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Abstract.    This paper investigates the effects of Reynolds number (ܴ݁) on the aerodynamic characteristics 
of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind 
(WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed 
on the model, instrumented with pressure taps and load cells, at high wind speeds with ܴ݁ ranging from 1.3 × 10଺	to 6.1 × 10଺	based on the section width. Results show that the section was almost insensitive to ܴ݁ when pitched to negative angles of attack. However, mean and fluctuating pressure distributions 
changed noticeably for zero and positive wind angles of attack while testing at different ܴ݁ regimes. The 
pressure results suggested that with the ܴ݁	increase, a larger separation bubble formed on the bottom 
surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient 
decreased mildly and negative lift coefficient increased. Flow modification due to the ܴ݁ increase also 
helped in distributing forces more equally between the two girders. The bare deck section was found to be 
prone to vortex shedding with limited dependence on the	ܴ݁. Based on the observations, vortex mitigation 
devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower ܴ݁ 
regime. 
 

Keywords:   Reynolds number effect; twin box girder bridge; vortex shedding; force and moment 
coefficient; pressure distribution; aerodynamic response 

 
 
1. Introduction 
 

In order to estimate wind loads for structural design of bridges and to predict the aerodynamic 
performance of the bridge cross section, usually wind tunnel tests are carried out on scaled models 
of the structure. To ensure the proper simulation of the aerodynamic/aeroelastic response of the 
structure in a wind tunnel, similitude of certain non-dimensional parameters is necessary. One such 
non-dimensional parameter, Reynolds number, represents the ratio of inertial force to viscous force 
in a fluid. Conventional small-scale tests are often performed at ܴ݁ that is lower than its full-scale 
counterpart by a factor of about 102 to 103, thus violating the ܴ݁ similitude by a large margin. 
This is largely for practical reasons since matching Reynolds number is not possible in 
conventional wind tunnels using small models and low wind speed. Testing at lower ܴ݁	compared 
to the prototype is often considered to be representative of the aerodynamic loading and responses 
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of the full-scale structure for sharp edged bluff bodies, such as buildings and bridges. This is due 
to the assumption  that the separation point of the flow is fixed on a bridge or other bluff 
structures with sharp edges and they can have aerodynamic characteristics almost insensitive to ܴ݁ as long as a ܴ݁ of greater than 10,000 is reached (Larose and D’Auteuil 2006). However, 
several researches including some more recent literature (Barre and Barnaud 1993, Schewe and 
Larsen 1998, Larose et al. 2003, Larose and D’Auteuil 2006, Kazutoshi et al. 2007, Larsen et al. 
2008, Asghari Mooneghi et al. 2014), show that wind loads and the response of bluff structures 
with sharp edges -- particularly bridges -- can be sensitive to ܴ݁ effects. It was also shown that ܴ݁ increase can reduce the imbalances of aerodynamic forces between the two girders for twin 
girder bridges (Lee et al. 2014). 

The aerodynamic performance of any structure immersed in a fluid depends on different 
parameters, such as ܴ݁ and turbulence characteristics, which can affect the flow separation and 
reattachment mechanism, laminar to turbulent boundary layer transition, and the behavior of shear 
layers and separation bubbles. It is known that Reynolds number can change the location of the 
laminar to turbulent transition point which subsequently modifies the structure of the wake 
(Schewe and Larsen 1998). Schewe (2001) tested three different bluff structures to explain the 
reason behind the ܴ݁ sensitivity of the drag coefficient and Strouhal Number (ܵݐ). It was noticed 
that with the ܴ݁ increase, the location of laminar to turbulent transition point moved upstream 
and helped the flow to reattach to the section, leaving a smaller wake. Smaller drag force and 
smaller vortices, being shed at a higher frequency, resulted from the change in the location of 
transition point and a smaller wake region. It was concluded that different flow regimes can be 
distinguished based on the ܴ݁ that could affect the ܵݐ and magnitude of steady and unsteady 
forces (Schewe 2001). In order to minimize the ܴ݁ effects on the aerodynamic behavior of 
bridges, Lee et al. (2014) successfully fixed the location of the separation point at the bottom of 
the deck by attaching a boundary layer trip strip to the bottom surface. This is similar to a movable 
pin that Schewe (2001) added to a circular cylinder section that reduced the ܴ݁ dependency 
through stabilizing the location of the transition point.  

