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Abstract.  Aerodynamic forces of vortex-induced vibration and galloping are going to be coupled when 
their onset velocities are close to each other, which will induce the cross-wind amplitudes of the structures 
increased continuously with ever-increasing wind velocities. The main purpose of the present work is going 
to propose an empirical formula to predict the response amplitude of VIV-galloping interaction. Firstly, two 
typical mathematical models for the coupled oscillations, i.e., Tamura & Shimada model and Parkinson & 
Corless model are comparatively summarized. Then, the key parameter affecting response amplitude is 
determined through comparative numerical simulations with Tamura & Shimada model. For rectangular 
cylinders with the side ratio from 0.5 to 2.5, which are actually prone to develop the VIV and galloping 
induced interaction responses, an empirical amplitude prediction formula is proposed after regression 
analysis on comprehensively collected experimental data with the predetermined key parameter. 
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1. Introduction 
 

Rectangular cylinders are typical bluff bodies, which are prone to different types of 

aerodynamic instabilities, depending on the side ratio, such as vortex-induced vibration (VIV) and 

transverse galloping. VIV is caused by the resonance of the transverse force due to alternative 

vortex shedding, which is characteristic by amplitude limitation to the order of one cylinder 

diameter, and occur only in a restricted range of oncoming velocities. The onset velocity of the 

typical lock-in can be effectively determined by Strouhal law, and the amplitude of vibration 

depends on the mass ratio and structural damping. VIV is a heat point in the research fields of 

wind induced vibrations, large efforts on this topic had been done, which are comprehensively 

reviewed by Bearman (1984), Sarpkaya (1979, 2004), Matsumoto (1999), Williamson and 

Govardhan (2008). The researches on amplitude estimation are also widely expanded for decades, 

see e.g., Skop and Griffin (1973), Tamura (1983), Hemon (1999), Govardhan and Williamson 

(2006) and Marra et al. (2011). 

By contrast, transverse galloping is caused by a self-excitation due to wind action. Den Hartog 
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(Den Hartog 1932) provided an effective way to determine the onset velocity of the galloping 

instability. The quasi-steady galloping theory is reasonably established on the basis of neglecting 

unsteady effects, which means the different vibration periods of different amplitudes are taken as 

only the matters of the varying of relative wind attack angles between structures and approaching 

flow. Parkinson and Brooks (1961) used polynomials to fit the drag and lift force coefficients 

curves before expressing the galloping aerodynamic force with limited terms of Taylor series, and 

the experimental results were reported to be in good agreements with theoretical predictions. In the 

last five decades, galloping instability of rectangular cylinders were studied by Parkinson and 

Smith (1964), Parkinson (1965), Bearman et al. (1987), Hortmanns and Ruscheweyh (1997), Luo 

et al. (2003), Macdonald and Larose (2006), Gjelstrup and Georgakis (2011), Joly et al. (2012), 

Names et al. (2012), etc.  

To rectangular cylinders, both VIV and galloping are possible, and there are two major 

differences between them. Firstly, the response amplitude of galloping would never limited only to 

be one diameter of cylinder as VIV, which is actually observed to be even 100 times more, for 

example the transmission lines covered with ice of certain shape. Secondly, the occurring wind 

velocity ranges of galloping are typically for all speeds above the critical velocity, whereas the 

VIV is well known to be limited in the lock-in. According to Eurocode 1 (EN 1991-1-4,2010), if 

the ratio of the galloping to the VIV onset wind speed is either larger than 1.5 or lower than 0.7, 

the two phenomena can be considered separately. Nevertheless, some experimental data 

challenged this statement (see e.g., Hansen 2013, Mannini et al. 2014). To the slender structural 

elements with rectangular cross sections, however, when the onset velocities of VIV and galloping 

are very close, the aerodynamic forces of VIV and galloping are prone to be coupled, therefore 

interaction between the two phenomena can be expected. Then structural response appears to be a 

novel form which is beyond the single VIV or galloping style. As reported by many investigations 

(Parkinson 1965, Borri et al. 2012, Mannini et al. 2013, Mannini et al. 2014, etc.), the oscillations 

will start at the onset velocities which are always decided by Strouhal law or quasi-steady 

galloping theory, the response amplitude increase almost linearly with wind velocity, no signs of 

setback.  

