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Abstract.  The flutter derivatives of bridge decks can be efficiently identified using the experimentally 
and/or numerically coupled forced vibration method. This paper addresses the issue of inherent 
requirement for adopting different frequencies of three modes in this method. The aerostatic force 
components and the inertia of force and moment are mathematically proved to exert no influence on 
identification results if the signal length ( t ) is integer ( 1,2,3...n  ) times of the least common multiple 
(T ) of three modal periods. It is one important contribution to flutter derivatives identification theory 
and engineering practice in this study. Therefore, it is unnecessary to worry about the determination 
accuracy of aerostatic force and inertia of force and moment. The influences of signal length, amplitude, 
and frequency ratio on flutter derivative are thoroughly investigated using a bridge example. If the 
signal length t  is too short, the extraction results may be completely wrong, and particular attention 
should be paid to this issue. The signal length t nT  ( 5n  ) is strongly recommended for improving 
parameter identification accuracy. The proposed viewpoints and conclusions are of great significance 
for better understanding the essences of flutter derivative identification through coupled forced 
vibration method. 
 

Keywords:  bridge; flutter derivative; forced vibration method; multiple-degree-of-freedom coupling; 

theoretical proof; exemplification 

 
 
1. Introduction 
 

Flutter derivatives of a bridge deck can be efficiently extracted using the forced vibration 

method based on wind tunnel tests and/or numerical simulations. Ukeguchi et al. (1966) proposed 

the forced vibration method for measuring the aeroelastic forces of bridge decks. During the 1970s 

to 1980s, this method was rarely employed as it requires complicated experimental setup. Falco et 

al. (1992) investigated the validity of a linear model based on forced vibration method, and the 

influence of wind angle of incidence on bridge aeroelastic behavior was also studied. Li (1995) 

conducted a forced vibration test in a water channel to measure the flutter derivatives. An 

advantage of using water as fluid medium is that higher accuracy can be expected due to higher 

density of water compared to air. Noda et al. (2003) inidicated the effect of vibration amplitude on 

flutter derivatives cannot be ignored for bridge decks with complex cross sections. Diana et al. 

(2004) presented an experimental setup with active turbulence generator to execute both forced 
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and free motion tests, by which the flutter derivatives, admittance functions, and vortex-induced 

vibrations can be studied by changing the average position in terms of angle of incidence and yaw 

angle. Chen et al. (2005) examined the frequency and amplitude effects on flutter derivatives and 

the nonlinear characteristics of aerodynamic forces on bridge decks, which showed that flutter 

derivatives are moderately dependent on amplitude and frequency. 

The references cited above are all experimental studies with 1-Degree-Of-Freedom (1-DOF) 

cases based on a non-coupling vibration scheme. This experimental setup is simple compared to 

that of coupled driven instrument. However, the coupled modes are preferred as they consume less 

time to extract the same amount of flutter derivatives and also provide similar accuracies. Based 

on the 1-DOF and coupled 2-DOF (vertical and torsion) forced vibrations, Matsumoto et al. (1993) 

investigated the influence of vibration mode on flutter derivatives. Their results indicated that 

flutter derivatives of a flat rectangular cross section (like a thin airfoil) are independent of 

vibration mode, while they are significantly influenced by the vibration mode for bluff rectangular 

section. Guo (2006) and Niu et al. (2007) presented 3-DOF coupling forced vibration setups and 

indicated that the identification results are more satisfactory compared to those of free vibration 

techniques. 

To date, numerical simulations results presented in the literatures mainly focused on the 1-DOF 

case. Walther and Larsen (1997) developed a DVM simulation technique for extracting bridge 

deck flutter derivatives. Vairo (2003) presented a numerical model to quantify flutter derivatives in 

comparison with experimental measurements and indicated good agreement between two methods. 

Shirai and Ueda (2003) extracted the flutter derivatives of a parallel rectangular section and a flat 

box girder, for some parameters differences between the experimental and numerical results could 

be noticed. Recently, similar numerical studies on 1-DOF bridge deck cases were performed by 

others (e.g., Sun et al. 2009, Zhou and Ma 2010). To the authors’ knowledge, Xu et al. (2014) is 

the only reference that focuses on the 2-DOF and 3-DOF coupled numerical simulations. 