One typical aeroelastic phenomenon which causes concerns in the design of modern multiple 
girder bridges is Vortex Induced Vibration (VIV) (Wu and Kareem 2012). VIV occurs when the 
frequency of the vortices shed from the body approaches the modal frequency of the bluff body, 
creating a resonance type motion in the structure. While VIV is mostly a limited amplitude 
vibration that does not lead to a failure directly, it can yield to fatigue damage in bridge members 
and discomfort for drivers. Larsen et al. (2008) performed free vibration testing on a model of the 
Stonecutters bridge, a twin girder bridge with mildly curved bottom plates, for a range of ܴ݁ 
from 0.7×105 to 3.62×105, based on the individual girder width. While the velocity range and the 
amplitudes of vibration corresponding to the VIV were almost insensitive to the ܴ݁ variation for 
the bare section, the modified section with the guide vanes showed significant ܴ݁ sensitivity. In 
order to mitigate or more desirably to avoid vortex induced oscillations in bridges, evaluation of 
the ܴ݁ effect can be important in so far as it can change both the Strouhal number (ܵݐ) and the 
amplitude of vibrations during the lock-in phenomenon (Kubo et al. 1999, Larose and D’Auteuil 
2006, Kazutoshi et al. 2007, Larose et al. 2012). The ܴ݁  effect on flutter instability was 
investigated by Matsuda (2001) and it turned out that testing at higher ܴ݁ inclined to increase the 
flutter wind speed for the given configurations. 

The prototype ܴ݁ for bridges often ranges between 106 and 107, especially for high wind 
events such as thunderstorms and tropical cyclones. Studies on ܴ݁ effects pertaining to twin 
girder bridges, a type of design that is gaining popularity in recent years, are limited. In view of 
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the potential for ܴ݁ effects on wind loads and wind-induced dynamic effects on twin box girder 
long span bridges, the current research was aimed at investigating the aerodynamics of such 
bridges under a range of ܴ݁ as close as possible to its prototype counterpart. The key objective of 
this research was to investigate the effect of ܴ݁ on the aerodynamic characteristics of twin girder 
bridges, including pressure distribution, wind induced forces, Strouhal number, and vortex 
shedding. In order to investigate the effects of ܴ݁ on the bridge response, a 1:36 scale model of a 
two dimensional (2-D) section of a twin girder bridge, based on the section of the “East Span of 
the San Francisco-Oakland Bay Bridge” was constructed and tested using the Wall of Wind 
(WOW) open jet wind tunnel facility at Florida International University (FIU). High Reynolds 
numbers were reached by increasing the testing wind speed up to 48.2 m/s. Forces and pressures 
were measured using load cells and pressure taps to capture the static and fluctuating forces on the 
deck due to the approach flow. Vortex shedding sensitivity to the ܴ݁	was evaluated for both the 
bare deck configuration and a section equipped with vortex generators. The efficacy of the vortex 
generators on mitigating vortex shedding was investigated for different ܴ݁ regimes. The research 
findings can (1) help inform engineers designing double box girder bridges on the potential ܴ݁ 
effects, and (2) provide guidance for laboratory ܴ݁ similitude for twin box girder bridge sections.  
The present study is different from those documented in the literature in the following aspects: 

 The cross section studied here was a double girder deck with trapezoidal cross section for 
each girder which has sharper edges and is bluffer compared to the more streamlined sections 
studied before. 
 Vortex generators and guide vanes represent different approaches to vortex shedding 
mitigation. Previously, only the effects of guide vanes on vortex shedding were evaluated for 
different ܴ݁ regimes. In this study, efficacy of vortex generators in mitigating vortex shedding 
has been evaluated for different ܴ݁ regimes. 
 

