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Abstract.  The efficiency of wind turbines (WT) is primarily reflected in their ability to generate electricity 
at any time. Downtimes of WTs due to “conventional” inspections are cost-intensive and undesirable for 
investors. For this reason, there is a need for structural health monitoring (SHM) systems, to enable service 
and maintenance on demand and to increase the inspection intervals. In general, monitoring increases the 
cost effectiveness of WTs. This publication concentrates on the application of two vibration-based SHM 
algorithms for stability and structural change monitoring of offshore WTs. Only data driven, output-only 
algorithms based on stochastic subspace identification (SSI) in time domain are considered. The centerpiece 
of this paper deals with the rough mathematical description of the dynamic behavior of offshore WTs and 
with the basic presentation of stochastic subspace-based algorithms and their application to these structures. 
Due to the early stage of the industrial application of SHM on offshore WT on the one side and the required 
confidentiality to the plant manufacturer and operator on the other side, up to now it is not possible to 
analyze different isolated structural damages resp. changes in a systematic manner, directly by means of 
in-situ measurement and to make these “acknowledgements” publicly available. For this reason, the 
sensitivity of the methods for monitoring purposes are demonstrated through their application on long time 
measurements from a 1:10 large scale test rig of an offshore WT under different conditions: undamaged, 
different levels of loosened bolt connections between tower parts, different levels of fouling, scouring and 
structure inclination. The limitation and further requirements for the approaches and their applicability on 
real foundations are discussed along the paper. 
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1. Introduction 
 

In the past, different vibration-, guided waves- or acoustic-based SHM methods for offshore 

WTs were developed. To date no national or international standardizations or requirements for the 

SHM of WT by means of one method or another exists. In the industrial application, which this 

publication is focused on, mostly vibration-based, output-only methods are used. Data-driven 

methods are used for monitoring of damage and change detection (Link and Weiland 2014, 
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Weijtjens et al. 2015, Kraemer 2011) and model-based methods for the life cycle estimation 

monitoring (Iliopoulos et al. 2016). Different methods for damage localization and damage 

extension are based on the analysis of local measurements (Link and Weiland 2014), however the 

model-based (e.g., finite element models) damage localization methods (Fritzen et al. 2010, 

Kraemer 2011) are currently not established for continuous monitoring purposes. Today, the 

localization and/or identification of damage resp. change type is possible only in a limited way by 

using different methods and indicators, where each method or indicator is more or less sensitive to 

one type of structural change or another (Link and Weiland 2014). An overall available algorithm, 

method or indicator for all kinds and types of WT structural damages does not exist. The selection 

of an algorithm resp. method depends on the monitoring purpose, structural hot spots, specifically 

on the dynamic behavior of the foundation and - not least - on the experience and knowledge of 

the SHM system designer on e.g., structural mechanics and dynamics, signal and data processing, 

statistical pattern recognition, big data handling, sensor selection, etc. 

Further topics like sensor fault detection and compensation of environmental and operational 

conditions (EOCs) on the SHM-indicators are very important issues for the industrial application 

of SHM in harsh environments (Kraemer and Fritzen 2008). Only SHM-systems with 

self-diagnosis capability and the consideration of EOCs are really reliable and sensitive enough to 

detect damages and structural changes, insensitive to changes with EOCs and robust against sensor 

and hardware failures. 

Actually, in offshore environment the sensors used for industrial SHM purposes measure 

mostly the acceleration, inclination, local strain or displacement of the WT structure in a low 

frequency domain (the wind and wave excitation occurs considerably below 10 Hz). In most of the 

cases the sensors are placed over the water level (Link and Weiland 2014, Kraemer and Fritzen 

2010, Kraemer 2011). There are also a few instrumentations known with sensors under the 

waterline. However, the service life expectancy of those sensors is very low. The 

reliability/robustness of the communication between the components of the SHM-system like 

sensors, data acquisition units, data processing units, turbine controller, web interfaces for 

visualization and alarm management are very important and indispensable for a reliable 

SHM-system. 