In fact, the interaction cases of VIV and galloping are very common in the slender rectangular 

cylinders because of their bluff aerodynamic shapes. For the practical engineering applications, it 

will be very convenient if there is an empirical formula to predict the amplitude of the 

VIV-galloping instability, just like Griffin Plot for VIV (Skop and Griffin 1973). While many 

investigations have been carried out for studying the response amplitude due to combined VIV and 

galloping, a simple model is still absent for practical applications purpose even under a certain 

pre-determined conditions. So the main purpose of the present work is trying to build an empirical 

model, based on a lot of collected experimental data and wind tunnel tested data performed by 

present work, by curve fitting. 

 

 

2. Materials and methods 

 
2.1 Characteristics of the interaction effects 
  
Fig. 1 is showing a group of experimental curves of rectangular cylinders in different aspect 

ratios, which performed by Parkinson and Brooks (1961). In this figure, the x-axis is the 

dimensionless wind velocity, while the ordinate is the dimensionless amplitude response. It is 
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worth noting the response curves of rectangular cylinders whose aspect ratios d/h are above 0.75, 

the amplitudes are observed to be generally increased as linear fashion with wind velocities. It is 

also reported that cylinders are dominantly vibrating at the natural frequencies and the time history 

of each case are keeping steady in this whole experimental group. 

Fig. 2 is showing another typical group of results on VIV and galloping interaction induced 

oscillations, which are presented by Corless and Parkinson (1988). Vibration curves of the same 

square cylinder at different damping levels are presented, and the experimental results coincide 

with numerical results relatively well. While the onset velocities are different for the three cases, 

the rate of change of response amplitude with respect to the wind velocity for each case are 

observed to be almost the same. 

Many more results can be found that VIV and galloping interaction induced vibration curves of 

rectangular cylinders like Figs. 1 and 2 in the foregoing researches. The main characteristics of the 

oscillation curves maybe concluded as following two points, firstly, the onset velocities are always 

determined by Strouhal law or quasi-steady galloping theory; secondly, the shape of the curves are 

showing linearly increased behaviors, which means the rate of change of the amplitude with 

respect to wind velocity is constant after the starting point, although the values are varying with 

aspect ratios. That‘s to say, if we can appropriately the slope of the response curve, the amplitude 

prediction may be straightforwardly made. Therefore, we define a new parameter SL as Eq. (1) to 

present this parameter. 

SL=
ΔY

ΔUr
                                    (1) 

where, ΔY is the increment of amplitude; Y=A/D is the dimensionless amplitude response; ΔUr is 

the increment of wind velocity associate with increased amplitude; Ur=V/(fvD) is the normalized 

wind velocity; V is oncoming wind velocity; fv is the dominant oscillating frequency. 

 

 

 

Fig. 1 Experimental curves of amplitude versus dimensionless wind velocity for different aspect ratio 

rectangular cylinders (Parkinson and Brooks 1961) 
 

 

87



 

 

 

 

 

 

Huawei Niu, Shuai Zhou, Zhengqing Chen and Xugang Hua 

 

 

Fig. 2 Comparision on amplitude responses of three levels of system damping between simulation and 

experimental results (Corless and Parkinson, 1988, Bearman et al. 1987) 
 

 

2.2 Mathematical models  

 
The mathematical modeling on interaction effects between VIV and galloping could be 

classified into two main branches, one is proposed by Corless and Parkinson (1988), which is 

characterized by parametrical mathematical fitting on measured vibration results; the other one is 

Tamura and Matsui model (Tamura and Matsui 1979), which pay more attention on the physical 

meanings of parameters. And the common point of these two models is that both they are based on 

the quasi-steady galloping theory with one kind of VIV model to form the coupled VIV and 

galloping model.  