 
2. Experimental setup 

 
2.1 Twin box girder bridge deck 
 
In this study, the ܴ݁ effects on the static force coefficients and fluctuating surface pressures 

for a twin box deck bridge were evaluated. To this end, the bare cross sectional shape of the 
eastern span of the San Francisco-Oakland bridge (East Bay Bridge) deck with the inclusion of the 
traffic barriers was selected and tested in a high Reynolds number regime ranging from 1.3×106 to 
6.1×106. East span of the San Francisco-Oakland bay bridge is an asymmetric self-anchored 
suspension bridge with a main span of 385 m and back span of 185 m (Fig. 1). This bridge features 
a twin deck configuration carried by self-anchored suspension cables where the two decks are 
linked together with 10 m wide transverse beams every 20 m. The single deck chord length (ܥ), 
total width (ܤ) and height (ܪ) of the bridge deck are 28 m, 71 m and 5.5 m, respectively (Fig. 1). 
Each girder resembles a trapezoidal cross section shape with aspect ratio close to the approach 
span of the Great Belt east bridge for which noticeable ܴ݁ effects were observed (Schewe and 
Larsen 1998). The bike path that exists on the real bridge was not included in the test setup as it 
would have added to the complexity of maintaining model rigidity at high wind speeds. In the 
current study, ܴ݁	effects on the efficacy of vortex generator devices for the mitigation of vortex 
shedding was also investigated. These devices are used for the real bridge and represent diverging 
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Fig. 6 Normalized power spectral density (PSD) of the longitudinal component of the wind speed at 
bridge height,  Karman Spectrum Simulated Spectrum 

 
 
Table 1 Test Summary 

Test case Angle of attack Wind speed (m/s) Test duration (min)

Bare section -6°, -3°, 0°, +3°, +6° 10.0-13.3-20.3-24-27.3-34.6-41.2-48.2 2 

Section fitted with 
vortex generators 

-6°, -3°, 0°, +3°, +6° 10.0-13.3-20.3-24-27.3-34.6-41.2-48.2 2 

 
 

3. Parameters investigated for ࢋࡾ effects 
 
At high Reynolds number, inertia forces dominate over the fluid viscous forces. At low	ܴ݁, 

viscous forces have an increased effect on the aerodynamics. ܴ݁	is dependent both to the model 
size and testing wind speed and is expressed as ܴ݁ = ௎஻ఔ 																																																																														(1) 

where, U is mean wind speed (m/s), B is the reference dimension (in this case the deck width (m)), 
v is kinematic viscosity of air (m2/s). 

For the case of constant kinematic viscosity, higher ܴ݁ can be achieved only either by 
increasing the size of the model or the wind speed. The sensitivity of the following parameters to 
the	ܴ݁ was studied in the current work. 

 
3.1 Pressure coefficients  
 
Mean and fluctuating pressure distributions can be used to identify the  regions of flow 

separation and reattachment in the studies of bluff body aerodynamics (Kwok et al. 2012). In this 
study, mean and fluctuating pressure distributions were considered in order to highlight the 
changes in the structure of the flow due to the ܴ݁ variation. Pressure distributions are reported in 
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terms of non-dimensional mean and rms (root mean square) pressure coefficients (ܥ௉ത	and ܥఙು , 
respectively) obtained as ܥ௉ത = ௉ೌ ೡ೒ଵ ଶൗ ఘ௎మ, ܥఙು = ఙುଵ ଶൗ ఘ௎మ                         (2) 

where: ௔ܲ௩௚ is the mean pressure (N/m2) obtained from the pressure time history data at each 
tap,	ߪ௉ is the standard deviation of pressure time history at each tap (N/m2), ߩ is the air density 
(kg/m3), and ܷ	is the mean wind speed (m/s) at the model height. 

