu denotes the structure 

displacement on the interface I ,  denotes the peripheric coordinate form at the interface I , 

then, ))(),(),((,, 321321  IIII  ）（ . Eq. (1) indicates that the linear elastic model 

displacement equals the real structure displacement at the interface. Eq. (1) can be regarded as the 

Dirichlet condition imposed on the displacement field of the linear elastic model. 
FSI

fv and 
FSI

sv
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are fluid velocity and structure velocity at the interface
I , respectively. 

FSI

fσ and 
FSI

sσ represent 

Cauchy stress of fluid and structure at the interface, respectively. fn and sn  are outer normal 

unit vector of fluid and structure, respectively, s f n n .  

To enforce the boundary conditions on the fluid-structure interface, a Lagrange multiplier is 

introduced for Dirichlet boundary condition (Badia et al. 2008a, b). Thus, a Lagrange multiplier is 

introduced into Eq. (1), which can be written as the following weighted residual form 





 d

d

d IIIES
III

I
IES

))(),(),((
))()(),(),(((

321

321 



  

u
uu     (4) 

where Θ  is Lagrange multiplier, which can be regarded as the surface traction imposed on the 

interface 
IΓ   for the sake of generating the required boundary deformation.  

 

2.3 Discretization of the governing equations 
 

To obtain strongly coupled simultaneous equations, discretization of the fluid, structural and 

linear elastic governing equations both in time and space is required. The governing equations of 

the fluid, structure and linear elastic model are discretized with Galerkin finite element methods in 

space. Implicit finite difference methods are employed for time discretization. The discretization 

can be regarded as the process for obtaining the weak forms of the equations through weighted 

residual method. 

The fluid is considered as an incompressible viscous flow and governed by the Navier–Stokes 

equations. Thus, the governing equations, i.e., continuity and momentum equations in the fluid 

domain 
f  can be written as:  

=0f ν    in f                            (5) 

+ =
f f

f f f
t




 


ν
ν ν σ（ ）  in 

f                      (6) 

where fν stands for fluid velocity, f is fluid density, 
f

σ is the stress tensor, 

[ ( ) ]f T

f f p    σ v v E ,  is the fluid viscosity, E stands for unit matrix, p  is the fluid 

pressure. 

The weighted residual form of the fluid continuity and momentum equations are referred in Sun 

and Gu (2014).  

The governing equations for the structure are described by a total Lagrange (T.L.) formulation 

and a large deformation theory. The weighted residual form of the structure governing equations   

in the material point can be written as 

0 0 0

0( ( ) : ( ( ) (( ) : ( ( ) 0
s S

N I

i i i

s s s s sd d        
  

         b u u n u       (7) 

where η  is test function, chosen as piecewise polynomial function, 
0Ω s  denotes initial 
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configuration of the structure domain, 0

s

N  and 0I represent initial Neumann boundary and 

initial configuration at the interface, respectively, sb  denotes the volume force of the structure, 

su denotes displacement of the structure, 
0

sn is the initial outer normal unit vector of structure.  

For data transfer on the fluid-structure interface, linear elastic model is introduced to deal with 

the deformation of the fluid. Considering the boundary conditions at the interface with Lagrange 

multiplier introduced earlier, Lagrange multiplier is introduced into linear elastic model 

accordingly. The weighted residual form of the linear elastic model in the material point form can 

be written as 

0 0 0

2 2
2 0 2

2 2
( : (( ( )) (( ) : (( ( )) 0

s S
N I

i iLE LE
LE s LEd d

t t
     

  

 
        

  
u u

u n u） ）
  

(8) 

where   is Lagrange multiplier, )/(/ pS ETL σ）（ , 
2  could be regarded as 

dimensional value of structure density, L and T are dimensional value of space and time 

coordinates, pσ  is 2nd Piola-Kirchhoff stress tensor, 
LEχ  denotes displacement of the linear 

elastic model.  

The weighted residual form of coupling condition (3) can be written as  

0 1
0( ( ) ) ( ( )) 0

I I

s

s I f I fd d   
 

       σ u n σ u n＋             (9) 

where the first term represents the structure contribution on the initial configuration, the second 

term stands for the fluid contribution on the deformed mesh. 

