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Abstract.  With an aim to assess the wind damage to urban trees in more realistic conditions, the nonlinear 
dynamics of structured trees subjected to strong winds with different levels is investigated in the present 
paper. For the logical treatment of dynamical behavior of trees, material nonlinearities of green wood 
associated with tree biomechanics and geometric nonlinearity of tree configuration are included. Applying 
simulated fluctuating wind velocity to the numerical model, the dynamical behavior of the structured tree is 
explored. A comparative study against the linear dynamics analysis usually involved in the previous 
researches is carried out. The failure wind velocity of urban trees is then defined, whereby the failure 
percentages of the tree components are exposed. Numerical investigations reveal that the nonlinear 
dynamics analysis of urban trees results in a more accurate solution of wind-induced response than the 
classical linear dynamics analysis, where the nonlinear effect of the  tree behavior gives rise to be 
strengthened as increasing of the levels of wind velocity, i.e., the amplitude of 10-min mean wind velocity. 
The study of relationship between the failure percentage and the failure wind velocity provides a new 
perspective towards the vulnerability assessment of urban trees likely to fail due to wind actions, which is 
potential to link with the practical engineering. 
 

Keywords:  nonlinear dynamics; failure wind velocity; urban trees; geometric nonlinearity; tree 

biomechanics; wind damage 

 
 
1. Introduction 
 

The areas affected by hurricanes and cyclones always suffer huge economic losses each year. 

Amongst these economic losses, a large proportion results from urban storm disasters, of which 

the wind damage to trees is a main concern for the decision maker of urban planning. In addition, 

the wind damage to urban trees is one of the factors leading to disruption of transportation routes, 

power shortages, and surrounding traffic lines (Jim and Liu 1997). As a result, it is necessary to 

understand the capacity of urban trees with standing in the future storms. 

Failure analysis of trees is a challenging issue due to their complex dynamics (Ciftci et al. 

2014). Over the past decades, a series of research efforts have been made upon this issue. Baker 

established a theoretical model in function of failure wind velocity, which is suitable for the 
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assessment of the wind damage to the trees and crops (Baker 1995). Gardiner and his colleagues 

provided the empirical models of trees in the forest areas; say ForestGALES and HWIND, to 

predict the critical wind velocity for tree failure and the probability of this critical wind velocity in 

even-aged stands (Gardiner et al. 2000). Spatz and Speck examined the dynamics of swaying 

stems of trees induced by winds using a fourth-order partial differential equation (Spatz and Speck 

2002). These models show a good applicability in the wind-induced damage of the forest owing to 

the uprooting and trunk breakage. While very few concerns are laid upon the urban trees (Ciftci et 

al. 2014). Unlike the trees distributed in the forest, the feature of urban trees is typically different. 

The trees distributed in cities, for example, possess larger crown shapes over those standing in 

forest so as to meet with the greening requirement of urban planning. With large crown shapes, the 

trees are liable to the strong wind indicating that wind loads acting on the branches give rise to be 

significant. Adaptive to the living condition, the branches expose to be longer and heavier than 

those of the forest trees. The branches, nevertheless, are more vulnerable to break under wind 

actions. Unfortunately, the specific dynamical behavior of urban trees has not been paid sufficient 

attentions. 

Since the wind-induced damage of urban trees has been an eye-catching event in recent years 

due to climate change, the tentative studies of urban trees appear. Ciftci et al. numerically 

investigated the structural dynamics of urban trees and derived the failure probability of the trunk 

taking account of the randomness inherent in the wind action and its effect relevant to seasons 

(Ciftci et al. 2014). It is well acknowledged, however, that the stress-compression curve of green 

wood exhibits a nonlinear plastic profile with rupture point (Brudi 2002). The failure of the tree 

thus would not be an all or none process (Spatz and Bruechert 2000).However, most of previous 

models either represent the dynamics of the plants in their linear elastic range (exposing to be of 

oscillation of the plants) or employ a Hookean material profile in the definition of the resistance 

capacity of the tree (Saunderson et al. 1999, James 2006, Sellier et al. 2008, Dahle and Grabosky 

2010, Ciftci et al. 2014). Although the assumption of linear dynamics is made in order to simplify 

the mathematical calculations, the analysis result using the previous models might significantly 

differ from the real dynamics of trees.  