 
3.2 Aerodynamic forces 
 
Aerodynamic forces acting on the bridge deck can be expressed in terms of the two force 

components of Drag (ܨ஽) and Lift (ܨ௅) and the pitching Moment (ܯ). As shown in Fig. 2, Drag is 
defined as the force component acting parallel to the wind direction, Lift is the force component 
perpendicular to the wind direction and pitching Moment is defined as the effective moment about 
the deck geometric center. ܥ஽ , ௅ܥ  and ܥெ are the normalized form of the aerodynamic 
force/moment obtained, using the dynamic pressure and model dimensions, as 	ܥ஽ = ிವభమఘ௎మ௅ு , , ௅ܥ = ிಽభమఘ௎మ௅஻ ܥெ = ெభమఘ௎మ௅஻మ                               (3) 

where, ܨ஽ is the mean drag (N), ܨ௅ is the mean lift (N), ܯ is the mean pitching (N·m), ߩ is 
the air density (kg/m3), ܷ	is the mean wind speed (m/s), and ܪ ,ܤ and ܮ represent the deck 
chord, deck height and the length of the model, respectively (m). 

 
3.3 Self-excited forces 
 
Self-exited forces induced by wind for a bridge deck, with vertical and torsional degrees of 

freedom (DOFs), are obtained from the following equations (Scanlan 1978) ܮ௛ = ଵଶ ܤଶܷߩ ቂܪܭଵ∗ሺܭሻ ௛ሶ௎ + ሻܭଶ∗ሺܪܭ ஻ఈሶ௎ + ߙሻܭଷ∗ሺܪଶܭ + ∗ସܪଶܭ ௛஻ቃ           (4) ܯఈ = ଵଶ ଶܤଶܷߩ ቂܣܭଵ∗ሺܭሻ ௛ሶ௎ + ሻܭଶ∗ሺܣܭ ஻ఈሶ௎ + ߙሻܭଷ∗ሺܣଶܭ + ∗ସܣଶܭ ௛஻ቃ          (5) 

where, ܭ is the reduced frequency (2ܤ݂ߨ/ܷ), ݂ is the frequency of motion (Hz), ℎ and α are 
the vertical and torsional displacements, over-dot indicates the derivatives with respect to time and ܪ௜∗ and ܣ௜∗(݅ = 1 to 4) are flutter derivatives. 

Memory effect causes aerodynamic forces to be influenced by structural motions. Therefore, it 
is hard to predict aerodynamic forces associated with structural motion from quasi steady theory. 
However, it has been shown that for high reduced velocities, quasi steady theory can predict 
aerodynamic forces associated with lateral and vertical motions satisfactorily (Chen and Kareem 
2002). It has been also attempted to define derivatives corresponding to the torsional motion 
 ,from the quasi steady theory (Larose and Livesey 1997, Chen and Kareem 2002 (∗ଶܪ	ଶ∗andܣ)
Neuhaus and Höffer 2011). All of these studies related the ܣଶ∗ parameter to	݀ܥெ ⁄ߙ݀ . 

However, an additional parameter was introduced in all cases which represented the 
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eccentricity between the point of application of the generated aeroelastic force and wind flow 
idealized point of incidence. It was shown that this parameter was not constant for different force 
components and different shapes (Chen and Kareem 2002, Neuhaus and Höffer 2011) which can 
cause error in the correct estimation of ܣଶ∗and	ܪଶ∗. In addition, Schewe (2009) stated that the 
onset wind speed of torsional galloping is proportional to the inverse of  ݀ܥெ ⁄ߙ݀ . 

The quasi-steady formulation for	ܪଵ∗	is given by (Chowdhury and Sarkar 2004). ܪଵ∗ = − ଵ௄ ቀௗ஼ಽௗఈ +  (6)																																																								஽ቁܥ

where, ݀ܥ௅ ⁄ߙ݀  is the derivative of lift coefficient with respect to the angle of attack. 
 