 
2.2.1 Parkinson and Corless model 
In order to take into account the effects of vortex shedding force and quasi-steady galloping 

force, Parkinson and Bouclin (1977) describe the integrated unsteady aerodynamic force acting on 

a square cylinder by adding the quasi-steady perturbation to the Hartlen-Currie fluid oscillator, 

then Eq. (2) is obtained. 

Ÿ+Y=nU2(CFY+CL) 

CL̈-G {CL0
2 -(4 3⁄ )(CL̇ k⁄ )
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V
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V
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+A5∙ (
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+A6∙ (
Y
̇

V
)

6

+A7∙ (
Y
̇

V
)

7
         (2) 

where, G, k, H are the constants which are determined by mathematical fitting on the response 

curves; CL is the lift coefficient; Ẏ is the structural velocity response; n is the mass ratio, defined as 

the ratio of fluid mass over structural mass of the same unit; CFY represents the quasi-steady 

galloping aerodynamic force, it is obtained by expanding Taylor series of drag and lift coefficient 

according to quasi-steady galloping theory, and up to 7
th
 term is proved to be sufficient by many 
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investigations. The good coincidences between experimental and simulation results demonstrate 

that this mathematical model can successfully consider the interaction effects of VIV and 

galloping. 

Corless and Parkinson (1988) improved it by adding a new coupling term of BŸ into the 

differential equation in the expectation of considering some effects of cylinder acceleration on the 

wake vortices. And Facchinettia et al. (2004) proved that using acceleration as coupling term is 

indeed more effective than using displacement or velocity by comparative wind tunnel tests studies. 

According to Corless and Parkinson (1998), Eq. (2) is modified as 

Ÿ+Y=nU2(CFY+CL) 

CL̈-G {CL0
2 -(4 3⁄ )(CL̇ k⁄ )

2
}CL̇+k

2
CL=HẎ+BŸ                   (3) 

The differential equations Eq. (1) can be solved by the method of multiple scales. The 

simulation obtained curves have a good agreement with the experimental results, which show that 

the effects of VIV could be simply added to the time-averaged position of shear layer to predict the 

aerodynamic force. 

 

2.2.2 Tamura and Shimada model 
There is a main branch in VIV mathematical models research field, they considered the 

alternatively shedding vortices as an independent oscillator, this oscillator could be interacted with 

structural vibration to form a combined motion equation, e.g., Birkhoff type VIV model. And the 

modified Birkhoff type VIV mathematical model on circular cylinders is proposed by Tamura and 

Matsui (1979), which is characteristically for has taken into account the effects of verified length 

of the wake-oscillator on aerodynamic forces. The coupled dynamic equation between wake 

oscillator and circular cylinder motion is expressed as Eq. (4) 

 α
̈
-2ζv {1-(4f

2
CL0

2⁄ )α
2

}α
̇
+vα=-m*Ÿ-vS*Ẏ 

(4) 
 Ÿ+ {2η+n(f+CD)v S*⁄ } Ẏ+Y= -fnv2α S*2⁄  

 CL= − f(α+S*Ẏ v⁄ ) 

where, α is the angular displacement of wake oscillator; Y is the dimensionless transverse 

displacement of circular cylinder; V is oncoming wind velocity; ζ is wake oscillator damping 

ratio, Hrf /*)*22/(1 2  ;ν=Ur/Us is the non-dimensional flow velocity; Us=fvD/St is the 

Strouhal number determined from the critical wind velocity; η is the mechanical damping ratio of 

structure; f is the parameter which determined by the Magnus effect; Hr is the dimensionless width 

of the wake oscillator; CL0 is the static lift coefficient amplitude for circular cylinders; CD is the 

drag coefficient for circular cylinders; m* is the equivalent mass ratio, m*=1/(0.5+Hr); S* is the 

equivalent Strouhal number. For circular cylinders, the aerodynamic parameters are determined by 

the previous experiments as following: m*=0.625, S*=1.26, f=1.16, CD=1.2. The differential 

equation Eq. (4) can be solved by Runge-Kutta method, and the numerical results are reported to 

agree with the experimental results qualitatively and quantitatively (Tamura and Matsui 1979).  

