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Abstract.  As wind flows around a sharp-edged body, the resulting separated flow becomes complicated, with 
multiple separations and reattachments as well as vortex recirculation. This widespread and unpredictable 
phenomenon has long been studied academically as well as in engineering applications. In this study, the flow 
characteristics around rectangular prisms with five different aspect ratios were determined through wind tunnel 
experiments and a detached eddy simulation, that placed the objects in a simulated deep turbulent boundary layer at 
𝑅𝑒 = 4.6 × 104. A series of rectangular prisms with the same height (h = 80 mm), different longitudinal lengths (l 
= 0.5h, h, and 2h), or different transverse widths (w = 0.5h, h, and 2h) were employed to observe the effects of the 
aspect ratio. Furthermore, five wind directions (0°, 10°, 20°, 30°, and 45°) were selected to observe the effects of the 
wind direction. The simulated results of the surface pressure were compared to the wind tunnel experiment results 
and the existing results of previous papers. The vortex and spectrum were also analyzed to determine the detailed 
flow structure around the body. The paper also highlights the pressure distribution around the rectangular prisms with 
respect to the different aspect ratios. With an increasing transverse width, the surface suction pressure on the top and 
side surfaces becomes stronger. In addition, depending on the wind direction, the pressure coefficient experiences a 
large variation and can even change from a negative to a positive value on the side surface of the cube model. 
 

Keywords:  rectangular prisms; flow characteristics; aspect ratio; wind direction; wind-tunnel test;  

detached-eddy simulation 

 
 
1. Introduction 
 

With regard to the turbulent boundary layer flow around a bluff body, we know that the flow 

separates at the front surface of the body and then reattaches after passing the body or floats and 

entrains downstream. In addition, multiple vortex recirculation regions are formed around the bluff 

body, as shown in Yakhot et al. (2006a). This type of complicated flow phenomena plays an 

important role in the design and development of practical objects such as buildings, vehicles, and 

bridges. Therefore, an increasing amount of academic scholars and application engineers are 

focusing on this topic. However, more academic effort is still needed to make further progress. In 
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earlier studies, Castro and Robins (1977) (hereafter denoted by CR) investigated the flow 

characteristics around surface-mounted cubes in both uniform and deep turbulent boundary layers 

by performing wind tunnel experiments, which demonstrated the importance of an appropriate 

atmospheric boundary layer and addressed the effects of the Reynolds number. Later researchers 

often compared their results with Castro and Robins' results on the surface pressure distribution 

and the mean and fluctuating velocities within the wake. For example, Lim et al. (2007) (hereafter, 

LCH) investigated the extant Reynolds number issues in detail. Furthermore, Lim (2009) 

continued to investigate the surface pressure distribution, changing the shape of the bodies under 

similar inlet boundary conditions as in CR. 

There have been many studies conducted to investigate the complex turbulent flow 

characteristics around surface-mounted bluff bodies. Schofield and Logan (1990) analysed the 

turbulent shear flow over surface-mounted obstacles. Their study concentrated on how major 

features of the flow are influenced by the model geometry and the conditions of the incident 

turbulent flow. Some papers have observed the interaction of the turbulent flow and rectangular 

bodies. Tieleman and Akins (1996) reported that the variation of the base/side surface pressure of 

surface-mounted rectangular prisms was determined by the interaction of the incident turbulence 

with the separated shear layers (that is, the small-scale turbulence, which could be quantified by 

the modified parameter, S). This is particularly true for those flows in which the shear layers 

arising from the separation of the boundary layers at the salient edges of the body roll up rapidly to 

form concentrated, relatively steady vortical regions. Martinuzzi and Tropea (1993) investigated 

the flow around the surface-mounted prismatic obstacles with different span-wise dimensions to 

observe the effects of the aspect ratios (w/h). According to the pressure measurements and vortex 

visualization results, the aspect ratios have a significant influence on the flow characteristics in 

terms of the separation, the pressure recovery and the wake region.  Further studies have also 

been conducted by Hussein and Martinuzzi (1996). They presented the energy balance (e.g., the 

turbulence kinetic energy and the turbulence dissipation rate) around a cube in the turbulent 

boundary layer, which provided additional explanation of the major flow features. More recently, 