The basic principle of a vibration-based, output-only, data-driven SHM-method is illustrated in 

Fig. 1. The structural response at the sensor positions is measured (see block measurements in Fig. 

1). The measured time series themselves are rarely directly used, but present meaningful features 

or feature vectors extracted from the signals that are useful to compare different structural states. 

The feature extraction is made by means of signal processing methods in time, frequency or 

time-frequency domain. Examples of features are statistical moments, characteristic numbers 

based on statistical moments, parameters of statistical distributions, coefficients of time series 

models, statistical characteristic numbers of time series residuals (e.g., from the “family” of 

autoregressive models), statistical characteristic numbers of stochastic model residuals, Fourier 

coefficients, frequencies obtained by spectral analysis, statistical moments of spectral data, 

eigenfrequencies, modal damping, mode shapes, modes curvatures calculated by means of 

operational modal analysis, wavelet coefficients, etc. The application of dynamic features in 

SHM-context is described in a compact form e.g., in Balageas et. al. (2006), Doebling et al. (1996), 

Fritzen and Kraemer (2009), Kraemer (2011). 

The dynamic response and its features do not only contain the “isolated” system dynamics, but 

also effects of the EOCs on the structure and effects of the dynamic coupling on other parts of the 

turbine. So it is necessary that in a “learning phase”, the normal conditions of the structure under 
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different EOCs are identified and reference models for normal conditions are built (see block 

pattern recognition in Fig. 1). In the “detection phase”, the actual dynamic features of the 

structural parts are compared to the reference models. The residuals between the actual data and 

the reference models are statistically interpreted and “compressed” to one or more indicators (see 

block decision). In practice, different indicators calculated from signals of different sensors with 

their features and models are used and sometimes combined for monitoring of different structural 

parts. In this case each indicator has its sensitivity regarding different damages or changes. For the 

industrial application it is important, that the turbine operator (or directly the turbine controller) is 

provided with prompt and reliable decisions regarding the turbine state and necessary actions. 

Some rough explanations of the WT dynamic behavior, feature extraction procedure, and 

reference model building for two stochastic subspace-based algorithms, along with formulas and 

figures are given in the following section. 

 

 

2. Theoretical backgrounds – dynamic behavior of WT structures 
 

The equations of a linear dynamic system already show that changes in stiffness and mass have 

an effect on the system’s vibration behavior. This is one of the basic principles of the 

vibration-based damage identification approaches implemented in Wölfel’s WT monitoring 

systems. The simple application of the linear and time-invariant equation of motion for the 

examination of a complex dynamic system on site (e.g. a wind turbine) is not sufficient. 

The system is not stationary and superimposed by transient, stochastic and periodic excitations 

of the turbine. Due to variable boundary conditions, temperature fluctuations, changes of mass 

inertia moments, water level, etc., the dynamic system of a wind turbine is highly non-linear and 

can be well described by the following equations of motion (Balageas et. al. 2006, Fritzen et al. 

2013a) 

     t,,t,,,,t,,, ededed θθFxxθθgxxθθM                   (1) 

 t,,,, edd xxθθΓθ                           (2) 

   t,,,,t ed xxθθhy                          (3) 

 

 

Fig. 1 Basic principle of a vibration-based, output-only, data-driven SHM-method 
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where M is the mass matrix, g the vector of elastic forces, damping forces, etc. and F the external 

load vector; x , x , x  are acceleration, velocity and displacement vectors. dθ  is a time (t) 

dependent vector with damage parameter, and the parameter vector eθ  indicates the influence of 

environmental and operational conditions, e.g. temperature, pitch angle, rotational speed, changing 

boundary conditions, etc. The non-linear function Γ  describes the evolution of dθ , e.g., crack 

length, play, loss of stiffness, change of mass, etc. A temporary decrease of system stiffness, e.g. as 

a result of damage, is formally assigned to dθ , given that the damage is not one of the expected 

(normal) EOC changes. In the measurement Eq. (3), y is the measured system response, which 

stays in a non-linear and time-variant relationship h to xxθθ ,,, ed  and t, see also Kraemer 

(2011). 