For square cylinders, when the onset velocities of VIV and galloping are very close, the 

oscillation curves are observed to be coupled, Tamura and Shimada (1987) proposed a coupling 
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mathematical model to consider this interaction effects. Using previously proposed modified 

Birkhoff type wake oscillator model to consider the vortex shedding force, and quasi-steady 

perturbation model (Parkinson and Brooks 1961) for galloping aerodynamic force, the coupled 

mathematical model is established by the superimposing of these two discrete aerodynamic force 

parts. The detailed processes of constructing the coupled model is as following: expanding the 

quasi-steady galloping force CFY by Taylor series and taking the first 7 orders as galloping force, 

combining the equivalent galloping force into the modified Birkhoff type VIV model, then the 

coupled mathematical is finally established as Eq. (5) 

α̈ − 2ζv{1 − (4f
 2
CL0

 2⁄ )α2}α̇+vα=-m*Ÿ− vS*Ẏ 

Ÿ+ {2η+n(f-A1)v S* − nA3S
* vẎ

 2
− nA5(S* v⁄ )

3
Ẏ

 4
− nA7(S* v⁄ )

5
Ẏ

 6
…⁄⁄ } Ẏ+Y=−fnv2α S*2⁄  

CL= − {(f− A1
)S
*
Y
̇
v− A3

(S
*
Y
̇
v⁄ )

3 − A5
(S
*
Y
̇
v⁄ )

5 −…+fα⁄ }             (5) 

where, A1, A3, A5, A7 are the coefficients of the Taylor series expansions, the meanings of other 

symbols are the same as mentioned above. The effectiveness of the Tamura-Shimada mathematical 

model on interaction effects between VIV and galloping is verified by good consistency between 

theoretical prediction and experimental results, and most importantly, all the parameters in this 

model have definite physical interpretations.  

Since the parameters in the Hartlen-Currie model are mainly a kind of mathematical 

curves-fitting on experimental results; while all the parameters in the Tamura-Shimada 

mathematical model have their physical meanings, therefore the later will shed insight into the 

vibration mechanism. Allison and Corless (1995) also indicate that the mathematical model of the 

Tamura-Shimada model is more rationally derived than their Hartlen-Currie model. 

 

2.3 The determination of key parameter  

 
As defined before, SL is the key parameter for predicting amplitude response of coupled VIV 

and galloping vibrations, here, in this part, we are going to further investigate by numerical 

simulations on which is the main influence factor of this key parameter.  

Regarding which are the potential influencing factors on SL, the steady vibration history of each 

wind velocity point should be carefully analyzed, the limit-cycle vibration status of each case 

means that the total energy absorbing from the oncoming flow are going to balance the energy 

dissipated by the system damping and maintain the kinetic energy of structure (Vio et al. 2007). 

Therefore, it is reasonable to assume that SL should be associated with the aspect ratio of the cross 

section, because it is directly affecting the efficiency of structure on absorbing energy from the 

approaching flow. On the contrary, structural physical mass, system damping and vibration 

frequency are the main factor who are affecting the efficiency of energy dissipating, they are 

deserved to be regarded as potential factors on SL. Moreover, the Reynolds number is also an 

important parameter that can‘t be neglected. 

Consequently, the SL may be assumed as the function of several factors which is shown in Eq. 