One-step-θ temporal discretization is employed to get the discretization form of the coupling 

condition (2), which can be written as 

, 1 ,

1 1 1
I I

n n

n n

f f

d d

dt



 



 
 

 

u u
d d

ν ν                       (10) 

where 1/ 2 1   (Förster et al. 2005) 

The relationship of displacement of linear elastic model and fluid velocity can be written as 

1 1 (1 )n n n n

LE LE f ft t       u u ν ν                     (11) 

Then the simultaneous equations based on linear elastic model and Lagrange multiplier can be 

written as 

( ( )+ : ) 0
f

f f

F f f f f d
t

   



        


ν

f ν ν ν σ           (12) 

0
( ( ) : ( ( )) 0

s

i i

S s s s d     


     f b u u                 (13) 

0

2
2

2
( : (( ( )) 0

s

iLE
LE LE d

t
  




    


u

f u）                  (14) 

353



 

 

 

 

 

 

Fang-jin Sun and Ming Gu 

I

( ( )) 0FSI

F f I f d 


    f σ u n                       (15) 

0
0(( ) ( ( )) 0

I

FSI s

S s d 


    f n σ u                      (16) 

where Ff  , Sf and LEf denote weighted residual form of the fluid, solid and linear elastic model 

equations, respectively, FSI

Ff and 
FSI

Sf represent weighted residual form of the coupling conditions 

at the interface,   and  denote test functions, which are chosen as pressure shape functions 

and velocity shape functions in local coordinates, respectively,   stands for spatial domain 

composed of Dirchlet boundary D , Neumann boundary N and fluid-structure interface I  , 
f

N

represents the fluid Neumann boundary. The unknowns of the simultaneous equations are the fluid 

velocity fν , fluid pressurep , linear elastic model displacement LEu and structural displacement

su . 

 

 

3. Solution approach  
 

The nonlinear strongly coupled simultaneous equations derived above need to be solved in one 

time step, after Newton linearization which can be written as   

iFSI
i FSI

d

d
  

f
x f

x
                            (17) 

Where FSIf  stands for the above simultaneous equations, x  represents all the unknowns in 

the equations, 
FSI FSId

d


f
J

x
 is Jacobian matrix, i stands for iterative time step.  

In the work here, block preconditioners are proposed considering the convenience and 

computation efficiency. Their application requires efficient sub-block solvers. Thus, considering 

Lagrange multiplier, Eq. (17) after Newton linearization can be written in the following block form 

as 

              

( )

( )

( )

S S

FSI

s s

FSI FSI FSI FSI FSI

S S F F F

FSI FSI FSI

s s LE f f

F F F F

FSI FSI

LE f f LE

FSI

LE LE F F

FSI FSI

LE LE LE LE

FSI

LE F F

FSI

LE LE LE







 



 
  

    

 
    

    
 

   

   
 

   

  
 

  

f f

u u

f f f f f

u u u ν ν

f f f f

u ν ν u

f f f f

u u u u

f f f

u u u

,

*

*

i

s

FSI i

f

ii
FSIf

i

LE

i

LE





  
  

  
    
  

   
     
 
 
 



u

ν

fν

u

u

   (18) 
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where * fν represents all the unknowns of the fluid domain, including fluid velocity and pressure, 

*

FSI

fν stands for the fluid unknowns on the interface, t   , LEu  denotes unknown linear 

elastic model displacement with discretized Lagrange multiplier imposed on the fluid-structure 

interface. 

For convenience, the Jacobian matrix of linear algebraic system of Eq. (18) can be written as  

































)(

)(

FFSI

LE

F

LEFSI

LE

LE

FFSI

LEFSI

F

LE

LE

LE

LE

LEFSI

F

LE

F

f

F

fFSI

F

LEFSI

FFSI

f

FFSI

fFSI

FFSI

LEFSI

SFSI

sFSI

SFSI

s

S

sFSI

S

s

FSI

DDD

DDDD

DUUD

UUDDD

DD

J











）（

  

(19) 

where 
u 

f 
=
∂

∂
D corresponding to each term in Eq. (18), the superscripts and subscripts keep 

uniformity with each term in Eq. (18) for distinguishing,
FFSI

LEFSI

F

LE

LE

LE DDD 
and 

FFSI

LE

F

LEFSI

LE

LE DDD 
 can be regarded as discretized gradient and operator, respectively, 

which indicate Lagrange multiplier has been imposed to enforce the boundary condition (1) and 

the effects of the structure displacement on the linear elastic model displacement, i.e., 
FFSI

LEFSI

F

LE

LE

LE DDD 
=

TFFSI

LE

F

LEFSI

LE

LE ）（ DDD 
. 