Cigada et al. (2006) investigated the fluid-dynamic forces acting on a rectangular cylinder for 

unbounded flow conditions. In particular, they focused on the effects of a fixed wall placed at 

various distances from a rectangular cylinder and observed that the frequency that depends on the 

force components acting on the cylinder provides the dynamic characterization of the loading and 

of the wake shedding. In addition, the aspect ratio of the body governs the effects of the wall 

condition on the force coefficients and the Strouhal Number. Larose and Auteuil (2008) made 

wind-tunnel measurements on rectangular prisms with aspect ratios of 2, 3 and 4 at high Reynolds 

numbers, and reported that the Reynolds number effects in terms of CL and CD were interestingly 

not observed in the range of 0.4 × 106 to 1.0 × 106. Matsumoto et al. (2008) observed the 

vortex-induced excitation and Karman vortex excitation around the 2D rectangular cylinder with 

the aspect ratio of 4 and investigated the role of vortex generation on the torsional flutter 

instability by changing the rotation axis; their work showed that the vortex-induced excitation 

triggered the torsional flutter instability. In addition, Richards et al. (2007) observed the flow 

characteristics around the bluff prisms with a variety of wind directions, which demonstrated some 

differences between the mean and peak pressure distributions. Furthermore, their work confirmed 

the effects of the incident turbulent boundary conditions.  

With the rapid development of computational technology, numerical simulations are becoming 

increasingly popular. However, choosing a turbulence model that can provide an accurate 

numerical calculation has become a difficult problem. Previously, the predictions of both a 
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Reynolds-averaged Navier–Stokes (RANS) model and a large-eddy simulation (LES) were 

popularly used (e.g., see Rodi 1997) to calculate such types of turbulent flow around a 

surface-mounted bluff body. Compared to the LES model results, the RANS model demonstrated 

some unreliable results, as shown in Tominaga and Stathopoulos (2010). Due to the limitations of 

the RANS model and the large amount of time and computational space required for an LES 

calculation, a hybrid LES/RANS turbulence model was developed and verified to be a promising 

tool for simulating such types of complicated flows; this hybrid method is known as the detached 

eddy simulation (DES), as shown in Spalart et al. (1997). 

This paper aims to analyze the flow characteristics around rectangular prisms. In addition, it 

highlights the pressure variation around the prisms with respect to different aspect ratios. There are 

numerous key points here. We summarize our major findings as follows. (i) For flows and wind 

loads around rectangular obstacles, the size and azimuth angle are very important and can be used 

for the design of the deployment and arrangement of a variety of buildings and structures. (ii) 

Despite the lack of wind-tunnel data, there are new data on mean flow, as well as data quantifying 

the variation of the fluctuating flow, for the single cube and rectangular obstacles. In addition, (iii) 

the revised paper includes much more reasonable and improved mean and turbulence quantities, as 

well as a quantification of the azimuthal effect of obstacles according to the DES calculation. (iv) 

We observed that the size and azimuth angle have a substantial effect on the surface pressure 

around rectangular obstacles; this phenomenon had never been previously achieved.  

The contents of the paper are systematically organized as follows. First, as shown in section 2, 

we describe the wind tunnel experiment and the numerical simulations (i.e., the DES model 

calculations) around a series of rectangular prisms that were placed in an appropriate turbulent 

boundary layer. Second, to verify the validity of this research, we compare the wind tunnel 

experiment results with the numerical DES results and the existing results of previous papers, as 

shown in section 3.1. Third, according to both the wind tunnel experiment and the DES model 

results, we discuss the variation of the flow characteristics around rectangular prisms with 

different wind directions (in section 3.2) and aspect ratios (in section 3.3). Furthermore, section 3.4 

is an analysis on the velocity and pressure spectra at the centre of the cube’s top surface. Finally, 

section 4 presents the conclusion of this study. 