(6) 

SL=F (n,η,f
v
,AF,R,Re)                            (6) 
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where, n
 
is mass ratio; η is mechanical damping ratio of structure; fv is dominant vibrating 

frequency, which is basically equaling to the structural natural frequency in VIV and galloping 

coupled vibrations, so it will be excluded in the dimensionless expressions; AF is representing the 

influences of all the fluid parameters, such as f, CL0, Hr .etc; R=B/D is the aspect ratio of 

rectangular cylinders, the ratio of along wind dimension over cross wind dimension; Re, is 

Reynolds number, its effect may be combined into the aerodynamic coefficients, i.e., aspect ratio 

of rectangular cylinders. Therefore, SL could be further simplified as Eq. (7) 

SL=F(n,η,AF,R)                                 (7) 

 

2.3.1 The effect of structural parameters 
 

The Tamura-Shimada mathematical model (Eq. (5)) is selected to perform the comparative 

simulations in this part, because the physical interpretations of each variables could be checked 

and the whole equation group is more rational derived which is concluded in section 2.2.  

First of all, a set of classical data on VIV and galloping interaction is taken here to verify the 

efficiency of Tamura-Shimada mathematical model. As shown in Fig. 2, the experimental data of 

square cylinder is provided by Bearman et al. (1987), Corless and Parkinson (1988) verified it by 

their mathematical model. The parametrical details of mass ratio, damping ratio and galloping 

coefficients are shown in Tables1 and 2. Some other parameters are needed before calculating with 

the Tamura-Shimada model, where St=0.12 is used for Strouhal number; the fluid parameters i.e. 

Hr and f are respectively assumed to 1.8 and 1.16, which are the same value as circular cylinder, 

and their effects will be separately investigated later; amplitude of lift coefficient on a stationary 

square cylinder CL0 is reported by many researchers, CL0=0.7 is basically adopted for calculation. 

Eq. (5) is solved by Runge-Kutta method, time step is scaled to as small as 0.05, and the longest 

calculation time is up to 20000 to ensure all the obtained results are steady and reasonable.   

Fig. 3 shows the comparison between calculation results and experimental measured data of 

Bearman .etc, at the low wind velocity range, there is a small range of VIV lock-in appearing in 

calculation processes but not provided in experimental curves. The differences might be attributed 

to the error of values of fluid parameters because of lacking the precise experimental results. 

However, the good agreements of calculation and experiments can be observed after the VIV and 

galloping interaction starting point. Once again, the Tamura-Shimada model is proved to be 

efficient on predicting such kind of interaction effects. 

Table 1 is a list of parameters, from which we can see the only varying parameter is damping 

ratio, three different levels separately according to experimental data of Fig. 2. Similarly, we input 

these parameters into Tamura-Shimada model and solve it by Runge-Kutta method, the results are 

shown in Fig. 4. Different damping ratios give rise to different oscillation curves, more specifically, 

higher damping ratios postpone the oscillation starting point; and the same wind velocity point, the 

higher of damping ratios, the lower of amplitudes will be. However, the most concerned amplitude 

slope SL of present work are observed to be basically the same even the significantly changed 

damping ratios, which means that SL may not be sensitive with damping. 

And in the comparative investigation of mass on amplitude slope SL, as shown in Fig. 5, the 

only varying parameter mass ratio are adjusted by double, and SL are basically the same. Therefore, 

the similar conclusion as damping ratio can be drawn: SL is also not sensitive with mass. 
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Table 1 Investigation on damping ratio 

Structural parameters Fluid parameters Aerodynamic parameters 

Mass ratio 

(n) 

Damping 

ratio 

(η) 

Wake 

oscillator 

parameter 

(Hr) 

Magnus 

effect 

(f) 

Lift 

coefficient 

(CL0) 

A1 A3 A5 A7 

4.7e-4 

0.88e-3 

1.8 1.16 0.70 4.87 421 1.70e4 1.94e5 2.98e-3 

5.45e-3 

 

 

 

Table 2 Investigation on mass ratio 

Structural parameters Fluid parameters Aerodynamic parameters 

Mass ratio 

(n) 

Damping 

ratio 

(η) 

Wake 

oscillator 

parameter 

(Hr) 

Magnus 

effect 

(f) 

Lift 

coefficient 

(CL0) 

A1 A3 A5 A7 

0.5*4.7e-4 

4.7e-4 

2*4.7e-4 

 