Besides, simplified models of beams or tapered poles were usually used in the numerical 

analysis of trees in order to reduce the computational cost (Saunderson et al. 1999, Spatz and 

Speck 2002). This treatment, however, would neglect the contribution from the branches to the 

dynamics of trees (James 2006, Sellier et al. 2008, Ciftci et al. 2013, Ciftci et al. 2014). In recent 

years, the finite element method (FEM) has been used in the examination of nonlinear dynamical 

behaviors of trees whereby the geometry nonlinearities associated with the structural motion of 

branches could be readily included (Sellier et al. 2006, 2008, Ciftci et al. 2014). Another 

advantage of the finite element method lies in the capacity to realistically reveal the failure process 

of the trees through integrating the material nonlinearities and three-dimensional model. 

In the next sections, the nonlinear dynamics of an urban tree and its wind-induced damage 

against failure wind velocity are investigated. The classical weighted amplitude wave 

superposition (WAWS) method is used for the simulation of fluctuating wind velocity processes, 

which is detailed in Section 2. Section 3 addresses the nonlinear dynamic model of urban trees 

employing the finite element method. A comparative study against the linear dynamics analysis 

usually involved in the previous researches is carried out in Section 4.The failure wind velocity of 

urban trees is defined in Section 5, whereby the failure percentages of the tree components are 

exposed. Conclusions are drawn at the final section. 
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2. Simulation of fluctuating wind velocity 

 

The wind velocity process ( )zU t at a height of z includes two components: the time-averaged 

component zU  and the fluctuating component ( )zu t (Dyrbye and Hansen 1997), i.e. 

( ) ( )z z zU t U u t 
                             (1)

 

The time-averaged component zU could be represented by an exponential-type function relevant 

to the height (Ciftci et al. 2014) 

1/7( )z h

z
U U

h


                                (2)
 

where hU denotes the reference time-averaged component of wind velocity at the reference 

height h. 

The fluctuating wind ( )zu t is typically reviewed as a zero-mean Gaussian process. Several 

numerical techniques were proposed to simulate the wind fluctuations with an advantage of study 

on wind-sensitive nonlinear structures, such as the spectral representation approaches and 

auto-regressive filters method (Kareem 2008). Compared with the auto-regressive filters method, 

wave superposition based spectral representation schemes can be used in direct simulation of 

vortex excitation and be proved to guarantee a better simulation (Lipecki and Flaga 2010). The 

classical weighted amplitude wave superposition method (WAWS) is proved to be high accuracy 

in the numerical simulation (Rossi et al. 2004), though it would be of computational cost in case of 

the simulation of long-duration multi-variant wind fields (Kareem 2008). With a height-irrelevant 

hypnosis of fluctuating wind velocity, the WAWS could be readily used in the simulation of wind 

field of urban trees.  

The WAWS operates as a mathematical scheme associated with the power-spectrum-density 

(PSD)function in the frequency domain (Kareem2008).Several empirical power-spectral-density 

functions were proposed and proved to be of applicability for practical engineering, such as the 

Davenport spectrum (Davenport 1961)and Simiu spectrum (Simiu 1974).With the benefit of the 

invariant-turbulent-intensity along with the height, the Davenport spectrum; see Eq. (3) is used for 

the simulation of wind field of urban trees 
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where  S f denotes the spectral density of the fluctuating wind velocity; f  
denotes the natural 

frequency; 10U denotes the mean wind velocity in time average at the reference height of 10 m;  

denotes the surface drag coefficient, which has the relationship with the roughness length 0z and 

the von Karman‟s constant k  as follows (Dyrbye and Hansen 1997) 
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where k is valued by 0.4; 0z  is valued by 1.6 for case of urban area (Dyrbye and Hansen 1997). 

The wind fluctuation at height z could be derived through the following equation 

 ,

1

( )) c s 2( o
fN

i

i

z i r i iH fu f tt  


 
                        (5)

 

where ( )zu t
 

denotes the velocity of a time series at the height of z; fN denotes the number of 

frequency internals; ( )iiH f ( 1,2, , fi N  ) denotes the set of fN functions which depends 

upon the frequency interval and the involved power-spectral density-function; ( 1,2, , )i ff i N 
 

denotes the central frequency of the i-th frequency interval if ;
,r if denotes the sum of the i-th 

central frequency and half of the interval if ; i  denotes the set of fN random values of phase 

shift angles, which submits to a uniform distribution and valued from the range 0 to 2 . The 

details of the WAWS method could refer to the article co-authored by Lipecki and Flaga (2010). 