 

 

2. Research methods and techniques 
 

2.1 Five rectangular models in the tunnel 
 

A series of rectangular prisms are considered to be the typical representatives of the 

sharp-edged structures placed in a turbulent boundary layer. This study was intended to make 

comparisons with the existing field data from the Silsoe 6 metre cube, as shown in Richards et al. 

(2001) (hereafter, RHS). In this regard, a 1:75 scale model was used in both the wind-tunnel model 

and the numerical simulations. In Fig. 1, as a standard representative model, the height, width, and 

length of the model are all fixed to 80 mm, which is defined as 1×1 (i.e., the width over length, w/l, 

is unity). In order to compare the effects of the models with different aspect ratios, the prism width 

was changed but the value of the height and the length was retained, in order to observe the effect 

of the transverse width (see cases 2 and 3 in Table 1). In other words, because the ratio of the 

width to the length can be changed between 0.5, 1, and 2, it can also be defined as 1×2s, 1×1, and 

2×1, respectively. As defined in cases 4 and 5, the ratio of the prism length to the height is one of 
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the parameters that indicate the effect of the different longitudinal lengths, such as 2×1s, 1×1, and 

1×2. Note that in the Table, ‘s’ is appended to the number to denote that the length is smaller than 

that of the cubic model. In addition, all of these models were equipped with tubes to measure the 

surface pressure distribution at several salient points throughout the prism. 

 

 

Fig. 1 Schematic diagram of the rectangular prism placed in a turbulent boundary layer. In the figure, h, w, 

and l denote the height, width, and length of the prism, respectively 

 

 

Fig. 2 Scale parameters for the scale-down models used in the study. In the table, each symbol is defined in 

Fig. 1 

 

 
Table 1 Scale parameters for the scale-down models used in the study. In the table, each symbol is defined in 

Fig. 1 

Case w [mm] l [mm] h [mm] w/l w ×  l [mm
2
] Grid nodes 

1 80 80 80 1 1 × 1 1,494,310 

2 40 80 80 0.5 1 × 2s 1,299,400 

3 160 80 80 2 2 × 1 1,884,130 

4 80 40 80 2 2 × 1s 1,368,385 

5 80 160 80 0.5 1 × 2 1,746,160 
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2.2 Wind tunnel measurements 
 

Fig. 2 illustrates the detailed set-up of the wind tunnel, and its working section is 0.6 m wide × 

0.72 m high × 6 m long. The schematic diagram demonstrates the location of the grid and the 

tripping fence, the roughness, and the rectangular prism model. In the figure, p and pr denote the 

static pressure on the model surface and reference pressure from the pitot tube located on the top 

surface at the far upstream from the model. The undisturbed wind flow Uh was measured in 

advance by hot wire anemoetry without any model (i.e., rectangular prisms). After the wind flows 

around these barriers, a fully developed shear flow was obtained, which corresponded to the rural 

atmospheric boundary layer (more details are given by Lim 2009). This technique was often 

employed by wind engineering practitioners and was first devised by Cook (1978). Alternative 

methods to simulate atmospheric boundary layers can be seen in Hunt and Fernholz (1975). The 

detailed setup is described in the paper, but the major points are summarised as follows. The wind 

tunnel is equipped with a modern hot-wire anemometry (IFA100), a multi-channel pressure 

scanning system, and a Particle Image Velocimetry (PIV) system for optical measurement of the 

airflow. The five smooth-surface rectangular prisms used in the tunnel were made of Plexiglas and 

were fitted with 0.8 mm pressure taps at numerous salient points. 