3.4 Vortex shedding 
 
When wind blows over a bluff structure, flow separates and causes shedding of vortices 

periodically. This periodic vortex shedding exerts cross-wind forces on the body by creating 
fluctuating pressures. Strouhal number is a non-dimensional parameter that defines the dominant 
frequency of the fluctuations in the cross-wind force and is expressed as ܵݐ = ௙ு௎                                (7) 

where, f is the frequency of vortex shedding (Hz), ܪis the bridge depth (m); ܷ	is the oncoming 
wind speed (m/s). St is a function of structure’s geometry, turbulence intensity and	ܴ݁. As stated 
earlier, vortex induced vibration VIV occurs when the frequency of vortex shedding approaches 
the natural frequency of the bluff body. The vortex shedding frequency can be obtained from the 
power spectral density (PSD) of the fluctuating lift force on the section. The peak evident in the 
fluctuating lift spectrum shows the frequency of the vortex shedding (Schewe and Larsen 1998, 
Kwok et al. 2012). 

 
 
4. Experimental results and discussion 

 
4.1 Re effects on stream-wise pressure distribution 
 
Figs. 7- 9 show the distribution of mean pressures and rms of fluctuating pressures around the 

bare deck cross section. Negative mean pressures are shown outside of the bridge deck and 
positive mean pressures are shown inside of the bridge deck. Large (in magnitude) negative local 
pressures indicate the flow separation region. Fluctuating pressures represent the turbulent flow 
around the section which can be caused either by the intrinsic wind turbulence or the body induced 
turbulence (signature turbulence).  

For the negative angles of attack, separation regions are noticed behind the traffic barrier on the 
top surface of both girders and at windward tipping edge at the lower surface of the upstream 
girder (see Figs. 7(a) and 7(b)). The fluctuating pressure distribution indicates that the downstream 
girder was immersed in the wake flow of the upstream girder (see Figs. 9(a) and 9(b)). This cross 
section was almost insensitive to the ܴ݁ variation (for the ܴ݁ interval tested here) when it was 
tilted to negative angles. This might be due to the fact that, traffic barriers fixed the location of the 
flow separation point on the top surface and therefore eliminated the ܴ݁ sensitivity. 
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through the gap in between the two girders due to the pressure difference between the top and 
bottom surfaces. Therefore the ventilation of flow through the gap created negative pressures on 
the windward inclined surface of the downstream girder. As the ࢋࡾ increased, the separated flow 
at the windward tipping edge of the upstream girder tended to reattach to the surface, creating a 
smaller wake in the downstream of the upstream girder and consequently a smaller drag on the 
upstream girder. Negative pressures on the windward inclined surface of the downstream girder 
were reduced with the ࢋࡾ increase, as the passing flow from the bottom of the upstream girder 
prevented the ventilation of the flow through the gap. 

From Figs. 7(d) and 7(e), it can be concluded that the deck cross section was more sensitive to ࢋࡾ variation for the positive angles of attack. Flow over the top surface followed a similar trend 
to the case of zero angle of attack. This means that the flow was separated at the windward traffic 
barrier on the upstream deck and did not reattach to the surface while showing minimal sensitivity 
to	ࢋࡾ. However, as shown in Figs. 7(d) and 9(d), flow behavior changed with ࢋࡾ significantly on 
the lower side, particularly for the upstream deck. Separated flow at the windward tipping edge of 
the upstream girder reattached to the surface over a longer length but with a sharper slope for the 
higher	ࢋࡾ. This indicates that ࢋࡾ increase created a larger separation bubble on the bottom 
surface accompanied with a narrower wake region in the after body for the upstream girder, 
creating larger negative lift but smaller drag. Fig. 8 shows how the mean pressure distribution 
around the section at +3° wind angle of attack has changed gradually with the ࢋࡾ increase. 
Similar but less pronounced behavior was noticed for the +6° wind angle of attack (see Figs. 7(e) 
and 9(e)). 