For the investigation of levels of wind strength, six cases of fluctuating wind velocity histories 

from the mean velocity of 12 m/s to 32 m/s with an interval of 4 m/s for the reference height (10 m 

above ground) are generated. The spectral density was divided into 20,000 equal parts ( fN

=20,000) from 0.00 to 10 Hz in order to obtain a time-history of the stochastic process for a period 

of 600s.The spectral densities of wind fluctuations at the mean wind velocity of 16 m/s, 20 m/s, 

and 24 m/s are shown in Fig. 1, respectively. It is noted that the simulated spectrum is in 

acceptable agreement with the target wind spectrum, indicating that the simulated wind velocity 

could guarantee a rational calculation of the wind-induced structural response.  

 

 

3. Modelling of urban trees 
 

A tree, which typically features a complex configuration, consists of branches and leaves. 

These branches or leaves are different from each other, i.e., no two branches or leaves have the 

same dimensions or shapes in reality. This fact highlights the variability of trees (James et al. 

2006), whereby the accurately geometric modelling of trees still remains a challenge. In this study, 

one of the typical urban trees in China, Ginkgo, is examined as the example. 

 
3.1 Geometric modelling 

 
In order to capture the key features of a Ginkgo tree‟s architecture, it is, as a first approximation, 

typically modelled as a trunk with attachment of primary branches (large branches) and secondary 
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branches (small branches); see Fig. 2. 
In the model, the number of the trunk is 1, while the numbers of the primary and secondary 

branches (components) are 10, 20, respectively. The spatial curves of the trunk, the primary branches 

and the secondary branches are constructed through connecting the reference points abstracted from the 

images of a real tree in spatial coordinates, whereby a virtual Ginkgo tree is then established by 

assembling these curves. The geometry of this Ginkgo tree is shown in Fig. 2. The diameter of 

cross-sectional of trunk at bottom is 0.1 m; the total height of the tree structure is 6m. The cross section 

along the trunk and branch is ideally assumed to be a solid circle, of which the area at height z is 

defined as follows 

2( ) [ ( )]A z R z
                            (6)

 

where ( )R z  denotes the cross-sectional radius of the trunk at height z , which is relevant to the 

cross-sectional radius 0R  of the trunk at bottom (Saunderson et al. 1999) 

 
0( ) (1 )

z
R z R

H

     (7) 

 

 

  
(a) 16m/s (b) 20m/s 

 
(c) 24m/s 

Fig. 1 Wind power spectrum at the mean wind velocity of (a) 16 m/s, (b) 20 m/s and (c) 24 m/s 

respectively: power spectrum of the simulated wind velocity (dash line); Davenport power 

spectrum (solid line) 
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where H  denotes the height of tree;   denotes a tapered parameter related to the tree species.    

The cross-sectional area of the branch is defined as follows  

2

b bA r                                 (8) 

where br  denotes the cross-sectional radius of a branch.  

The parameters of the primary branches are given in Table 1. The cross-sectional radius of a 

secondary branch is assumed to be 0.005 m. The ratio of the length of the secondary branch and its 

corresponding primary branch is 0.2. The tapered parameter of the trunk is valued by 0.6 in this 

study through the investigation of Ginkgo trees in the local area. 

 
3.2 Finite element modelling 
 

Since the bending plays a significant role revealing the behaviors of trees, a three-dimensional 

beam element with a circular cross section is used to model the urban tree. The axis of the beam 

element is defined according to the tangent at the same location of the geometric model. The 

commonly used MATLAB-language routine is coded to artificially mesh the geometric model of 

urban trees, whereby the ABAQUS input file is generated. The trunk is divided into 20 elements; 

each component of the primary branches is divided into 10 elements; and each component of the 

secondary branches is divided into 5 elements.  