 

2.3 Computational techniques 
 

Fig. 3 depicts the schematic diagram of the numerical tunnels for cases 1×1 and 1×2 with 

dimensions of 7h wide × 4h high × 14h long and 7h wide × 4h high ×15h long, respectively. Note 

here that 'h' specifically represents the characteristic length of a rectangular prism and denotes the 

cube height (i.e., 80 mm). The domain size, which is the entire space containing the model and the 

wall surface as well as the boundary conditions (e.g., velocity inlet, symmetry, periodicity, outflow, 

and wall conditions), is clearly shown in the figure. In terms of the fine mesh near the model wall 

used to resolve the small-scale turbulent flow, the first grid spacing near the wall was at 0.025h 

and the spacing ratio was 1.1 in order to ensure the 𝑦+(𝑦+ = 35 in the DES model) for the wall 

was acceptable, as suggested by Salim and Cheah (2009). In addition, when the aspect ratio of the 

model changes in this study, the entire domain, including the mesh grid and the model size, needs 

to be reconstructed, as shown in Table 1. For instance, the projection of the detailed mesh grids 

with a cubic model is shown in Fig. 4. Defining a suitable computational domain is a key step to 

correctly producing fluid dynamics phenomena such as a precise turbulent boundary layer. An 

overly small domain will not generate sufficient small-scale eddies around a body, while an overly 

large domain will unnecessarily increase the number of nodes and hence the computational time. 

For instance, Fig. 4 shows a projection of the detailed mesh grids with a cubic model. To reduce 

computational time, a parallel version was performed using FLUENT. The grid was 

auto-partitioned into eight parts with equal computational weights. These eight cores solved the 

Navier–Stokes equations for their own part of the grid. In this study, the mesh was made with 

ANSYS ICEM CFD 14.0, and ANSYS FLUENT 14.0 was used to solve the Navier–Stokes 

equations. The DES turbulence model was selected to calculate these cases. The standard wall 

function was applied in order to define the surface wall condition for the surfaces of the 

rectangular models and bottom floor wall. To evaluate the diffusive fluxes and velocity derivatives 

and for higher-order discretisation, we adopted a cell-based least-squares gradient scheme, which 

employs a Taylor expansion of the quantities of interest around each grid point and is particularly 

suitable for obtaining a more accurate and stable flow solution (Diskin et al. 2010). A 
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second-order implicit non-iterative time-advancement scheme was chosen to obtain time-accurate 

computations (Pulliam 1993). In contrast, the time step of all cases in the unsteady simulations 

was set to 0.0001 s. The amount of time which was discarded for the initial transient was 0.15 s, 

and the amount of time which was sampled statistically was 2.5 s. 

In this study, we applied the DES model to calculate the internal turbulent flow from the 

governing equation, which is based on the Spalart-Allmaras model (i.e., S-A model) in the 

near-wall region. In the one-equation Spalart-Allmaras model, the transport variable 𝑣̃ is identical 

to the turbulent kinematic viscosity, except in the near-wall (viscosity-affected) region. The 

transport equation for 𝑣̃ is 

𝜕

𝜕𝑡
(𝜌𝑣̃) +

𝜕

𝜕𝑥𝑖
(𝜌𝑣̃𝑢𝑖) = 𝐺𝑣 +

1

𝜎𝑣̃
[

𝜕

𝜕𝑥𝑗
{(𝜇 + 𝜌𝑣̃)

𝜕𝑣̃

𝜕𝑥𝑗
} + 𝑐𝑏2𝜌 (

𝜕𝑣̃

𝜕𝑥𝑗
)

2

] − 𝑌𝑣   (1) 

where 𝐺𝑣 is the production of turbulent viscosity, and 𝑌𝑣 is the destruction of turbulent viscosity 

that occurs in the near-wall region due to wall blocking and viscous damping, shown as follows. 