Based on many researchers’ large amount of efforts and attempts, great progresses in both 

experimental tests and numerical simulations have been made for facilitating flutter derivatives 

extraction using coupled forced vibration method. Till now, acceptable accuracies can be achieved. 

Nevertheless, some obscure and/or unnoticed issues in flutter derivatives extraction procedures are 

still required to be clarified to further improve understanding of the whole identification process. 

It is almost impossible to make h p     in coupled free vibration approach, but it can 

be easily achieved in coupled forced vibration method. However, all flutter derivatives cannot be 

simultaneously extracted with the same frequencies in coupled vibrations. The inherent reason has 

not been previously addressed. In smooth flows, during the forced vibration process, the 

experimentally collected or numerically simulated forces include both aerostatic and aeroelastic 

components. Customarily, the average of the directly acquired force is treated as the aerostatic 

component and eliminated to obtain the self-excited aeroelastic component, by which flutter 

derivatives can be subsequently extracted. However, this kind of consideration deserves to be 

discussed, especially for cases with large torsional amplitudes of asymmetric sections. Practically, 

the signal length has significant influence on identification accuracy of flutter derivatives, 

remarkable errors may be incurred if inappropriate signal length is selected, to which has not been 

paid much attention. Based on theoretical and practical demonstrations, this issue will be delved 

into and the rational pattern for signal selection will be presented. 

In this paper, the inherent requirement of h p     in coupled forced vibration approach 

is explained. The influence of signal length, aerostatic components, and inertia force and moment 
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components on flutter derivatives will be theoretically elaborated. The proposed viewpoints are 

verified through a numerical example and an actual bridge deck. Finally, the major findings and 

contributions of this study are summarized. 

 
 
2. Identification of flutter derivatives with coupled forced vibration method 

 

The self-excited forces acting on a bridge deck section (Fig. 1) are classically represented as 

drag force (along-wind 
DF , downwind), lift force (cross-wind 

LF , upward) and torsional moment 

(pitching 
TM , nose-up). They may be formulated in linear format, which is valid under the 

assumption that section vibrates with small amplitude in harmonic pattern without the occurrence 

of vortex shedding 

2 * * 2 * 2 * * 2 *

1 2 3 4 5 6( )L h h p p

h B h p p
F U B K H K H K H K H K H K H

U U B U B
 


 

  

             (1a) 

2 * * 2 * 2 * * 2 *

1 2 3 4 5 6( )D p p h h

p B p h h
F U B K P K P K P K P K P K P

U U B U B
 


 

  

            (1b) 

2 2 * * 2 * 2 * * 2 *

1 2 3 4 5 6( )T h h p p

h B h p p
M U B K A K A K A K A K A K A

U U B U B
 


 

  

            (1c) 

where h , , and p  are the vertical, torsional, and lateral displacements, respectively;   is the 

air density; U is the wind velocity; B is the bridge deck width; and *

i
H , 

*

iP , and *

i
A ( 1~ 6i  ) 

are the flutter derivatives which depending on the cross-section geometry as well as the mean 

angle of incidence. They are functions of reduced frequency UωBK pαhpαh /= //// , and / /h p  

are the vertical, torsional, and lateral vibration circular frequencies. 

In order to simultaneously extract all 18 flutter derivatives, the 3-DOF coupled forced vibration 

is imposed on the rigid section through wind tunnel tests or by numerical simulation. The deck 

sinusoidal motions of 0( ) sin( )h hh t h t   , 0( ) sin( )p pp t p t   , 0( ) sin( )t t       

are prescribed, where 0h , 0p  and 0  are the amplitudes of the vertical, lateral, and torsional 

vibration displacements, and / /h p   are the initial phase angels of three modes. 