In accordance with previous work (Sellier et al. 2006, 2008), the material of the tree is assumed 

to be isotropic and homogeneous. The density and the Young‟s Modulus of the tree are valued by 

472 kg/m
3
 and 0.99 GPa, respectively, according to the Chinese Wood Handbook (Cheng et al. 

1992). The Poisson's ratio is denoted by 0.38 (Sellier et al. 2006). 

A nonlinear material constitutive law showing elastic-plastic behavior with isotropic hardening is 

used herein. This elastic-plastic model is defined through the data assimilation of the stress-plastic 

strain pairs referring to the Chinese Wood Handbook (Cheng et al. 1992) where three mechanical 

stages are exposed, i.e., linear-elastic stage, nonlinear-plastic stage and rupture. 

 

 

  
(a) (b) 

Fig. 2 Model of Ginkgo tree: (a) plan view and (b) geometry of a synthetic tree 
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Table 1 Geometric parameters of primary branches* 

Number of the branches  Values of Radius Arc Length  

1st 0.020 m 2.766 m 

2nd  0.020 m 1.886 m 

3rd 0.020 m 2.677 m 

4th 0.020 m 3.236 m 

5 th 0.015 m 2.492 m 

6 th 0.015 m 1.117 m 

7 th 0.015 m 1.224 m 

8 th 0.015 m 1.467 m 

9 th 0.010 m 0.349 m 

10 th 0.010 m 0.702 m 

*The branches spreading at the same height from the trunk is assumed to be a same radius. The 1
st
-4

th
, 5

th
 

-8
th

 and 9
th

,10
th

 primary branches extends at a height of 3 m, 4.2 m, 4.8 m respectively (see Fig. 2) 
 

 

As shown in Fig. 3, the yield point is 22.4 MPa at 0.26% compressive strain and the ultimate 

strength is 39.2 MPa at 0.8% compressive strain. For reference purpose, the material constitutive 

laws proposed by Brudi upon the two different tree species are shown in the figure. The 

elastic-plastic model used in this study exhibits a same yield strain with the Brudi‟s models, while 

the former occupies a larger Young's modulus due to statistics of urban tree specimens in Chinese 

Wood Handbook. 

Regarding to the boundary condition of the finite element model, as shown in Fig. 2, the 

numerical tree is clamped at its base, and rotation is fixed at each branching point (this boundary 

condition is necessary for the branching points to support moments). This model is asymmetrical 

and close to the real configuration of a Ginkgo tree. The fundamental nature frequency of the 

modelled Ginkgo tree is round 1.1 Hz, which shows an agreement with the on-site testing results 

investigated by Baker (Baker 1997). 

 

3.3 Wind loading 

 
The logical definition of wind loading upon a tree is a challenging issue due to the complexity 

inherent in the flow and turbulence structures around the tree (Aly et al. 2013, Lee et al. 2014). In 

this paper, the interaction between the wind and the tree is treated as a wind drag force (Ciftci et al. 

2014), which is modelled as a distributed line loads acting on the finite element model in x 

direction (all loadings are applied in a horizontal direction). The drag force acting on the j-th 

element of the model is expressed as 

2( ) 0.5 ( ) ( )j a j D jF t A t C U t
                   

(9) 

where ( )jU t
 

denotes the velocity of wind distributing on the j-th element; ( )jA t
 
denotes the 

project area of the j-th element( 1,2, , ej N  ), where eN
 
denotes the number of the elements;

a denotes the density of air;  𝐶D  is the drag coefficient. The density of air and the drag 

coefficient are assumed to be 1.2 kg/m
3
 and 0.47, respectively (Rudnicki et al. 2004). 
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4. Dynamic analysis of Ginkgo trees 

 
Based on the D‟Alemberts principle and the finite element method (Zienkiewiez 1991), the 

dynamic response of j-th element of the model subjected to wind loading reads 

( ) ( ) [ ( )] ( )j j j j j jt t t t  M u C u f u F
              

(10) 

where jM  and jC ( 1,2, , ej N  ) denote the mass and damping matrices of the j-th element, 

respectively. ( )j tu , ( )j tu , ( )j tu
 

denote vectors of the acceleration, velocity, and displacement 

of the tree with respect to ground, respectively. f[uj(t)]
 
denotes a vector of internal restoring forces 

of the j-th element, serving as a function of the elemental deflections. ( )j tF
 
denotes the 

time-dependent load vector of the j-th element. Rayleigh damping is used here to approximate the 

damping matrix 1 2j j jk k C M K , where 1k  and 
2k  are Rayleigh damping factors, 

respectively. It is assumed herein that 1k  is valued by 0.32 and 
2k  is valued by 0.001 (Sellier et 

al. 2006). The motion of trees subjected to wind actions involves geometric nonlinearity and 

material nonlinearity, of which the nonlinear effect is included in the term of restoring forces 

f[uj(t)].  