1.8 1.16 0.70 4.87 421 1.70e4 1.94e5 2.98e-3 

 

 

 

 

 

Fig. 3 Comparison between Bearman‘s experimental data and calculation results 
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Fig. 4 The effects of damping on amplitude response 
 

 

 

Fig. 5 The effects of mass on amplitude response 
 

 

2.3.2 The effect of fluid parameters 
Here, in this part, we are going to check the effects of fluid parameters (i.e., f, CL0, Hr) on 
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main principle of changing only one parameter in each case. The calculating parameters of each 

case are separately listed from Table 3 to Table 5. The way to vary parameter values in each case is 

unified as scaling 2 times and 0.5 times on the basis of a standard value, then three different values 

are obtained in each case. 

Similarly, the Tamura-Shimada models are solved by Runge-Kutta method, simulation curves 

are obtained as shown in Fig. 6 to Fig. 8. It can be observed from Fig. 6 that the large extent of 

changing fluid parameter Hr did not bring any obvious changes on simulation results, simulation 

curves are almost coincided both in low wind range VIV and high wind interaction responses. The 

effects of fluid parameters f and CL0 on response amplitude are shown in Figs. 7 and 8 respectively. 

While different values of each parameter causes significant response variation in VIV response 

amplitude, the coupled VIV and galloping response are basically the same. Therefore it is 

concluded that w the fluid parameters f, CL0, Hr are not the main affecting factors on response 

slope SL. 

 

 
Table 3 Investigation on Hr 

Structural parameters Fluid parameters Aerodynamic parameters 

Mass ratio 

(n) 

Damping 

ratio 

(η) 

Wake 

oscillator 

parameter 

(Hr) 

Magnus 

effect 

(f) 

Lift 

coefficient 

(CL0) 

A1 A3 A5 A7 

 

4.7e-4 

 

 0.5*1.8 

1.8 

2*1.8 

1.16 0.70 4.87 421 1.70e4 1.94e5 2.98e-3 

 
 

 

Table 4 Investigation on f 

Structural parameters Fluid parameters Aerodynamic parameters 

Mass ratio 

(n) 

Damping 

ratio 

(η) 

Wake 

oscillator 

parameter 

(Hr) 

Magnus 

effect 

(f) 

Lift 

coefficient 

(CL0) 

A1 A3 A5 A7 

 

4.7e-4 

 

  

1.8 

 

0.5*1.16 

1.16 

2*1.16 

0.70 4.87 421 1.70e4 1.94e5 2.98e-3 

 

 

 
Table 5 Investigation on CL0 

Structural parameters Fluid parameters Aerodynamic parameters 

Mass ratio 

(n) 

Damping 

ratio 

(η) 

Wake 

oscillator 

parameter 

(Hr) 

Magnus 

effect 

(f) 

Lift 

coefficient 

(CL0) 

A1 A3 A5 A7 

 

4.7e-4 

 

  

1.8 

 

 

1.16 

 

0.5*0.70 

0.70 

2*0.70 

4.87 421 1.70e4 1.94e5 2.98e-3 
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Fig. 6 The effects of wake oscillator parameter Hr on amplitude response 
 

 

 

 

Fig. 7 The effects of Magnus parameter f on amplitude response 
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Fig. 8 The effects of lift coefficient CL0 on amplitude response 
 

 

Table 6 Investigation on quasi-steady galloping coefficients 

Structural parameters Fluid parameters Aerodynamic parameters 

Mass ratio 

(n) 

Damping 

ratio 

(η) 

Wake 

oscillator 

parameter 

(Hr) 

Magnus 

effect 

(f) 

Lift 

coefficient 

(CL0) 

A1 A3 A5 A7 

 

4.7e-4 

 

  

1.8 

 

 

1.16 

 

 

0.70 

 

4.87 

1.30 

421 

315 

1.70e4 

5.70e4 

1.94e5 

1.72e5 
2.98e-3 

 

 

 