 

 

 

Fig. 1 Wind actions on a deck section 
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For the time-varying series of LiF , DiF , TiM , ih , 
ih , ip , ip , i , i , i =1, 2, 3... , Eq. (1) 

can be respectively rewritten as 

 ...
T

L L1 L2 Ln H HF F F F S X                    (2a) 

 ...
T

D D1 D2 Dn P PF F F F S X                   (2b) 

 ...
T

T T 1 T 2 Tn A AM M M M S X                   (2c) 

where  * * * * * *

1 2 3 4 5 6

T

HX H H H H H H , 

 * * * * * *

1 2 3 4 5 6

T

PX P P P P P P , 

 * * * * * *

1 2 3 4 5 6

T

AX A A A A A A , 

2 2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

h h p p

h h p p

H

h n n n h n p n p n

UBK h UB K U BK U K h UBK p U K p

UBK h UB K U BK U K h UBK p U K p
S

UBK h UB K U BK U K h UBK p U K p

 

 

 

       

       

       

 
 
 


 
 
 
 

, 

2 2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

p p h h

p p h h

P

p n n n p n h n h n

UBK p UB K U BK U K p UBK h U K h

UBK p UB K U BK U K p UBK h U K h
S

UBK p UB K U BK U K p UBK h U K h

 

 

 

       

       

       
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 
 
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 
 
 
 
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2 3 2 2 2 2 2 2 2 2
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2 3 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 3 2 2 2 2 2 2 2 2

h h p p

h h p p

A
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UB K h UB K U B K U BK h UB K p U BK p

UB K h UB K U B K U BK h UB K p U BK p
S

UB K h UB K U B K U BK h UB K p U BK p

 

 

 

       

       

       

 
 
 


 
 
 
 

. 

If the self-excited lift force, drag force, and torsional moment, i.e., LF , DF , TM  are obtained 

from experimentally measured or numerically simulated time-varying force/moment histories, the 

values of HX , PX  and AX  can be estimated using 

 
1

T T

H H H H LX S S S F


                         (3a) 

 
1

T T

P P P P DX S S S F


                         (3b) 

 
1

T T

A A A A TX S S S M


                         (3c) 

For the 3-DOF coupled case, all 18 flutter derivatives can be simultaneously extracted using 

this standard pseudo-inverse matrix approach. 
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3. Discussions on some details 
 

3.1 Requirement for different coupled vibration frequencies 
 

Different frequencies are necessary in coupled forced vibration method. If h p    , then 

the six column vectors in HS , PS , and AS in Eq. (2) are linearly dependent, respectively. Thus, 

 
1

T

H HS S


,  
1

T

P PS S


, and  
1

T

A AS S


 in Eq. (3) are ill-conditioned matrices, and HX , PX  and 

AX  cannot be extracted from Eq. (3). Although Guo (2006) and Niu et al. (2007) developed the 

coupled forced vibration setups, and the criterion of h p     was used in their tests, the 

reason for this criterion was not publicly mentioned in their studies. Therefore, this study 

contributes an instruction that in coupled forced vibration method, whether experimental or 

numerical, the different frequencies of three coupled modes, i.e., h p     are indispensible 

requirements. 

 

3.2 Various components of force and moment 
 

Due to vibrate in smooth flows, the aerodynamic buffeting components are negligible and 

omitted herein for brevity. For numerical simulations and or experimental tests, ih , ih , ip , ip , 

i , i  can be accurately prescribed and determined. So, the accuracies of HS , PS , and AS  in 

Eq. (3) can be easily ensured. Thus, the accurate determination of LF , DF , TM  is one key 

factor for quantifying flutter derivatives. The numerically simulated results include the aerostatic 

components and aeroelastic components, and additional inertia force and moment components are 

also included in the experimentally collected data. Seemingly, it is very easy to obtain LF , DF , 

TM  for both experiments and simulations. Actually, many complexities are incorporated and the 

issues of aerostatic components and inertia force and moment components require to be clarified. 

Then, some new insights and improved understandings will be achieved. 