It should be noted that the effect of geometric nonlinearity in the analysis would be considered 

in case that the NLGEOM parameter in the step definition is defined as YES. The analysis is 

undertaken using a scheme of Hilber-Hughes-Taylor time integration with default settings in 

Abaqus/Standard (Version 6.10, Hibbitt, Karlsson & Sorensen, Inc. USA). The parameters  ,  ,

  corresponding to the transient fidelity are denoted by –0.05, 0.275625 and 0.55, respectively; 

while they are denoted by–0.41421, 0.5 and 0.91421, respectively, corresponding to moderate 

dissipation. 

 

4.1 Dynamic response of the Ginkgo tree subjected to wind loading 
 

The dynamic analysis is performed for a total period of 600 seconds with assumption of the 

stationary initial conditions. The response process of the top displacement and the maximum 

bending moment (along all the structural components which typically occurs at the bottom of the 

trunk) are plotted as a function of time. Fig. 4 shows the time history of top displacement and 

maximum bending moment in case of mean wind velocity 24 m/s. It can be seen that the top 

displacement and maximum bending moment oscillates with time and follows the trend of the 

wind action. It is also found that the response solution derived from linear and nonlinear analysis 

meets closely with each other at the initial un-yield stage of Ginkgo trees. However, the significant 

difference between the nonlinear and the linear analysis occurs when the structural component 

locates at nonlinear-plastic stage, where the large deformation arises on the Ginkgo tree resulting 

in a lower bending moment due to the elastic-plastic material constitutive law used in the 

nonlinear analysis of the structural model. It is indicated that the nonlinearities inherent in the 

Ginkgo tree (coupling the material and geometric nonlinearities) affect its dynamic behaviors 

seriously. 
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Nonlinear dynamics and failure wind velocity analysis of urban trees 

 

Fig. 3 Constitutive material law of trees 
 

 

 

Fig. 4 Time history of top displacement and maximum bending moment at mean wind velocity of 24 m/s, 

with a comparison of the nonlinear analysis (dashline) and linear analysis (solid line) 

 

Phase portraits of top displacement of the structural model derived from the nonlinear analysis 

corresponding to typical mean wind velocities are shown in Fig. 5. In accordance with the time 

history of top displacement in case of mean wind velocity 24 m/s, the phase portrait; see Fig. 5(b), 

reveals that at the first period the Ginkgo tree locates at a non-stationary state owing to damping 

influence of the structural system, it jumps to a stationary state moving back and forward where 

the tree features a plastic behavior. A sounder phase shifting phenomenon exposes in case of mean 

wind velocity 32 m/s; see Fig. 5(c). While in case of lower amplitude of the wind action, e.g., with 

mean wind velocity 12 m/s; see Fig. 5(a), the Ginkgo tree still features an elastic behavior and 

gives rise to a small-range oscillation.  
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(a) 12 m/s (b) 24 m/s 

 
(c) 32 m/s 

Fig. 5 Phase portraits of top displacement derived from the nonlinear analysis corresponding to different 

mean wind velocity of (a) 12 m/s, (b) 24 m/s and (c) 32 m/s, respectively 

 

 

Fig. 6 shows the contour plots of bending moment at the instant of maximum value derived 

from the nonlinear analysis corresponding to typical mean wind velocities. It is seen that in case of 

mean wind velocity 12 m/s, the range of bending moment is [-49, 1000] Nm. While the range will 

be extended along with the increase of wind velocity; see Figs. 6(b) and 6(c), the range of bending 

moment is [-170, 4000] Nm and [-140, 4100] Nm in case of mean wind velocity 24 m/s and 32 

m/s.  