 

 

4. Preconditioning technique  
 

Generalized minimal residual method (Saad 2003) with preconditioning can be employed to 

solve Eq. (17). GMRES is a Krylov subspace projection method for solving large non-symmetric 

linear equations. Preconditioning technique is usually needed for the GMRES to accelerate the 

convergence. Preconditioning technique is to diminish computation time for solving the linearized 

equations through accumulating eigenvalues of linear iteration matrix. The preconditioner PR

LEM  

for linear elastic model equation is firstly presented, and the preconditioner 
PR

FSIM  for 

simultaneous equations is proposed.  

 

4.1 Reformulation of the linear elastic model as a saddle point problem 
 

To obtain preconditioning matrix of the linear elastic model and fluid-structure system, the 

fluid nodes are considered as material points to ensure the discretized fluid equations not directly 

correlated to real structure deformation, and the linear elastic model not directly correlated to the 

fluid. Thus, special blocked structure could be utilized in the Jacobian matrix to modularize the 

preconditioning matrix and to use it repeatedly in the computation.  

Firstly, preconditioner of the linear elastic model is derived by reformulating its linearized 

equations as a saddle point problem. Any non-linear equations after linearization, if properly 
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blocked, could be reformulated as saddle point problems (Farhat and Vinod 2014, Lazarov and 

Sigmund 2011). Thus, the linear elastic model of Eq. (14), after linearization by the 

Newton-Rapshon method, can be written as the following saddle point problem 

Au=b                                 (20) 

i.e.  

LE-
0

f
u

u

B

BA
xJ 
































LE

LE

T

LELE
                   (21) 

where 
LE

LEFSILE DA   corresponds to the equilibrium state of the system and thus symmetric 

definite positive, B is a full-rank )( nmmn   diagonal matrix, whose discretization was 

shown to be steady in Farhat and Vinod (2014),  

）（ FFSI

LEFSI

F

LE

LE

LE

T
DDDB 

,   ）（ FFSI

LE

F

LEFSI

LE

LE DDDB  
.  

Iterative method is employed to solve Eq. (21). A preconditioner P is usually introduced to 

solve Eq. (21), and left preconditioner is adopted here, i.e. 

1 1 P Au P b                             (22) 

Based on preconditioning matrix proposed by Rees and Greif (2007), considering 

characteristics of the strongly coupled simultaneous equations here, preconditioner of Eq. (21) can 

be written as the following blocked triangle matrix form 













 




W

kBBWBA
M

TT

LEPR

LE

1

                     (23) 

where nn RR W  is symmetric definite positive, which can be chosen arbitrarily in order to 

construct the effective preconditioner, k is a scalar factor, which designed to adjust the 

computation convergence through effects of different values on GMRES iteration and relative 

residuals. In order to guarantee all the eigenvalues of the preconditioner to be bounded, k should 

be real among proper value. (Rees and Greif 2007).  In the work here, k  is an important factor, 

whose proper values and implicancies it may have will be discussed in detail through the 

following computation cases.  

Based on the above requirements, W in this work is chosen as 



















z

y

x

E

E

E

EW







                    (24) 

where 


 LEA , E stands for unit matrix.  

Combing Eqs. (23) and (24), along the coordinate, the unknown linear elastic model 

displacement is divided into unknown nodal vector on the interface and not on the interface. Then 

an initial preconditioner of the linear elastic model can be obtained as 
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



































E

EAAAAAA

kZAAAAAA

kZAAEAAAA

AAAAAA

kZAAAAEAA

AAAAAA

M









zzzzyzyzxzxz

zzzzzyzzyxzzx

yzyzyyyyyxyxy

zxzxyxyyxyyx

xzxzxyxyxxxxx

zxxzyxxyxxxx

PR

LE
  (25) 

where BWBAA
1 T

LE
, subscripts , ,x y z  and , ,x y z  are unknown displacement nodal 

vectors and unknown displacement nodal vectors constrained by Lagrange multiplier of the linear 

elastic model, respectively.   dn
I

mmnzmnymnx ZZZ , m and n are basis 

functions on the fluid-structure interface, which are chosen as polynomial function relevant to 

geometric positions of the fluid mesh nodes.  