As mentioned above, the measured data is not directly used to compare two system states. In 

fact, so-called features are extracted from the raw data, which are arranged in a vector. The feature 

vector fy extracted by the feature extraction operation (FE) is 

    t,,FE, ededy θθyθθf                         (4) 

The sensitivity of the i -th feature with respect to the j –th structural changes parameter is 

expressed by the first partial derivative 

 

dj

edy
j

,
s

θ

θθf




                              (5) 

and shows that the dynamic behavior of the structure and its features depend simultaneously on 

damage state and the EOC. Thus, the compensation of the effect of EOCs on the dynamic behavior 

of a wind turbine is of particular importance. 

 

 

3. Structural change detection based on stochastic subspace algorithms 
 

Two vibration-based SHM-algorithms appropriate for stability and structural change 

monitoring of offshore wind turbines are presented below, both of them belonging to the stochastic 

subspace identification (SSI). The first approach considers only changes of lower order stochastic 

subspace models, which can be interpreted in a physical way as changes in the vibration modes. 

This is based on the covariance-driven stochastic subspace identification (SSI-COV) algorithm 

and often is used in context of operational modal analysis (Van Overschee and De Moor 1996, 

Peeters and De Roeck 1999). The second method, however, also considers the changes in the 

higher orders of stochastic models and is known (Basseville et al. 2000) as the stochastic subspace 

fault detection (SSFD) algorithm or null space-based fault detection algorithm (NSFD). Since the 

purpose of this publication is to show the sensitivity of the approaches due to structural changes of 

offshore WT, the aspects of EOC compensation on the extracted features are only briefly sketched 

(specific information about EOC compensation can be found e.g., in Fritzen et al. 2013a, b). 

 
3.1 SSI-COV-based structural change detection 
 

As features of the dynamic system the eigenmodes are calculated and automatically interpreted 
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in the following steps. First, the non-linear Eq. (1) is fragmented by several linear, time-invariant 

equations, with unknown stochastic input, each only available for different classes of EOCs. The 

criteria for choosing class ranges and number of classes are defined by means of Eq. (5). The state 

space representation of one equation for one EOC class e is 

   

    kekyek

kkedek

vzCy

wzAz



1
                            (6) 

where z  is the state vector and y  contains the multivariate time data of the measured sensor 

signals, Ad is the discrete state space matrix, Cy is the measurement matrix, w and v are the process 

and measurement noise respectively, k  is one time instant in the measured signals. 

It is well known that matrix Ad is a function f of the auto- and cross-correlation function of the 

measured time series y (of length nt) 











rn

k

T
krk

t
r

t

rn
ˆ

1
1

1
yyR                         (7) 

e.g., arranged in a matrix with Hankel-Canonical form H 
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                        (8) 

For r = 1 the Hankel matrix can be expressed as the product of the observability and 

controllability matrix with the time shifts  ,   respectively. The identification of the reduced 

system of order p follows by the singular value decomposition (SVD) of the Hankel matrix 
T
ppp VSUH 0  for r = 1 

21
1

21 /
pp

T
p

/
pd

ˆ  SVHUSA                              (9) 

In the second step the eigenfrequencies of the system and the modal damping ratios for one 

EOC-combination e are identified by means of the state space matrix eigenvalues. Multiplying the 

eigenvectors of dÂ  by the system output matrix 21/
pp

T
y

ˆ SUEC   (with  00IE T ) 

provides the complex mode shapes of the system. 
The third step consists in the automated selection of stable poles from stability plots. Such a 

stability plot gained from measured data of a wind turbine structure is shown in Fig. 2(a). The 

black circles indicate that the eigenfrequencies, the modal damping and the mode shapes do not 

change with higher model (state space) order. The continuous gray line represents the mean power 

spectral density (PSD) of the signals; this line has no meaning for the feature extraction and just 

shows that the stable frequencies are close to the peaks of PSD. Only using stability plots is not 

enough for an automatic feature extraction approach. For this purpose, further classification 

algorithms are used. These algorithms automatically choose the number of class centers and give 

the representative stable poles at the class centers (see the blue vertical straight lines in Fig. 2(a)). 
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After these steps, the sensitivities of the modal parameters due to the changes of EOCs are well 

known and can be modeled by means of linear or non-linear correlations. Fig. 2(b) shows the 

linear dependency of one eigenfrequency on the temperature. Of course, depending on the 

vibration mode, the feature vector (modal data) shows different dependencies to different EOCs 

(not shown here). The impact of the EOCs on the modal data is shown by Eq. (5). These 

dependencies/models are established during the time when there is no structural change of the WT 

(“learning phase”). These models represent the system references. 