 

4.2 Nonlinearity effects of dynamic response 
 

In order to reveal the nonlinearity effects of dynamic response with relevance to the external 

excitation, the responses of Ginkgo tree subject to wind actions in different magnitude levels are 

investigated. Fig. 7 shows a comparison of the maximum bending moment obtained from the 

nonlinear analysis and linear analysis at the mean wind velocity 12 m/s, 24 m/s and 32 m/s, 

respectively. It is seen that the result of the mean wind velocity at 12 m/s calculated in the 

nonlinear analysis matches the linear analysis result well; see Fig. 7(a). 
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(a) 12 m/s (b) 24 m/s 

 
(c) 32 m/s 

Fig. 6 Contour plots of bending moment at instant of maximum value derived from the nonlinear analysis 

corresponding to different mean wind velocity of (a) 12 m/s, (b) 24 m/s and (c) 32 m/s, respectively 

 

This exposes that the nonlinearity inherent in the structural dynamics has no significant effect 

on the maximum bending moment in case of the mean wind velocity less than 12 m/s, indicating 

that the dynamic behavior of the Ginkgo tree subjected to wind actions satisfies the „small 

deformation hypothesis‟. Still, in the case of mean wind velocity 24 m/s, the maximum bending 

moments obtained from nonlinear analysis and linear analysis obviously split at a time instant. It 

shows the nonlinearity begins to influence the motion of the Ginkgo tree, where the response 

magnitude in case of the nonlinear analysis is relatively smaller than that of the linear analysis. It 

is explained that a compensative moment is provided by the axial deflection of structural 

components due to geometric nonlinearity and a reduced response moment is produced by the 

yield stress of structural components due to material nonlinearity, which results in a lower resistant 

bending moment. When the mean wind velocity reaches to 32 m/s, the splitting time instant 

between the maximum bending moment calculated from the nonlinear analysis and from the linear 

analysis shifts to an earlier as the mean wind velocity 24 m/s. Meanwhile, the response of the 

maximum bending moment calculated by nonlinear analysis is large initially and rapidly 

approaches to zero, indicating that the Ginkgo tree enters into rupture and a hinge occurs at the 

bottom of the trunk. The rupture state that the Ginkgo tree locates at could be also explained in the 

following analysis of top displacement of structural model. 
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Fig. 7 Time history of maximum moment between the nonlinear analysis (dotted line) and linear analysis 

(solid line) at mean wind velocity of 12 m/s, 24 m/s and 32 m/s, respectively 

 

 

 

The similar characteristics are included in Fig. 8 by exploring the time history of top 

displacement obtained from the nonlinear analysis and linear analysis, respectively. At the mean 

wind velocity 12 m/s, the top displacement processes fairly consistent with each other indicating 

that the tree has been in the elastic range. At the mean wind velocity 24 m/s, however, the top 

displacement of the tree jumps to a larger amplitude due to the static wind action after an initial 

period indicating that the Ginkgo tree reaches to the plastic range and cannot go back to its initial 

position. Whilst the linear analysis shows the oscillation of the tree dragged by wind. The 

oscillation can also be found in the linear analysis at the mean wind velocity 32 m/s in contrast to 

the nonlinear case, which shows that the Ginkgo tree fails, e.g., the top displacement close to 6m 

(model‟s height).  

Fig. 9 shows the extreme value of the maximum bending moment plotted against the wind 

velocity, comparing the linear analysis and nonlinear analysis. It is found that along with the 

increase of wind velocity, the nonlinearity effect of dynamic response of Ginkgo tree arises to be 

significant, which is sound in case that the mean wind velocity goes beyond 20 m/s. 

It is explained that the bending moment acts as an integral of the stress distributed in the 

cross-section (Beer et al. 2012); if the stress reaches its ultimate strength they would not increase 

more. Since the stress of the cross-section in case of the mean wind velocity beyond 20 m/s closes 

to its ultimate value during the nonlinear analysis, the resistant bending moment thus approaches 

to its maximum value and cannot increase much further. The extreme value of the maximum top 

displacement plotted against the wind velocity is shown in Fig. 10. 