The spectral properties of the preconditioner can be referred in Rees and Greif (2007). It was 

pointed out by Rees and Greif (2007) that, when 1k , there were ( nm ) eigenvalues for 

preconditioner PR

LEM   and there were p eigenvalues 
2

51
 , while the rest eigenvalues fell 

between ），（），（
2

51
10

2

5-1 
 .  

To further improve the computation efficiency, Eq. (25) is further simplified. Blocked 

preconditioner (Geuzaine and Remacle 2009) is adopted by substituting BWBA
1 T

LE
 with 

the upper triangle block of BWBA
1 T

LE
, then we obtain the modified preconditioner of the 

linear elastic model,  
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For the above preconditioner, the following diagonal blocked subsystems are utilized for 

calculation. 
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4.2 Preconditioner of the fluid-structure interaction system  
 

Substituting the lower right block in Eq. (19) with the proposed preconditioning matrix of the 

linear elastic model, i.e., Eq. (23), yields fluid-structure interaction system preconditioner for the 

simultaneous equations (referred as FSI preconditioner hereafter) as follows 


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





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F
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)(
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                                                              (28) 

Initial and modified FSI preconditioner can be obtained by employing the linear elastic model 

preconditioner, Eqs. (25) and (26) to calculate Eq. (28), respectively.  

To validate preconditioning matrix (28), spectral characteristics of FSIFSI JM 1)(   should be 

analyzed. To this end, Jacobian matrix in Eq. (19) is rewritten in the following diagonal block form 

as 
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where 
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
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subscripts q and l denote unknown nodal vector constrained by displacement and not constrained 

by displacement, respectively. There are vn unknown nodal vector in the first row of 
FSI

J , un  

unknown nodal vector in the second row, ( )c dn n  unknown nodal vector in the third row, dn  

discretized unknown Lagrange multiplier in fifth and sixth row, respectively. 
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Then preconditioner Eq. (28) can be written as 







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M
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                          (30) 
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Matrix FSIFSI
JM

1)(   can be written as 


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where 
22

1

22 ) JΞJ
（  can be regarded as Schur complement correlated to block 22J , unit 

matrix E in the upper left block indicates that preconditioning matrix FSIFSI
JM

1)(   at least 

contains )( dcuv nnnn   unit eigenvalues, the rest dn2  eigenvalues would be determined 

from spectrum of 
22

1

22 ) JΞJ
（ .  

 
 
5. Procedures for simultaneous solutions with the preconditioning technique  
  

The computer configuration is: Intel i7, memory capacity of DDR3 8GB. Based on circular 

GMRES algorithm (Barker and Cai 2010), procedures for simultaneous solutions with 

preconditioner proposed above are summarized as follows.  

 (1) Start iteration from a zero initial field for all variables in the equations for 2 to 3 step 

consecutive iterations to ensure convergence of Newton’s Method. Implicitly treat the boundary 

conditions and loads at the interface of the entire fluid-structure interaction system. All the fluid 

variables were saved on the mesh nodes.  

 (2) Newton-Raphson method is employed to linearize the simultaneous equations to obtain 

linearized equations  A x b . Left preconditioner and GMRES method is employed to solve the 

equations. The details are as follows. 

 (3) Randomly select initial estimate value 0x  and determine Krylov subspace dimension m . 

Define matrix 
( 1)m m

mH R   ,where 
( 1)m m

mH R    is upper Hessenberg matrix, ( 1)m mR  

denotes space composed of all ( 1)m m  matrices. Initialize the entries ijh  of mH  to be zero.  

(4) Select m  as a proper value, and start executing Arnoldi procedures, i.e.,  

a Compute 0 
0

ψ b Ax ， 2


0
ψ ， / 

1 0
ψ ψ ,where 

2
 stands for 2 norm of a vector or 

matrix.  

b Compute j jc Aψ ，
1( ) ( 1,2 , )FSI

j j m q M c , c stands for cost functions. 

c Compute 
( , )

( 1, 2 , )
ij i

ij i

i j



 

p q ψ

q q p ψ ， 1, 1 1,2
, /j j j j j   p c ψ q p ， and define a group of 
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orthogonal basis in Krylov subspace 1 2[ , , , ]m mC c c c  

(5) Compute 0m m m x x C y , and my = 1argmin m m ψ H y , which represents the minimized 

residual normed vectors of cost functions. 