 

 
4. Influence of aerostatic component on flutter derivatives 

 

Taking the aeroelastic lift force as an example, the components contributed by *

1~6H  can be 

represented by 

1 2 3 4 5 6[ ]S s s s s s s                              (4) 

where, 6nS R  , sin( )i i i is A t    are sinusoidal waves, 1,2, ,6i  . 

Assuming 

11 16

1

61 66

( )T

b b

S S

b b



 
 


 
  

, and, 1 6 6( )TS S R  . Then, 
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6

1

111 16 1

1

6
61 66 6

6

1

( )

T

i iT

i

T T

T

T

i i

i

b s
b b s

A S S S

b b s
b s







 
   
   

      
        
  





                     (5) 

where, 6 nA R  , and each component of matrix A  can be expressed as the summation of six 

sinusoidal waves with three different frequencies, and six different amplitudes and phases. 

Consider the aerostatic force to be a constant and denoted as C, the total wind action force 

(buffeting response is considered to be negligible and excluded) can be expressed as 

  
T

L L L1 L2 LnT C F C F F F                      (6) 

If t   or t nT , (2 / ,2 / ,2 / )h pT lcm       , where T  is the least common multiple 

of three modal periods. For the forced (numerical and experimental) vibrations, the frequencies 

can be known exactly. However, they are difficult or impossible to be accurately determined for 

the free vibrations. Under such conditions, due to the orthogonality of the simple harmonics, then 

 
1

T T

H H HS S S C


=0                            (7) 

Subsequently 

     
1 1 1

( )T T T T T T

H H H L H H H L H H H L HS S S T S S S C F S S S F X
  

             (8) 

In other words, HX  is independent of the constant parameter C. Similarly, ,P AX X  are also 

independent of arbitrary constants. It means that any constant force have no influence on flutter 

derivatives with the conditions of t   or t nT . Actually, it is impossible to make t  , so 

t nT  is a practical solution. It provides a convincing proof that if t nT , the average component 

is unnecessary to be subtracted from the total force to extract flutter derivatives. Although it seems 

to be meaningless from the practical viewpoint, it is beneficial for better understanding this issue. 

Moreover, more or less errors are unavoidable for the average aerostatic force component. Even 

this component result is completely wrong, it has no influence on the extraction results. This 

viewpoint is initially presented in this study, and it is also an encouraging message for researchers. 

They need not worry about the influence of inaccurate aerostatic force on flutter derivative. Bear 

in mind, t nT  is the indispensible requirement. 

 

 

5. Influence of inertia force and moment on flutter derivatives 
 

The inertia force and moment are included in experimental tests while not concerned in 

numerical simulations. Consider a deck model with mass and mass of moment of m  and I  in 

wind tunnel tests, if it vibrates in coupled modes as 0( ) sin( )h hh t h t   , 
0( ) sin( )p pp t p t   , 

0( ) sin( )t t      , respectively. The inertia force and moment can be respectively denoted as 
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 2

0( ) sin( )L I h h hF t mh t                             (9a) 

2

0( ) sin( )D I p p pF t mp t                             (9b) 

2

0( ) sin( )T IM t I t                                (9c) 

Many efforts have been attempted to reduce m  and I  for minimizing the inertia force and 

moment, by which the accuracy of aeroelastic components can be improved. According to Eq. (1), 

the vertical, lateral, and torsional inertial force or moment directions have the same directions with 

displacements. 

2 2 * 2

4h L I h

h
U BK H F m h

B
                        (10a) 

2 2 * 2

4p D I p

P
U BK P F m p

B
                        (10b) 

2 2 2 * 2

3 T IU B K A M I                           (10c) 

It means that only *

4H , *

4P , and *

3A  are related to inertial force or moment. In other words, if 

t nT , the inertia force and moment component is unnecessary to be accurately quantified to 

extract other 15 flutter derivatives. The modifications of *

4H , *

4P , and *

3A  due to inertial force 

or moment can be easily written as 

*

4 2

m
H

B
                               (11a) 

*

4 2

m
P

B
                               (11b) 

*

3 4

I
A

B
                               (14c) 

In summary, if the signal length is sufficiently long or appropriate (i.e., t   or t nT ), the 

aerostatic components and inertia force and moment components have no influences on flutter 

derivatives. In addition, the criterion of t nT  ( 5n  ) for signal interval selection is 

recommended. 