As remarked previously, the top displacement of nonlinear analysis enhances significantly 

against that of linear analysis with the increase of wind velocity due to the usage of the nonlinear 

material constitutive law. 
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Fig. 8 Time history of top displacement between the nonlinear analysis (dotted line) and linear analysis 

(solid line) at wind velocity of 12 m/s, 24 m/s and 32 m/s, respectively 

 

 

 

Fig. 9 Comparison of the extreme value of maximum bending moment against the wind velocity between 

the linear analysis (dash line) and the nonlinear analysis(solid line) 

 

 

5. Failure analysis of Ginkgo trees 
 

It is clearly indicated in the previous section that the Ginkgo tree model ruptures when the 

bending moment exceeds its failure bending moment. In this case, the response of maximum 

bending moment turns to be zero and value of the top displacement is close to the tree‟s height. All 
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these findings show that the nonlinear analysis more accurately exhibits the failure phenomenon of 

Ginkgo trees. 

The purpose of this study is to assess the risk of Ginkgo tree failure. The bending moment is a 

critical parameter to determine whether the tree is failure or not. Failure of a Ginkgo tree during a 

time period is defined as the state of a spatial element where the maximum value of wind-induced 

bending moment first exceeds its resistant moment, i.e., the capacity of trunk or branches resisting 

failure. The resistant moment in this case is so-called the failure moment. Arising from theory of 

bending, the failure moment is given by (Beer et al. 2012) 

3

ˆ
4

j

j

r
B




                               (11)
 

where ˆ
jB  is the failure moment of the j-th element, 1,2, , ej N  ; is the resistance of the 

material of green wood; jr is the radius of the j-th element. The wind velocity at which the 

maximum value of the tree response moment is equal to its failure moment is termed the „failure 

wind velocity‟. 

The state of j-th element can be defined as the following index 

[0, ]

ˆ[max{ ( )} ]j j j
t T

I H B t B


 
                           (12)

 

where jI denotes the state of the element: 0jI   indicating a safe element, 1jI   indicating a 

failure element,; ˆ
jB denotes the threshold of element safety, and here it is the failure bending 

moment; ( )jB t denotes the time-dependent response moment; [ ]H   denotes a Heaviside 

function. 

 

 

 

Fig. 10 Comparison of extreme value of top displacement against the wind velocity between the linear 

analysis (dash line) and the nonlinear analysis (solid line) 
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The failure percentage is an index representing the ratio between failure elements and total 

elements of a certain structural layer such as the trunk, primary branches or secondary branches 

1

,

iN

j

j

f i

i

I

P
N






                                (13)

 

in which ,f iP  is the failure percentage of i-th structural layer; 
iN ( 1,2,3i  ) denotes the element 

number of a certain structural layer. 

The failure wind velocity is identified using the scheme of nonlinear analysis. Fig. 11 shows the 

envelopes of maximum bending moments along the trunk at different mean wind velocity of 12 

m/s, 16 m/s, 20 m/s, 24 m/s, 28 m/s and 32 m/s, respectively. It is suggested that for cases of each 

wind velocity the maximum value of the bending moment occurs at the bottom of the Ginkgo tree. 

The maximum bending moment increases with the enhancement of the wind velocity, while does 

not increase much further when the wind velocity exceeds 24 m/s due to the effect of material 

nonlinearity. The failure moment of spatial elements of the trunk along its height is exposed in Fig. 

11 as well. It is seen that the failure moment is always larger than the maximum value of the tree 

response moment along with the trunk in case of mean wind velocity not more than 20 m/s. From 

Fig. 11, the failure wind velocity of trunk corresponding to its failure moment is 24 m/s for this 

case using interval of wind velocity 4 m/s. Moreover, a sudden decreasing at 3 m height and a 

sudden increasing slope at 3.3 m height are found in the figure as well. The reason of a sudden 

decreasing at 3 m height is that at this height the branches share the bending moment carried by 

the trunk, where the four primary branches are involved. The sudden increasing slope at 3.3 m 

height is owing to the usage of finite element method that the trunk is equally divided 20 elements 

and the bending moment slope will give rise at the other node of the element. It is understood that 

the more the elements used in the trunk, the shorter the distance between the sudden decreasing 

point and sudden increasing slope point would be. 