(6) When m  b Ax , stop iteration ( is prescribed error limit). Otherwise, set 0 mx x , and 

go back to step (5) to re-compute.  

(7) Save the obtained solutions as multi-dimensional dynamic arrays, save and output the final 

displacement, pressure, velocity, etc. after all the time step cycles.  

 

 

6 Numerical examples  
 
6.1 Fluid-structure interaction of a two-dimensional membranous structure 
 

Since the proposed numerical procedures has been validated in the previous work of Sun and 

Gu (2014), in this work the authors are more interesed in the evaluation of the proposed 

preconditioners for the fluid-structure interaction and no more new validation examples are 

presented.  

To evaluate the performance of the proposed preconditioners (initial and modified ones) for the 

fluid-structure interaction system, fluid-structure interaction of a two-dimensional membranous 

structure is computed first. The membranous structure is constructed of elastic membranous roof 

bearing gravity and two vertical rigid supporting walls, as shown in Fig. 1. It should be noted that 

the simulation in this work does not represent the scales of any characteristic wind engineering 

problem, but it rather focuses on the improvements of computations through the implemented 

preconditioning technique. Thus, Reynolds number is set to be 1700, and turbulence is not 

considered here.  

Computation domain size is set as 400m×100m. The fluid domain is discretized with elastic 

model elements, while the membrane is discretized with triangular finite elements. Slip boundary 

is adopted for upper wall of the fluid domain, and non-slip boundary for lower wall and 

fluid-structure interface. A fully developed outlet boundary condition is chosen as outflow 

boundary condition. To obtain steady fluid field at the initial stage of the simulation, the solution 

after simulation time of 60s is set as the initial condition. A grid-independence has been performed 

to ensure the accuracy of the numerical simulation. The largest mesh size in the following 

comparison is ensured to be grid-independence. And the results obtained with the smallest mesh in 

the following comparison and those with a mesh nearly one time finer are very close and the 

maximum relative deviation is less than 2%. 

 

 

Fig. 1 Sketch of a two-dimensional membranous structure 
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Table 1 Average GMRES iteration numbers varying with mesh sizes for initial preconditioner 

Mesh size h Parameter k  

0.5 1 -1 8 

1/23 19 19 19 19 

1/46 21 21 21 21 

1/69 22 22 22 22 

1/92 24 24 24 24 

 

 
Table 2 GMRES relative residuals varying with mesh sizes for the initial preconditioner 

Mesh size h Parameter k  

0.5 1 -1 8 

1/23 7.627 10
-6

 8.215 10
-6

 8.234 10
-6

 5.848 10
-7

 

1/46 5.652 10
-6

 5.364 10
-6

 6.735 10
-6

 5.227 10
-7

 

1/69 5.323 10
-6

 4.862 10
-6

 5.347 10
-6

 4.947 10
-7

 

1/92 4.967 10
-6

 4.658 10
-6

 5.269 10
-6

 4.652 10
-7

 

 

 

A time step convergence study was conducted to find the largest time step compatible with the 

numerical scheme stability. This stability requires that the Courant number remains within some 

reasonably low limits. The time step is chosen in a way that the time discretization error and 

solution error are minimized. After comparison of results from several different Courant numbers 

and time steps, the greatest value of the time step was set to be 0.04. More than 8000 time steps 

correspond to about a 20 vortex shedding cycle. Iteration stops when relative residuals

2

6

2
10 bAxb

 n
. This convergence criterion is chosen to minimize the iteration errors. 

Computation results are presented using preconditioner FSIFSI
JM

1)(   with GMRES method. 

Average GMRES iteration numbers and relative residual varying with mesh sizes for different 

parameter k, by employing the initial FSI preconditioner, i.e., employing Eq. (25) to compute Eq. 

(28), are presented in Tables 1 and 2, respectively. The involved blocked matrices V , U ,
dccd

DWDS
1 and W  are decomposed by LU method.  