 
4.2 Re effects on force coefficients 
 
Fig. 10 shows the variation of the mean drag, lift and moment coefficients due to the ܴ݁ 

change for the bare section at zero wind angle of attack, measured with the load cells. From 
pressure distribution in Fig. 7(c), it can be concluded that with the ܴ݁  increase, negative 
pressures on the downwind inclined surfaces of both girders decreased leading to a smaller drag. 
By increasing the ܴ݁, smaller separation zone formed on the top surface of the upstream girder 
that led to smaller negative pressures on this surface. With the ܴ݁ increase, the negative lift 
coefficient increased in magnitude due to the modification of the pressure distribution around the 
two girders, particularly over the top and bottom surfaces (see Figs. 7(c) and 10(b)). 

Fig. 11 shows the variation of the aerodynamic force coefficients, obtained from the load cells, 
with the angles of attack and ܴ݁	for the bare section. Compared to the negative wind angles of 
attack, ܴ݁ sensitivity was more pronounced for positive angles of attack, just as was indicated by 
the pressure distribution results (see Sec. 4.1). As discussed in Section 4.1, the windward traffic 
barrier on the top surface of the upstream deck dictated the location of the separation point, thus 
eliminating the ܴ݁	sensitivity for the negative angles of attack. The drag coefficient showed a 
mild decreasing trend with the ܴ݁ increase. The maximum decrease in drag coefficient due to ܴ݁	variation was 24% for the positive 6 degree angle of attack. With the ܴ݁ increase, flow 
separation became more prevalent at the leeward tipping edge of the upstream deck while flow 
reattachment on the leeward side of both girders led to a smaller wake. Smaller wake and 
accordingly lower negative pressure on the leeward inclined surface of the girders reduced the 
drag force. The magnitude of the changes due to ܴ݁ in lift coefficients were on the order of 0.1. A 
larger separation at higher ܴ݁ created a larger downward lift. The moment coefficient also 
showed some minor sensitivity to the ܴ݁ variation. 
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5. Conclusions 
 
In order to evaluate ܴ݁ effects on aerodynamic characteristics of a twin-deck bridge, a 

sectional model was tested in a uniform flow. The pressure distribution and aerodynamic forces 
were measured over a ܴ݁ range from 1.3×106 to 6.1×106 based on the deck width. The variation 
in the turbulence intensities was not significant and for the larger wind speeds it was almost a 
constant value around 3.0 percent. The following experimental observations were made: 

1. The studied bridge section showed different behavior with regards to the ܴ݁ dependency 
for different angles of attack, showing higher dependency on Re for positive angles of attack. 

2. Flow separated from the top surface of the upstream girder at the location of the upwind 
traffic barrier. For negative angles of attack the separation and reattachment points were almost 
fixed and the flow pattern changes due to the	ܴ݁ were negligible. 

3. At zero and +3° wind angles of attack, the structure of flow within the gap region 
changed by the ܴ݁ increase. Pressure distribution on the windward inclined surface of the 
downstream girder and on the leeward tipping edge of the upstream girder changed noticeably 
with	ܴ݁. 

4. For the zero wind angle of attack which is the most important wind direction, the 
maximum drag coefficient change was noticed to be around 8% while lift coefficient changed 
more than 70%, for the change in ܴ݁ values simulated. 

5. The derivative of the aerodynamic force coefficients with respect to the wind angle of 
attack changed with ܴ݁ for the case of positive angles of attack. The results suggest that 
testing at lower ܴ݁ regime is conservative for aeroelastic analysis of flutter. 

6. For zero and positive wind angles of attack with increases in ܴ݁, the distribution of the 
pressures around the upstream girder moved closer to the pressure distribution around the 
downstream girder. This means that ܴ݁ increase helped in sharing loads more uniformly 
between the two girders. 

7. Vortex shedding of this twin-deck bridge was mainly governed by the vortex shedding 
from the trailing edge of the upstream deck and its impingement on the downstream deck. 
Adding a pair of diverging vortex generators to the bottom surface of the girders was effective 
in mitigating the vortex shedding, particularly at lower ܴ݁ values.   
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