 

 
6. Numerical example 

 
6.1 Associated parameters 
 
The 3-DOF Sutong Bridge (a cable-stayed bridge with a main span length of 1088 m, China) 

deck model (Xu et al. 2012) is used to investigate the imperfections of the currently prevailing 

framework for flutter derivatives extraction. Taking the aeroelastic lift force and the 
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corresponding *

1~6H  as an example, four cases are included to explore the influences of signal 

length, amplitude, and frequency on identification results, and the associated parameters are 

listed in Table 1. For the concerned four cases, the deck model width (B=1 m) and wind velocity 

(U=10 m/s) are assumed to quantify flutter derivatives with different frequencies. It needs to be 

mentioned that the initial phase angles can be randomly set, and they are all set as zeros herein 

for convenient comparison and without loss of generality. Analogously, similar simulation and 

analysis can be performed for *

1~6A  and *

1~6P , which are omitted herein for the sake of length. 

 

6.2 Average of self-excited force 
 

Taking the lift force as an example, allowing for the aerostatic component (denoted as C ), the 

numerically simulated forces can be expressed as ( ) ( )T LF t F t C  . The series of 
( )( )

TT F tF t m are 

usually treated as the aeroelastic component ( )LF t , and 
( )TF tm  is the average of ( )TF t . It is noted 

that 
( ) ( )( ) ( )

T LT F t L F tF t m F t m   , and 
( )LF tm  is the average of ( )LF t . Theoretically, if nonlinear 

effects are negligible, the average of aeroelastic lift force should be zero. Practically, the calculated 

( )LF tm  varies with t . It indicates that ( )LF t  cannot be accurately calculated by 
( )( )

TT F tF t m  or 

( )( )
LL F tF t m  for most cases, and it is appropriate only under the condition of t nT . Fig. 2 shows 

the curves of 
( )LF tm  for four cases. 

Some key findings from these results are as follows: For each case, the corresponding t  for 

( )LF tm =0 are different. For Cases1-3, if t nT  ( 1,2,3,...n  , 4T  s), 
( )LF tm =0, which are marked 

in Fig. 2. For Case 4, due to 4T  s, so 
(4) 0

LFm  , 
(8) 0

LFm  . Due to 10T  s, and 
(10) 0

LFm  . 

Besides t nT , 
( )LF tm  for other time durations may be zero. 

 

6.3 Flutter derivatives 
 

If ( )LF t  are calculated by 
( )( )

TT F tF t m , flutter derivatives can be subsequently extracted 

according to Eq. (3(a)). It is widely accepted that the identification results are theoretically 

independent of signal length. For Case 1, the curves of flutter derivative deviations from their 

initial goals (listed in Table 1) versus time durations are shown in Fig. 3.  

 

 
Table 1 Related parameters for different cases 

Case 0h (m) 0p (m) 0 (º) h (rad/s) p (rad/s) 
 (rad/s) *

1H  
*

2H  
*

3H  
*

4H  
*

5H  
*

6H  

1 0.02 0.02 2 2.0  1.5  2.5  -3.2 -0.3 -4 -0.6 -0.1 -0.1 

2 0.002 0.02 2 2.0  1.5  2.5  -3.2 -0.3 -4 -0.6 -0.1 -0.1 

3 0.02 0.02 2 4.0  1.5  2.5  -1.5 -0.3 -4 -0.4 -0.1 -0.1 

4 0.02 0.02 2 2.0  1.8  2.2  -3.2 -0.4 -5.5 -0.6 -0.12 0.0 
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Fig. 2 Variations of average aeroelastic force with different time durations 
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Fig. 3 Flutter derivatives difference for Case1 with different time durations 
 

 

Some key findings from these results are as follows: 

(1) Significant deviations can be seen when 2t  . In other words, if the signal is too short, the 

identified results may be completely wrong. 