As shown in Tables 1 and 2,  

(1) Average GMRES iteration times are not affected by the different k values for various mesh 

sizes, whereas GMRES relative residuals are affected. It was found during the computation that, 

the choice of k value, either positive or negative, will just affect the computation accuracy and 

has no specific implications for the computation. When k =8 the relative residuals are less than 

the prescribed tolerance, which suggests that the larger k value would accelerate the convergence.  

It is found that it was appropriate when k falls between [-1, 10] as real, and it is more accurate 
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when 8k .  

 (2) For the initial FSI preconditioner, variation of average GMRES iteration numbers (here 

average GMRES iteration numbers refers to computing the mean values of all the linear solutions 

whose GMRES convergence tolerance are 10
-6 

during Newton iteration) and relative residuals, 

with varying mesh sizes, are not obvious, which suggests that the initial preconditioner 

dependency on mesh is low. It also indicates that though the analysis of FSIFSI JM 1)(   

eigenvalues is not complete previously, as the mesh refines, the maximum and minimum 

eigenvalue of FSIFSI JM 1)(   is bounded.  

To compare computation efficiency, the modified FSI preconditioner, i.e., employing Eq. (26) 

to compute Eq. (28), is utilized for the computation, and the tolerance is set to be the same with 

that of the unmodified preconditioner. Average GMRES iteration numbers and relative residuals 

varying with mesh sizes are shown in Tables 3 and 4, respectively.  

It can be seen from Table 3 and 4 that, 

(1) For the modified FSI preconditioner, for different values of parameter k , average GMRES 

iteration numbers for various mesh sizes are not affected, whereas GMRES relative residuals are 

affected, and the relative residuals become smaller when k becomes larger. The conclusion is 

consistent with that of the previous initial FSI preconditioner. 

(2) It can be seen from Tables 3 and 4 that, for the modified FSI preconditioner, as the mesh 

refines, the average GMRES iteration numbers increase whereas GMRES relative residuals 

diminish. 

 

 
Table 3 Average GMRES iteration numbers varying with mesh sizes for the modified preconditioner 

Mesh size h Parameter k  

0.5 1 -1 8 

1/23 28 28 28 28 

1/46 39 39 39 39 

1/69 57 57 57 57 

1/92 76 76 76 76 

 

 
Table 4 GMRES relative residuals varying with mesh sizes for the modified preconditioner 

Mesh size h Parameter k  

0.5 1 -1 8 

1/23 3.512 10
-6

 3..241 10
-6

 3.645 10
-6

 2.534 10
-7

 

1/46 1..44 10
-6

 1.027 10
-6

 1.126 10
-6

 1.956 10
-7

 

1/69 0.887 10
-7

 0.812 10
-7

 0.795 10
-7

 4.365 10
-8

 

1/92 1.035 10
-8

 1.123 10
-8

 1.256 10
-8

 6.234 10
-9
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Table 5 Comparison of convergence with different FSI preconditioners 

Method  Iteration numbers 

 

Residuals  Computation time 

(Hours) 

Without preconditioners  30 5.338 10
-2

 59  

Unmodified preconditioner 30 1.234 10
-6

 39  

Modified preconditioner 30 0.362 10
-7

 31  

 

 

 

(3) Results from the modified preconditioner is more sensitive to the mesh refinement, which 

indicates that the modified FSI preconditioner is more accurate than the initial one.  

To further illustrate the efficiency, the convergence comparison is made between the initial and 

modified FSI preconditioner for the same iteration numbers (mesh size is 1/46，k =8), as shown 

in Table 5. 

It can be concluded from table 5 that, for the same iteration numbers, computation residuals 

without preconditioners are much larger than those with preconditioners. Besides, about 34% and 

47% computation time are saved for the initial and modified FSI preconditioners, respectively. It is 

indicated that preconditioners greatly improve efficiency and accuracy in fluid-structure 

computation. It is found that, compared with the initial FSI preconditioner, residuals from the 

modified FSI preconditioner are much less, and about 20% computation time is saved, since the 

modified FSI preconditioner reduces the computation time for the linear sub-matrix blocks, 

resulting in the improving of accuracy and convergence.  

Instantaneous pressure distribution contours at various time at specified parameters ( k =1, Θ
=0) is given in Figs. 2(a)-2(d). It can be seen that the vortex sheds along the membrane leading 

edge, and forms a typical vortex street. 