Other components of the equation are the following: 𝑣 is the molecular kinematic viscosity; 𝜇 is 

the turbulent viscosity; and 𝜎𝑣̃ and 𝑐𝑏2 are constants valued at 2/3 and 0.622, respectively. 

 

 

 

Fig. 3 Schematic diagram of the rectangular models and the domain used in the numerical tunnel: (a) case 1 

×1; (b) case 1×2 
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For the production of turbulent viscosity 

𝐺𝑣 = 𝑐𝑏1𝜌 (𝑆 +
𝑣̃

𝑘2𝑑2 𝑓𝑣2) 𝑣̃               (2) 

where 𝑐𝑏1 and 𝑘 are constants valued at 0.1355 and 0.4187, respectively, and d is the distance 

from the wall. 𝑆 is a scalar measure of the deformation tensor and 𝑓𝑣2 is the viscous damping 

function; both are defined as follows 

𝑆 ≡ √2𝛺𝑖𝑗𝛺𝑖𝑗 + 2.0 𝑚𝑖𝑛(0, √2𝑆𝑖𝑗𝑆𝑖𝑗 − √2𝛺𝑖𝑗𝛺𝑖𝑗)    (3)  

𝑓𝑣2 = 1 −
𝜒

1+𝜒𝑓𝑣1
, 𝑓𝑣1 =

𝜒3

𝜒3+𝑐𝑣1
3 , 𝜒 =

𝑣̃

𝑣
         (4) 

where 𝛺𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
), 𝑆𝑖𝑗 =

1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
), and 𝑐𝑣1 is a constant with a value of 7.1. In 

addition, for the destruction of turbulent viscosity 

𝑌𝑣 = 𝑐𝑤1𝜌𝑓𝑤 (
𝑣̃

𝑑
)

2
             (5) 

where 

𝑓𝑤 = 𝑔[
1+𝑐𝑤3

6

𝑔6+𝑐𝑤3
6]

1

6, 𝑔 = 𝑟 + 𝑐𝑤2(𝑟6 − 𝑟), 𝑟 =
𝑣̃

𝑠̃𝑘2𝑑2, 𝑠̃ = 𝑆 +
𝑣̃

𝑘2𝑑2 𝑓𝑣2        (6) 

𝑐𝑤1 =
𝑐𝑏1

𝑘2 +
(1+𝑐𝑏2)

𝜎𝑣̃ 
                  (7) 

Here, 𝑆 and 𝑓𝑣2 are the same as defined in Eqs. (3) and (4) and 𝑐𝑤2 and 𝑐𝑤3 are constants 

valued at 0.3 and 2.0, respectively. These equations illuminate the fact that the length scale, 𝑑, 

plays a major role in determining the level of production and destruction of turbulent viscosity.  

As a ‘rule of thumb’, depending on the grid size, the length scale, 𝑑̃, replaces d in the DES model, 

which is defined as 

𝑑̃ = 𝑚𝑖𝑛(𝑑, 𝑐𝑑𝑒𝑠∆)                            (8) 

 

 

 

Fig. 4 Projection of the domain, including the domain/model size and outer boundary 
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where 𝑑 is dependent on the distance to the closest wall, the grid spacing, ∆, is based on the 

largest grid space in the x, y, or z directions that form the computational cell, and the empirical 

constant cdes is 0.65. The DES limitations are as follows: when 𝑐𝑑𝑒𝑠∆𝑚𝑎𝑥< 𝑑 the LES model is 

applicable, but when 𝑐𝑑𝑒𝑠∆𝑚𝑎𝑥> 𝑑, the model switches to the RANS model (the Spalart-Allmaras 

model in our study). 