2.3.3 The effect of aerodynamic parameters 
The effect of aerodynamic parameters A1, A3, A5… AN on amplitude response parameter SL is 

numerically studied in this part. Two cases are selected, one is square cylinder, the aspect ratio of 

cross section is definitely to be 1.0, and the aerodynamic parameters A1, A3, A5, A7 are 4.87, 421, 

1.70e4, 1.94e5 respectively according to the former researchers‘ report (Corless and Parkinson, 

1988); the other one is a rectangular cylinder whose aspect ratio is 1.4, the aerodynamic 

parameters are correspondingly determined to be as 1.30, 315, 5.70e4, 1.72e5 by static force 

coefficients wind tunnel tests in present work.  

Numerical simulations are performed under Tamura-Shimada model with the same processes as 

before, comparative results curves are plotted in Fig. 9. As we can see, two curves exhibit the 

obvious differences on interaction responses stages not only at starting point but for amplitude 

increasing slope SL. The value of SL of square cylinder is calculated to be 0.1385, while the result 

of the other rectangular cylinder is 0.0935, the deviation between them is over 40%. Therefore, we 

may conclude that aerodynamic parameters are the main affecting factors on amplitude slope SL. It 

is worth noting that for rectangular cylinders, aerodynamic parameters are only determined by 
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aspect ratio, so we can further conclude that the aspect ratio of rectangular cylinder is actually the 

key factor for SL.   

 

 

3. Results and discussions 

 
The key parameter SL is found to be only associated with aspect ratio (R=B/D) of rectangular 

cylinders through comparative numerical simulations in last part. For rectangular cylinders who 

are suffered from VIV and galloping coupled oscillations, SL is going to be uniformly determined 

in this part by regression analysis on R=B/D with comprehensively collected experimental data. 

 

3.1 The collected data 
 

Table 7 is the list of collected experimental data of rectangular cylinders on interaction effects 

between VIV and galloping, 26 cases in total. The corresponding vibration curves of 26 cases are 

separately presented in Fig. 10, the high magnitude of mathematical fitting deviation R
2 

for all 

cases are clearly shown, and the obviously linear relationship between normalized wind velocities 

and dimensionless amplitudes are presented.  

For each case, the aspect ratio, mass, damping, predicted onset velocity ratio of galloping over 

VIV, SL and dimensionless onset velocity of interaction vibration are presented in Table 7, which 

shows the good representative for collected data: aspect ratio range is varying from 0.71 to 2.49; 

the predicted onset velocity ratio of galloping over VIV is distributing from 0.1 to 8.4; and most 

importantly, SL，i.e., the slope of increased amplitude over increased wind velocity, obtained by 

the least square linear fitting on vibration curves of collected data (See Fig. 10), is ranging from 

0.011 to 0.104, which is showing the promising signs for the establishment of empirical amplitude 

prediction formula. 

Regarding the onset velocities of interaction effects, on the basis of Table 7, the general 

conclusion may be drawn as following: the dimensionless onset velocity is controlled by VIV 

when 0.2 < Vg/Vv < 5, then U0 should be floating at 1.0; and the onset velocity will be controlled by 

galloping when Vg/Vv > 5 or Vg/Vv < 0.2, U0 appears to be determined by quasi-steady galloping 

theory. 

 

 

Fig. 9 The effects of aspect ratio on amplitude response 
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Table 7 Main parameters and fitting data 