 

6.2 Fluid-structure interaction of a three-dimensional membranous structure 
 

To verify the applicability of the proposed preconditioners, fluid-structure interaction of a 

three-dimensional membranous structure is also computed. Turbulence is not considered here for 

the priority is to evaluate the preconditioner performance. Fluid-structure interaction of a typical 

saddle membrane structure is computed using the proposed simultaneous method and 

preconditioners. The model and related parameters in computation are referred to in Sun and Gu 

(2014). Here the membranous structure rise f is taken as the dimensionless length, and (time) 

average inlet wind velocity is taken as the dimensionless velocity. When relative residuals

2

5

2
10 bAxb n  , the iteration stops and the result is assumed to converge.  

Table 6 shows the average GMRES iteration numbers and relative residual varying with mesh 

sizes for different parameter k ( =0，time t=200s), for the computation of the three-dimensional 

case when employing the modified FSI preconditioner. 
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(a) t=53.6s (b) t=53.9s 

  
(c) t=54.2s (d) t=54.6s 

Fig. 2 Instantaneous pressure distribution at various time ( k =0,  =0) 

 

 
Table 6 Average GMRES iteration numbers varying with mesh sizes for the modified FSI preconditioner 

Total mesh 

（10 thousand ） 

Parameter k  

0.5 1 -1 8 

27 115 115 115 115 

30 128 128 128 128 

32 141 141 141 141 

35 163 163 163 163 

 

Through the analysis of data from Table 6, it can be concluded that, for different values of 

parameter k, average GMRES iteration numbers for various mesh sizes are not affected. In 

three-dimensional case, with the modified FSI preconditioner, the average iteration numbers 

increase as the mesh refinement increases, which indicates that the modified preconditioner is 

highly sensitive to the mesh refinement. The conclusion is consistent with that of the 

two-dimensional case. The preconditioners proposed is also validated in three-dimensional cases. 

To illustrate the accuracy and efficiency of the preconditioner in three-dimensional FSI 

computation, comparison is made for GMRES relative residuals GMRESR  and computation time 

GMREST  (hours) for various mesh numbers among the case without preconditioner, the initial FSI 

preconditioner, and modified FSI preconditioner, where k=1， =0. The results are shown in 

Table 7.  
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Table 7 Comparison of GMRES relative residuals and computation time (hour) for various mesh numbers 

using different preconditioners (Hours) 

Total 

Mesh 

(10000) 

without preconditioner Initial preconditioner  Modified preconditioner 

GMRESR  GMREST  GMRESR  GMREST  GMRESR  GMREST  

27 6.235 10
-5

 102 3.356 10
-5

 85 3.876 10
-5

 68 

30 5.234 10
-5

 131 2.947 10
-5

 94 1.324 10
-5

 76 

32 4.315 10
-5

 154 2.245 10
-5

 108 7.264 10
-6

 89 

35 4.198 10
-5

 182 1.966 10
-5

 127 3.214 10
-6

 102 

 

 

It can be concluded from Table 7 that,  

(1) Without preconditioners, though relative residuals diminish gradually with the increase of 

mesh refinement (i.e., computation accuracy improving as mesh refines), computation time 

increase greatly. It is found that when mesh accuracy increases about 20%, the computation 

accuracy only improves about 3%, with the stability not affected, while the computation time 

increases about 30%. This shows that, without preconditioners, computation accuracy and stability 

is little affected as mesh refines.  

(2) In the case of the initial FSI preconditioner, compared with the case without preconditioners, 

it saves about 30% computation time for the same computation accuracy. When the mesh accuracy 

improves about 20%, computation accuracy improves about 15% on average, and computation 

time increases about 20%. It is indicated that in the case of the initial FSI preconditioner, 

computation accuracy and efficiency are both greatly improved. On the other hand, as the mesh is 

refined, the relative residuals diminish not so obviously, which suggests that for the initial FSI 

preconditioner, the computation accuracy does not show a high dependency on mesh refinement, 

consistent with that of the two-dimensional case.   