 

2.4 Computational techniques 
 

In order to introduce the turbulent boundary layer at the inlet of the cube flow, it was initially 

generated in the channel flow without any model and at a high Reynolds number, 𝑅𝑒 =  4.6 ×
104, which is based on the cube height and the velocity at the cube height. Fig. 5 presents the 

streamwise velocity profiles of the mean velocity (Fig. 5(a)) and the turbulence intensity (Fig. 5(b)) 

obtained in the channel flow. Note that the turbulent boundary layer used to specify the inlet 

condition in computational techniques was obtained in the channel flow without any bodies, which 

was unsteadily calculated by the DES turbulence model. In addition, all information in the 

boundary layer was stored in the hard disk to reuse it for calculating the rectangular prism flow. 

The boundary layer in the domain is continuously regenerated in the channel flow, which is 

possible because it uses the periodic boundary condition that combines the inlet with the outlet 

layer and repeatedly recirculates the flow. 

There are essentially two methods for generating the necessary inflow. The first is a statistical 

method in which a sequence of random numbers is created and then filtered to yield appropriate 

statistical properties and spatial correlations Xie and Castro (2008). The second involves 

performing a separate ‘precursor’ simulation of a wind environment and sampling the inflow data 

directly from this Lim et al. (2009). The second method has the desirable property that the 

generated inflow should naturally contain physically realistic coherent structures, so that such 

structures need not be produced artificially; this is the method adopted in the present work. A 

similar method was used by Nozawa and Tamura (2002) in their calculations of flow over a half 

cube.  Results from the separated inflow (precursor) simulation were sampled after conditioning 

for approximately 50ℎ 𝑢∗⁄  and the samples were averaged spatially over the whole domain and 

over the period 20ℎ 𝑢∗⁄ .(see Lozano-Duran and Jimenez 2014 for a discussion of the 

computational domain in the streamwise direction) 

For the DES results in Fig. 5(b), the values of 𝑢′ 𝑢ℎ⁄  are obtained from modelled turbulence. 

The results were also compared with the existing experiments (i.e., the wind tunnel and field 

experiments), the calculation (i.e., the DES model), and the results from references CR and LCH. 

As shown in the figure, a fully developed turbulent flow was produced at the position before 

approaching to the rectangular prism, which was specifically designed to be similar to the (rural) 

atmospheric boundary layer. Fig. 5(a) shows that the wind profile is similar to the power law 

profile because the exponent α is approximately 0.14, which depends on the terrain roughness. 

The mean velocities at the cube height, 𝑢 and 𝑢𝑟𝑚𝑠, were approximately 8 m/s and 0.86 m/s, 

respectively. There was a relatively high 𝑢𝑟𝑚𝑠 region (i.e., almost 16%) close to the surface, but 

it gradually decreased with distance away from the wall. At the cube height, the turbulent intensity 

decreased to approximately 10.7%. 

Fig. 6 presents a typical longitudinal velocity spectra, 𝐸𝑢(𝑓), obtained at 𝑧 = ℎ for the 

streamwise velocity in the channel flow calculation. The results both from the wind tunnel 

experiments (EXP) and the DES calculations (DES) are shown in detail and compared with the 

common reference spectral shape, which is provided by the Engineering Sciences Data Unit 
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(ESDU 1985). The ESDU spectral shape is defined as 

𝑓∙𝐸𝑢(𝑓)

𝑢′
2 =

𝐴𝑛′

(1+70.8𝑛′
2

)5/6
                   (9) 

where 𝑛′ = 𝑓𝑧/𝑈ℎ and A is a constant with the actual value of 4. In the figure, the spectra are 

plotted so that the inertial sub-range of a logarithmic shape of a -5/3 fitting line spanning at least 

one decade collapses, which shows the energy transfer from low to high frequency. The spectrum 

provided by ESDU is mainly applied for a rural-type (neutrally stable) boundary layer. The cube 

placed in a thick turbulent boundary layer is basically located within turbulent flow. In this regard, 

the spectrum of turbulence should approximate the ESDU spectrum. 