(2) The deviations appear to be negligible when t > 4. Looking at the zoomed figure closely, 

deviations are noticeable for *

5,6H . It is therefore important to ensure sufficiently long data to 

acquire acceptable accuracies. 
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(3) Due to T =4 s, when t =4, 8 s, the deviations for all flutter derivatives are zeros. 

Similar to Case 1, if 4t  , the deviations are remarkable for the other three cases. Therefore, 

for short time duration, the deficiency of 
( )( )

TT F tF t m  for customarily calculating aeroelastic force 

is fully demonstrated. The signal length t nT  is strongly recommended for parameter 

identification. The flutter derivatives deviations for all four cases are shown in Fig. 4 for 

comparison. 
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Influence of amplitude. Compared to Case 2, Case 1 shows better accuracy for *

1H and *

4H . 

It can be concluded that a lower amplitude decreases its component weight in self-excited force, 

and the corresponding flutter derivatives accuracies decline. Therefore, very low amplitudes (e.g., 

amplitude <0.005 m) is unacceptable in practice. On the other hand, large amplitudes cause 

aeroelastic nonlinearity (Scanlan 1997 and Noda et al. 2003), which must also be avoided. 

Influence of frequency ratio. Comparing Case 4 to Case 1, if three frequencies are getting 

closer, the *

1~4H  accuracies will subsequently decline. The lower torsional frequency reduces the 

accuracies of *

2,3H . Matsumoto et al. (1993) also noticed the flutter derivatives are independent on 

modal coupling in forced vibration tests. 
For the aforementioned cases, not any noise is included, i.e., the signals are ideal. The 

extraction results are closely related to signal length, amplitude, and frequency ratio of 

components. For experimental tests, perfect harmonic oscillation cannot be ensured and the 

instruments are also imperfect more or less. So, various noises are included in the collected signals. 

It can be anticipated that more obvious errors will be unavoidable. Even t nT , the noises also 

contaminate the results. However, if the noises are white and t is sufficiently long, the average of 

noise tends to be zero. The influence of noise cannot be completely eliminated. Therefore, 

empirical or even arbitrary selection of t  may result in unacceptable errors for short time 

durations of experimental data. Frankly, it is easily accepted that high accuracy can be achieved by 

using long time duration of signal. This study demonstrates the necessity of this criterion and 

reveals the seriousness of arbitrary selection of t , especially for short time. 

For different cross sections with different reduced velocities, the influences may be different 

more or less. The similar phenomena can be observed, and no extra cases are included for the sake 

of length. In addition, it is admitted that cross-influences among different flutter derivatives exist, 

and single-parameter analysis has some imperfections. One major aim is to sound the alarm for 

better understanding this issue, and further to achieve high-accuracy extraction results. Based on 

the identified flutter derivatives, the multiple-mode flutter analyses can be subsequently conducted, 

which have been extensively addressed (Yang et al. 2007, Hua et al. 2008, Matsumoto et al. 2010). 

 
 
7. Bridge deck case study 
 

7.1 Related parameters 
 
The Sunshine Skyway Bridge (a cable-stayed bridge with a main span length of 364 m, 

America) has a bluff box girder section (Bartoli et al. 2009), which is slightly simplified and 

proportionally portrayed in Fig. 5.  

The aerodynamic derivatives were experimentally identified in wind tunnel by Mannini and 

Bartoli (2008), and the unsteady aerodynamic properties were numerically investigated using 

RANS model by Mannini et al. (2010). The 3-DOF coupled forced numerical technique is used to 

acquire the wind-induced loading responses, and the related parameters in numerical simulation 

are listed in Table 2. The computation step is 0.002 s, and the selected time interval is [5.40 s, 

11.88 s], in which the vertical, lateral, and torsional motions completed 6, 4, and 8 periods, 

respectively. The accuracy and efficacy of the 3-DOF coupled forced numerical technique were 

fully validated in another study (Xu et al. 2014). 
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Table 2 Numerical simulation parameters 