(3) In the case of the modified FSI preconditioner, it can be found that when mesh accuracy 

improves, GMRES relative residuals diminish greatly. When mesh accuracy improves about 20%, 

computation accuracy improves about 55% on average, and computation time only increases about 

15%. It is indicated that for the modified FSI preconditioner, computation accuracy shows a fairly 

high dependency on mesh refinement, which is also verified in the two-dimensional case. It is 

verified once again the priority of the modified FSI preconditioner.  

Since the time step is also among the key factors affecting the accuracy and efficiency in a 

fluid-structure interaction computation, the time-step effects of the modified FSI preconditioning 

matrix were analyzed.  The effects of the Lagrange multiplier on the computation results were 

also analyzed. Table 8 gives the variation of GMRES iteration numbers GMRESN  and relative 

residuals GMRESR  with varying time steps and Lagrange multiplier.  

It can be concluded from Table 8 that, the GMRES iterative numbers increase as time step 

increases, and decrease as the Lagrange multiplier increases. The GMRES residuals increase as the 

time step increases, but vary little as the Lagrange multiplier increases. This shows that the 

computation accuracy and efficiency become higher as the time step becomes smaller. Lagrange 

multiplier affects GMRES iterative numbers whereas affects residuals little. It can be concluded 

that time step is a decisive factor, whereas Lagrange multiplier is a much less influential factor.  
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Table 8 Variation of GMRES iteration numbers and relative residuals with varying time steps and Lagrange 

multiplier 

time step Dt 0.025 0.050 0.075 0.100 

 GMRESN

 

GMRESR  
GMRESN

 
GMRESR  

GMRESN

 
GMRESR  GMRESN

 

GMRESR  

2 =0.0 28.3 6.231 10-6 30.4 7.452 10-6 36.9 3.657 10-6 41.2 6.543 10-5 

2 =0.6 26.1 4.342 10-6 28.6 6.265 10-6 33.8 2.053 10-6 36.5 5.453 10-5 

2 =1.5 24.6 3.453 10-6 26.4 4.341 10-6 28.9 1.034 10-6 32.6 4.237 10-5 

2 =15.0 19.3 1.984 10-6 21.5 3.678 10-6 23.4 8.765 10-5 26.7 3.235 10-5 

 

 

Thus, the dimensionless parameters involved in Lagrange multiplier can be chosen just for the 

sake of convenience of computation. 

 

 

7. Conclusions 
  

A preconditioning technique, for a simultaneous solution to wind-membrane interaction, is 

presented. In the simultaneous equations, a linear elastic model was employed to deal with the 

fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the 

specified boundary conditions at the interface. An initial linear elastic model preconditioner and 

modified one were derived by treating the linearized elastic model equation as a saddle point 

problem. The FSI preconditioner for the simultaneous equations was then derived based on the 

initial and modified linear elastic model preconditioner. The wind-membrane interaction, for two- 

and three- dimensional membrane structures, were computed using the proposed preconditioners. 

The main conclusions are as follows: 

 The value of k in the preconditioner has no effect on the average GMRES iteration numbers 

for various mesh sizes, whereas the value of k in the preconditioner affects the GMRES relative 

residuals. It is found that it was appropriate when k falls between [-1, 10] as real, and it is more 

accurate if 8k . 

 The computational efficiency with preconditioners is greatly improved compared with the 

case without a preconditioning matrix. The initial FSI preconditioning matrix dependency on 

mesh accuracy is lower than that of the modified FSI preconditioning matrix, which indicates 

that the priority of the modified FSI preconditioning matrix is computational accuracy. For the 

modified FSI preconditioning matrix, the computation residuals are much less than that of the 

initial one, and computation time also decreases. This is due to that, for the modified FSI 

preconditioning matrix, linear sub-matrix computations are diminished, resulting in the 

improvement of accuracy and efficiency.    

 The computational accuracy and efficiency become higher as the time step becomes smaller. 

The Lagrange multiplier affects the GMRES iterative times, buts little affects the residuals. It 
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can be concluded that time step is a decisive factor whereas Lagrange multiplier is a much less 

influential factor. Thus, the dimensionless parameters involved in Lagrange multiplier can be 

chosen just for the sake of convenience of computation.   

 Inflow turbulence is necessary considering the precise definition of wind loads. However, the 

proposed preconditioners and results in the work here provide an effective tool for the 

application of a simultaneous solution to wind-membrane interaction, laying a solid foundation 

for the introduction of a turbulence model in future work.  
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