No. R=B/D η/n Vg/Vv SL U0 

Case 1 1.40 2.2 2.4 0.037 1.0 

Case 2 1.40 2.7 3.0 0.029 1.0 

Case 3 1.40 2.7 3.1 0.032 1.0 

Case 4 1.40 3.7 4.1 0.030 0.8 

Case 5 1.40 4.0 4.5 0.023 0.9 

Case 6 1.40 2.0 2.2 0.026 1.1 

Case 7 1.40 0.1 0.1 0.104 0.4 

Case 8 1.40 1.6 3.0 0.024 0.7 

Case 9 1.31 0.7 1.4 0.048 0.7 

Case 10 2.00 1.0 3.0 0.017 1.2 

Case 11 2.00 1.1 1.6 0.016 0.6 

Case 12 2.00 1.7 2.6 0.019 0.6 

Case 13 2.00 2.2 3.3 0.021 0.7 

Case 14 2.00 2.4 3.6 0.019 0.6 

Case 15 1.00 1.3 1.1 0.048 1.1 

Case 16 1.00 1.8 1.5 0.045 1.0 

Case 17 1.50 7.6 8.4 0.021 2.9 

Case 18 1.50 1.3 1.4 0.024 2.0 

Case 19 0.76 0.7 1.6 0.068 0.6 

Case 20 0.71 1.6 5.1 0.075 4.7 

Case 21 0.75 - ﹤ 1 0.064 0.9 

Case 22 1.00 - ﹤ 1 0.026 0.9 

Case 23 1.33 - ﹤ 1 0.019 0.9 

Case 24 1.73 - ﹤ 1 0.015 0.9 

Case 25 2.01 - ﹤ 1 0.011 0.9 

Case 26 2.49 - ﹤ 1 0.016 0.9 
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Fig. 10 The plot lists on the normalized wind velocity vs. dimensionless amplitude and the corresponding 

linear fitting equations 

 

 

3.2 Empirical formula 
The fitting curve between aspect ratio R=B/D of rectangular cylinders and linear slope SL of 

amplitude response is obtained by polynomial fitting method as shown in Fig. 11, from which we 

can get the mathematical expression of SL on R=B/D. 

Because of the onset velocity could be reasonably obtained by Strouhal law, then finally, the 

empirical formula to predict the amplitude of coupled VIV and galloping response can be obtained 

as Eq. (8) 

A

D
= (-0.016∙R

3
+0.101∙R

2
-0.222∙R+0.182) ∙ (Ur-U0

)                 (8) 

Where, A/D is the dimensionless amplitude response; R is the aspect ratio of rectangular 

cylinders; Ur=V/(fvD) is the normalized wind velocity where we want predict the amplitude 

response; U0=0.9/St is onset velocity according to the generally summarized data. 

 

 

Fig. 11 The mathematical fitting between R and SL based on the collected data 
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However, there are still several limitations for the use of this formula on amplitude prediction 

of rectangular cylinders should be noted: 

 Firstly, due to the limited collected data during mathematical fitting process, the aspect ratio 

of rectangular cylinders should be confined to the range of 0.5< R=B/D < 2.5; secondly, there are 

few points in Fig. 11 observed to be scattered in the mathematical fitting between SL and R, more 

data is required in the future investigations to improve the accuracy of this empirical curve; and 

more importantly ,this empirical formula is only applicable for the VIV-galloping coupled cases. 

 

 

4. Conclusions 

 
The coupled oscillations between VIV and galloping of rectangular cylinders are observed by 

many researchers; mathematical models which have taken into account the combined effects of 

VIV and galloping are also separately presented, mainly, Tamura & Shimada model and Corless & 

Parkinson model. 

The interaction oscillations are characterized by: firstly, there will be an onset velocity which is 

decided by Strouhal law or quasi-steady galloping theory; secondly, the amplitude response curves 

are always observed to be linearly increased accompanied by wind velocities. Therefore, it is 

reasonable to propose an empirical amplitude estimation formula on the basis of careful research 

on onset velocity and amplitude increasing slope SL . 

Tamura & Shimada model is taken as the main model to perform comparative numerical 

simulations in present work, large amount of simulation works indicate that SL is only associated 

with aspect ratio of rectangular cylinders. On the basis of comprehensively collected experimental 

data on interaction oscillations, SL is determined by regression analysis, an empirical formula to 

predict the amplitude response of interaction oscillations of rectangular cylinders is finally 

proposed. 

However, more efforts are need to improve the accuracy of this empirical formula, as several 

points are observed to be scattered during the mathematical fitting processes. 
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