If the actual feature vector (during the “detection phase”) shows a significant statistical 

deviation from the reference in (%), an alarm is triggered. The state condition of the plant is 

summarized in just one indicator/ residual, which is proportional to the structural changes. 

 

3.2 NSFD based structural change detection 
 
An alternative indicator based on residuals generated by means of the Hankel-matrices left 

kernel space was first proposed in (Basseville et al. 2000). This residual turned out to be very 

sensitive to small structural changes. The column vectors of the matrix of left singular vectors 

obtained from SVD: T
p KU  span the null space (or left kernel space) of the reduced Hankel 

matrix of the undamaged structure with  
0 ,ref HH   so that 

0HK refref                           (10) 

will be used to generate the residuals from the incoming data sets (index n) nrefn HKε   which 

can be compressed to one damage indicator/residual 

n
T
nn
ˆ ζΣζ

12   with  nn vec εζ   and 


 


N

q

T
qq

N
2

2

1ˆ ζζΣ .            (11) 

vec in Eq. (11) is the one vector stack operator and N  is a number of data sets belonging to 

the undamaged structure used to define the covariance matrix Σ̂ . Details of the algorithm can be 

found in Balageas et al. (2006). 

 

 

  
(a) Stability plot with automatic pole selection (b) Frequency vs. temperature 

Fig. 2 Features and EOC-compensation within SSI-COV-based method 
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4. Experimental validation 
 

As already mentioned, it is not possible to analyze different isolated structural damages or 

changes in a systematic manner, directly by means of in-situ measurements on existing WTs. For 

this reason, the sensitivity of the methods for monitoring purposes are demonstrated through their 

application on a long time measurement campaign at a 1:10 large scale test rig of an offshore WT. 

These examinations were done during the R&D-project UnderwaterINSPECT funded by the 

German Federal Ministry for Economic Affairs and Energy. 
 

4.1 Test rig, test facilities and experiment purposes 
 

The test rig consisted of a model of the WT structure with monopile foundation placed in the 

test hall and the sand basin of Test Center for Support Structures of Leibniz Universität Hannover, 

see Fig. 3(a). The measurements were done together with Fraunhofer IWES. The dimensions of 

the test pit were 10x14x10 m. The pit was filled with sand and water. The water level was 

controlled. 

The monopile structure, see Fig. 3(b), consisted of two pipes of approx. 0.5 m of diameter and 

approx. 6 mm of wall thickness. The length of the first pipe (pile model) was 7.5 m. This was 

vibrated into the sand for a depth of 6 m. The second pipe (tower model) was flanged by means of 

20 screws to the first one and had a length of 6.5 m. At the top of the “tower” an electro-magnetic 

shaker was mounted. The shaker represented the turbine and excited the structure by means of 

stochastic forces. 

Different sensors for different purposes were installed on the structure; some of the sensors 

were applied on the first pipe (in the sand), the other sensors on the second pipe. The sensor types 

and positions can be seen in Fig. 4. For the validation of SSI-COV- and NSFD-based methods only 

the acceleration signals (the sensors are placed over the “water level”) were used. The used 

frequency range from the acceleration signals was 0-125 Hz. The frequency range of the stochastic 

excitation by the shaker was between 2-50 Hz, the forces were assumed to be unknown. The 

measurement time for each data set displayed in the following graphics was 10 minutes. 