There is a fact that the branches failure occurs earlier than the trunk failure with the increase of 

mean wind velocity. As indicated in Section 3, the trunk, primary branches and secondary branches 

involves 20, 100 and 100 elements, respectively. For the trunk elements, they consist of a serial 

system with independent element failure, indicating that the trunk would fail once any of the trunk 

elements is failure. While for the primary branches, they consist of a parallel system with 

conditionally independent element failure. The conditional failure is understood as the fact that if 

the trunk fails the primary branches are all failure. The parallel system happens to be failure only 

in case that all the primary branches fail. Similarly, the secondary branches consist of a parallel 

system with conditionally independent element failure. The conditional failure links to the fact that 

a group consisting of several secondary branches would fail if the group hinges upon one failure 

primary branch. The parallel system thus happens to fail only in case that all the secondary 

branches fail. Fig. 12 presents the failure percentage of the Ginkgo tree model under different 

mean wind velocities, where the logical relationship among the trunk, primary branches and 

secondary branches is included. It is seen that all the elements at the three structural layers of tree 

is more vulnerable to failure with an increase of wind velocity. Differences between samples from 

the same species or from the different species would result in a significant variation of failure 

percentage since the frontal area, moment capacity and drag force link with the structural 

configurations, wood properties and living conditions. The importance of these differences is 

addressed in the previous studies (Ciftci et al. 2014).  
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Fig. 11 Envelopes of the maximum bending moments along the Ginkgo trunk corresponds to different 

wind velocity of 12 m/s, 16 m/s, 20m/s, 24 m/s, 28 m/s and 32 m/s, respectively 
 

 

 

 

Fig. 12 Failure percentage of Ginkgo tree model under different mean wind velocities of 12 m/s, 16 m/s, 

20 m/s, 24 m/s, 28 m/s and 32 m/s, respectively 
 

 

It is also found that the secondary branches are more likely to fail than the primary branches, 

where a non-proportional failure percentage among them is exposed. There are two physical 

quantities controlling the failure of the tree branches. One is the moment capacity of the branch, 

and the other is the wind-induced branch bending moment. In this study, the moment capacity of 

the branch hinges upon the resistance of green wood material and the radius of branch (see Eq. 

(11)). The secondary branches have a smaller cross sectional radius than the primary branches, 

where the ratios between cross sectional radius of the latter and of the former at the three heights 

are 4, 3, 2, respectively. Consequently, the ratios between moment capacity of the latter and of the 

former at the three heights are 64, 27, 8, respectively. While the wind-induced bending moment of 

the latter is just 4 times than the former at the same height. It is thus explained that secondary 

branches are more likely to fail for this case. 
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6. Conclusions 

 
In this paper we have focused on wind damage to Ginkgo trees via the numerical solution 

techniques. The contribution of this paper lies in introducing a more accurate method to assess the 

likelihood of Ginkgo tree expected to fail under wind action through coupling the effects of 

geometric nonlinearity and material nonlinearity. The concept of the failure wind velocity is also 

proposed to assess the vulnerability of Ginkgo trees. Some concluding remarks are included as 

follows: 

(1) The coupling effects of the material and geometric nonlinearities affect the dynamic 

behaviors of trees seriously. A larger deformation and a lower bending moment are exposed 

in the nonlinear analysis due to the elastic-plastic material constitutive law used in the 

structural model. 

(2) The failure moment is always larger than the maximum value of the tree response moment 

along with the height of trunk in case of mean wind velocity not more than 20 m/s. The 

failure wind velocity of trunk, in the present case, corresponding to its failure moment is 24 

m/s. 

(3) The trunk elements consist of a serial system with independent element failure, while the 

primary and secondary branches consist of a parallel system with conditionally independent 

element failure, respectively. The failure pattern of the structural elements highly relies 

upon the topology of trees.  

It should be noted that the dynamic behavior varies with the type of trees, the season and trees‟ 

age etc. (Baker 1997, James et al. 2006, Ciftci et al. 2014). The failure wind velocity predicted by 

previous studies thus shifts from 17m/s (Oliver and Mayhead 1974) to 35m/s (Cucchi et al. 2005). 

Further development of this study could implement a statistical analysis and reliability assessment 

of wind-induced damage of trees to examine the uncertainty effects derived from the structural 

properties and external excitations. 
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