B(m) U(m/s) T (s) 0h (m) 0p (m) 0 (º) 

0.45 5 3.24 0.005 0.005 2 

h (rad/s) p  (rad/s) 
  (rad/s) h  (rad) p  (rad) 

  (rad) 

1.8519  1.2346  2.4691  0 0 0 

 

7.2 Average of self-excitated force and fitting error 
 

The curves of ( )LF t  and 
( )LF tm  versus t  are shown in Fig. 6. The time interval of [5.40 s, 

8.64 s] is also an appropriate selection for signal length. Moreover, ( )LF t  in intervals of [5.40 s, 

8.64 s] and [8.64 s, 11.88 s] are almost identical. The drag force and torsional moment can also be 

synchronously achieved, but is beyond the scope of this paper for brevity. 

If nonlinear aerodynamic effects can be neglected, the rational aerostatic response is calculated 

to be about 0.2904 N with 2 6.48t T   s. If t =2, 4, and 6.48 s, 
(2) 0.3685

LFm  , 
(4) 0.2870

LFm  , 

(6.48) 0.2904
LFm   N, respectively. In Fig. 6, due to the initial time is 5.40 s, the time instants of 8.64 

s and 11.88 s correspond to T , 2T , respectively. Therefore, the aerostatic average from initial 

time to these two time instants is 0.2904 N. Substituting 
( )( )

LL F tF t m  into Eq. 3(a), the flutter 

derivatives can be extracted. Then the fitting lift aeroelastic force ' ( )LF t  can be directly 

calculated via Eq. (3(a)) using motion displacements, velocities, and the just extracted flutter 

derivatives. The aerostatic lift force (0.2904 N) is added to ' ( )LF t , and the difference between 

( )LF t  and ' ( ) 0.2904LF t  , i.e., the fitting errors of '( ) ( ) 0.2904L LF t F t   are also shown in Fig. 6. 

Some key findings from these results are as follows: Noticeable periodical fitting errors are 

detected. Apparently, the fitting errors are not random noises. Further, even though the nominal 

aerostatic force (0.2904 N) is subtracted from the originally calculated lift force, the aeroelastic lift 

force distribution is not symmetrical to the zero axis, which is induced by the asymmetrical bluff 

section and high-order components. For example, the maximum and minimum forces are 

approximately equal to 1.3 N and -1.5 N, respectively. This indicates that the absolute values of 

the maximum and minimum are not identical. Therefore, it can be concluded that the nonlinear 

aeroelastic component plays the key role. For the time durations of 4 s and 6.48 s, the 

corresponding fitting errors are almost identical. However, the fitting error for the case of 2 s is 

slightly different. 

 

7.3 Flutter derivatives 
 
The aerostatic force is closely related to attack angle, i.e., the aerostatic force cannot be 

constant during torsional vibration. For an example, for a thin flat plate, the aerostatic drag force 

may be considered as zero for small torsional vibration. The average drag force linearly increases 

with torsional amplitude within the stall angle region. For another example, for an asymmetric 

section, the average lift force and torsional moment in one oscillation period are usually not equal 

to the aerostatic force at the zero angle of incidence. 
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Fig. 6 Variations of lift force with different time durations 

 
It is challenging to accurately quantify the angle-varying force, and therefore has to be 

simplified to an approximate constant. The aerostatic force is independent of signal length. 

However, the average response (customarily regarded as the nominal aerostatic component) relies 

heavily on the signal length, especially for short signals. Two cases are analyzed in this study: 

Case 1 adopts the traditional approach of using the directly calculated average values which vary 

with signal length. Case 2 uniformly uses the reasonable value of 0.2904 N, -0.3373 N·m, 0.6737 

N for aerostatic lift force, torsional moment, and drag force for all signal lengths. 

Fig. 7 shows the extracted flutter derivatives for two cases. Similar to the results shown in Fig. 