The experiment aimed at the validation and development of different approaches for WT 

monitoring. In this publication, the testing and validation of the sensitivity of two stochastic 

subspace-based change-detection approaches regarding: 

 

 soil degradation, 

 loosened bolts at the flange (represents a loss of stiffness), 

 fouling (additional masses), 

 scouring (changing of boundary conditions) and 

 structure inclination. 

 

is described. 

 

4.2 Results of soil degradation 
 

The first tests were made with a shaker excitation of 350 N (RMS value). During this excitation 

and without any structural changes the first eigenfrequency (approx. 4.3 Hz) of the monopile 

changed significantly, see Fig. 5. The reason was the high excitation level, which led to soil 
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loosening. Perhaps this phenomenon was caused by pile driving during its vibration into the soil. 

In reality, if the foundation is rammed by hammer impact a soil hardening is expected within the 

first weeks after the WT installation. 

 

 

 
 

(a) Overview of basin and structure (b) Test rig: model of WT structure 

Fig. 3 Test rig in the sand basin of Test Center for Support Structures 

 

 

 

Fig. 4 Dimensions and instrumentation of the structure 
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Fig. 5 Change of first eigenfrequency due to “soil degradation” 

 

 

Under this condition it was evident that effects of induced damages, etc. would be covered up 

by those of soil changes. For this reason the excitation level by the shaker was reduced to 250 N 

(RMS). With this condition the soil degradation was much slower than before. 

The time-history of all the measurements during different structural changes and their effect on 

the first eigenfrequency are shown in Fig. 6. 

For overview reasons in the next graphics the measurement number (instead of the 

measurement date) will be assigned to the x-axis. 

 

 

 

Fig. 6 Measurement plan and change of first eigenfrequency during all measurements 
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(a) Evolution of the SSI-COV-based indicator (b) Flange with 4 loosened bolts  

Fig. 7 Effects of loosened bolts at the flange 

 
 

 
 

(a) Evolution of the NSFD-based indicator (b) Flange with 2 loosened bolts 

Fig. 8 Effects of loosened bolts at the flange 

 
 
4.3 Loosened bolts at the flange 
 

Different damage levels were created by the loosening of 2, 4 or 6 of the flange connection 

bolts between pile and tower (the flange connection consists of 20 bolts). For security reasons the 

bolts were not completely loosened, a rest tension remained in the bolts, these were additionally 

secured by means of counter nuts, as seen in Figs. 7(b) and 8(b). 

The method based on the eigenfrequencies change (four simultaneous eigenfrequencies), 

showed that 4 and 6 loosened bolts could be well detected, see Fig. 7(a), also the detection of 2 

loosened bolts was possible in a limited way (the results are not shown here since a very clear and 

distinct difference between the reference state and 2 loosened bolts was not significant). 

The NSFD-based method clearly shows that all levels of loosened bolts can be well identified, 

see Fig. 8(a). 

 

4.4 Fouling simulation by means of additional masses 
 

The fouling could be only simulated in a very simplified way by placing additional masses 

close to the flange. Three different additional masses were mounted to the tower: 4, 20 and 30 kg, 

as displayed in Fig. 9(b). The mass of the tower and shaker was approx. one ton. 

The NSFD-based method was able to detect the changes due to additional masses, see Fig. 9(a), 

the SSI-COV-based method was not suitable for clear detection of those masses. Since fouling 

belongs to the “normal” states of the structure, if its effect on the NSFD-indicators is not 
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compensated, this can cover up the effects of small damages e.g., as the loosening of 2 bolts (the 

NSFD-indicator is in both cases: 2 loosened bolts and 4 kg additional mass relative similar, approx. 

10, compare Fig. 9(a) to Fig. 8(a)). 

 

4.5 Scouring 
 

Scouring are changes between the structure and the surrounding soil, affecting the structural 

stability. Also different scouring levels were simulated by grubbing out 30, 60 and 80 cm of sand 

around the structure. 

The effects of scouring on the indicators of both methods are huge, see Fig. 10(a) for 

SSI-COV-based method and Fig. 11 for NSDF-based method. So it can be supposed, that if 

scouring is treated simultaneously to other effects e.g. coming from loose of stiffness (damages) 

the effect of scouring will be dominant and possibly cover up all other effects. In this case it is 

important for the mentioned change resp. damage detection procedures either to build the 

references after the scour depth is no longer growing (some months after WT installation) or to 

compensate the scour effects on the indicators. The first option is dangerous, since during strong 

storms the scour can change again. The last option is possible if the scour depth is measured by 

means of other sensors (e.g., sonar). 

 

 

 

 
(a) Evolution of the NSFD-based indicator (b) 4/20/30 Kg additional mass 

Fig. 9 Effects of additional masses positioned over the flange 

 

 

  
(a) Evolution of the SSI-COV-based indicator (b) Scouring of 30 cm depth 

Fig. 10 Effects of scouring 
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Fig. 11 Evolution of the NSFD-based indicator 

 

 

4.6 Structure inclination 
 

The structure inclination was reached by means of periodic eccentric loads from a hydraulic 

cylinder. The hydraulic system was coupled to the tower through a sleeve (weight: approx. 50 kg), 

as shown in Fig. 12(b). The effect of sleeve mounting (without hydraulic coupling) on the structure 

first eigenfrequency is shown in Fig. 12(a). 

Some measurements with the hydraulic system acting (loading period) on the structure are 

shown in Fig. 13. Depending on the eccentric loads, different levels of structure inclination at 

tower top were reached (see L1:L4 in Fig. 13). The remaining inclination after each loading period 

is smaller than 0.05°. After each loading period the hydraulic system was decoupled (but the 

sleeve still remained on the structure) and the structural response during the shaker excitation was 

measured (as already described in 4.1). 

 

 

 

 
(a) Evolution of the first eigenfrequency (b) Structure with sleeve and hydraulic 

Fig. 12 Hydraulic installation for eccentric loading of the structure 
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Fig. 13 Tower top inclination during loads from hydraulic 

 

 

The lower part of Fig. 14 shows that after each hydraulic loading the remaining inclination was 

higher than at the previous hydraulic loading. During the shaker excitation the structure was 

gradually straightened. Both, the hydraulic loading and the excitation by the shaker led to the 

structure soil connection changes. The simultaneous effects of the soil structure connection 

changes and structure inclination can be seen in the changes of the first eigenfrequency of the 

structure (upper part of Fig. 14). Here it is impossible to separate these effects by means of one of 

the methods based on stochastic subspace identification. In the case of structure inclination 

monitoring it is more useful to use directly the information from the inclination measurements. 

 

 

 

Fig. 14 Structure inclination after hydraulic loading and during shaker excitation 
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5. Conclusions 
 

The sensitivity and limitation of two stochastic subspace identification methods for SHM of 

foundations of WTs were investigated by means of a long-time measurement campaign. The 

measurement was performed at a 1:10 large-scale test rig of an offshore WT under different 

conditions: no damage, structural changes, different levels of loosened bolt connections between 

pile and tower, different levels of fouling, scouring and structure inclination. 

The results show that both methods are sensitive to small damages as loosened bolts in the 

flange connections and also to changes in the system stability induced by scouring. The 

NSFD-based method is sensitive to mass changes too. The essential knowledge or lesson learned 

from the application of the methods on the measured data at the test rig is: In general, the 

approaches are more sensitive to soil changes than to structural changes. Based on this knowledge, 

if the structural change detection of a WT has to be monitored in presence of strong soil changes, 

the effects of soil changes have to be compensated, e.g., by means of separate scour depth 

measurements (options for compensation of measured parameters on stochastic subspace 

indicators are already available and can be found in Kraemer 2011 and Fritzen et al. 2013b). 

Further collected data during the test rig measurements will be used to validate available 

mathematical data-driven methods (e.g. based on vector autoregressive models, further statistical 

models in time or time-frequency domain) and to design the structural-model-based approaches in 

a reliable manner for the purposes of damage localization and remaining life-cycle estimation 

(only with few sensors installed on the tower, over the water level). 

Effects of grout damages will be examined during a second R+D-project, QS-M Grout, which 

has already started. 
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