3, when t  is too short, the identified results may be completely wrong. Therefore, only the results 

for s 6.2>t  are provided in Fig. 7. Some key findings from these results are as follows: 

(1) When s 88.11≤≤8 t , obvious fluctuations are observed, especially for *

4~6H . The major 

origin should be the relative lower amplitude for the corresponding aeroelastic force components. 

(2) The results for Cases 1 and 2 are different, and the differences are more remarkable for 

shorter t . The aerostatic force for Case 2 is more rational, and the corresponding fluctuations of 

flutter derivatives are relatively smooth. When 8.64,11.88t  s, the aerostatic average is 0.2904 N, 

and the two sets of flutter derivatives are identical. 

(3) Even though when t > 11 s, *

4~6H  cannot be accurately determined. Therefore, the 

accuracy of *

4~6H  cannot be ensured without appropriate selection of signal length. Meanwhile, 

this issue has ever tortured many researchers and warrants further research. 

The feature of flutter derivatives fluctuation with time alerts us the significance of appropriate 

selection of signal length. Results from this example case study demonstrate that if the signal is 

sufficiently long, the averages of calculated and/or measured forces have negligible influence on 

flutter derivatives, which was just proved in the foregoing context. The aeroelastic lift forces in 

time interval of [5.40 s, 11.88 s] are duplicated fifteen times and extended to the interval of [5.40 s, 

109.08 s]. Then the newly generated lift force history (Actually, it can also be achieved by longer 

time of testing or numerical simulation.) is regarded as the original aeroelastic force signal. 

Substituting this signal series (note that the average is not eliminated) into Eq. (3(a)), the flutter 

derivatives can be easily obtained, which are provided in Fig. 10. 
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Fig. 10 Flutter derivatives with different time durations: (a) 
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1~6H ; (b) 
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Some key findings from these results are as follows: 

(1) With increasing signal length, the results tend to converge. This means the values of 

 
1

T T

H H HS S S


 decrease with signal length. 

(2) The results of *

4~6H  are relatively more sensitive to signal length. The corresponding 

aeroelastic lift force components are negligible, and the corresponding elements in  
1

T T

H H HS S S


 

are more difficult to be accurately determined. 

(3) Satisfactory accuracy for *

2~3H  can be achieved when s 20>t , and s 40>t  for *

1H , 

and s 60>t  for *

4H . However, even when s 100>t , *

5~6H  show noticeable fluctuation, which 

attribute to their intrinsic properties. 

The above analyses can also be employed to *

1~6A  and *

1~6P , and to other bridge deck cases, 

similar phenomena can be observed, which are omitted herein for the sake of length. 

 

 

8. Conclusions 
 

For identifying bridge deck flutter derivatives with coupled forced vibration method, the issues 

related to modal frequencies adoption, signal length selection, influences of aerostatic force 

component and inertia force and moment on flutter derivatives identification are analyzed using 

theoretical simulations and practical considerations. The main findings and conclusions from this 

study are summarized as follows. 

(1) To extract flutter derivatives of a bridge deck using a 3-DOF coupled forced vibration 

method, three different frequencies of three vibration modes are required, and the mathematical 

proof is offered. It contributes an instructional criterion for future investigations on flutter 

derivatives identification using experimentally and/or numerically coupled forced vibration 

methods. 

(2) If t nT ( T  is the least common multiple of coupled modal periods), the aerostatic 

components, inertia force and moment components are theoretically proved to have no influences 

on flutter derivatives. They are also demonstrated by two bridge deck examples. So, even the 

aerostatic components, inertia force and moment components are not accurately determined, 

satisfactory accuracy can be achieved for flutter derivatives. If the signal length t is too short, the 

wrong results may be obtained. Therefore, the signal length t nT ( 5n  ) is strongly 

recommended for flutter derivatives identification. 

(3) Practically, it is demonstrated that the identification accuracies of flutter derivatives 

increase with the corresponding modal amplitude and frequency. In addition, for the coupled 

forced vibration method, some aeroelastic force components may be comparatively negligible, and 

it is challenging to accurately quantify the corresponding flutter derivatives (e.g., *

4~6H ). 
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