 

 

Fig. 5 Inflow boundary conditions used in the numerical tunnel: (a) the inlet mean velocity profile and (b) 

the turbulent intensity profile. The profiles are compared with previously existing results 

 

 

 

Fig. 6 Velocity spectra of the axial velocity component at z = h in the channel flow calculation. The solid 

lines denote the spectral curve of the ESDU and the -5/3 fitting line 
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3. Results and analysis 
 
3.1 A cubic model with 0° wind direction 
 
In this section, we first consider a base model of a cube with an 80 mm height. For the 

remainder of the sections, models with different aspect ratios will be considered. In addition, a '0° 

wind direction' indicates that the wind direction is perpendicular to the windward side of the cube 

model. The dependency of the wind direction will be presented in due course. Fig. 7 shows the 

pressure variation around the cubic model (i.e., centre-line and transverse line) with a 0° wind 

direction; the coefficient of the surface pressure is defined as 

𝐶𝑝 =
𝑝−𝑝𝑟

1

2
𝜌𝑈ℎ

2
              (10) 

where p is the mean static pressure around the cube and 𝑝𝑟 and 𝑈ℎ are the static pressure and 

streamwise velocity at the reference point, respectively. The 𝑝𝑟 and 𝑈ℎ in reference point can be 

seen in Fig. 2. The reference velocity located at the cube height and the reference pressure located 

on the top of the tunnel. Both of them are located at further upstream of the rectangular prisms 

about 0.12 m. The results both along the centre-line (Fig. 7(a)) and at the mid-height (Fig. 7(b)) 

are strongly dependent upon the measurement location 𝑥 ℎ⁄  (from 0~1 , 1~2 , and 2~3).  

Based on the analysis of the results, the mean static pressure coefficient profiles from the 

numerical calculation agree well (i.e., DES and 𝑘 − 𝜀 agree well; note that the data of the 𝑘 − 𝜀 

model in Fig. 7 includes the results of this study's supplemental calculation). In the case of the 

standard 𝑘 − 𝜀 model, the same condition as the DES model was applied to calculate the flow 

domain. In addition, the standard 𝑘 − 𝜀 model is based on two separate transport equations for 

the turbulence kinetic energy (𝑘) and its dissipation rate (𝜀)) have the expected shape that is 

consistent with the wind tunnel experiment and the existing field data of other papers (e.g., CR, 

LCH, and RHS). The 𝑘 − 𝜀 model in this study, the supplement calculation, was coaxially 

performed to compare the results with those of the DES model. Therefore, the results from Fig. 5 

are used as the boundary conditions for the RANS simulation with the 𝑘 − 𝜀 model. Note that in 

Fig. 7(a), "WT" means 'the wind tunnel experiments in the laboratory' and "FS" means 'the field 

measurements from an open field site'. In addition, the numbers in bracket in the legend represent 

the Reynolds number. That is, 39.5 means 𝑅𝑒 = 3.95 × 105, and 280 means 𝑅𝑒 = 2.8 × 106. As 

pointed out in the paper of LCH, the higher upstream turbulence levels lead to a much earlier 

attachment and pressure recovery on the top surface, as well as a higher static pressure coefficient.  

For example, the results of CR in Fig. 7 are significantly different from the other results, which are 

undoubtedly a result of much higher upstream turbulence levels, as shown in Fig. 5(b). In addition, 

as shown in the previous studies, the largest negative pressures occur just beyond the separation 

region (directly to the right of the position 𝑥 ℎ⁄ = 1) on the top and side surfaces and are followed 

by a substantial pressure recovery. The 𝑘 − 𝜀 model results were obtained based on the same 

inlet boundary conditions as the DES model; however, the 𝑘 − 𝜀 model results exhibit a negative 

peak to the right of the position 𝑥 ℎ⁄ = 1. Therefore, the DES model offers a better agreement 

with the experimental data than the 𝑘 − 𝜀 model. 

In order to confirm the accuracy and reliability of the results, they are compared with some 

existing results in other papers. Therefore, this section is a precursor for the following sections, 

which describe the flow around rectangular obstacles placed in different wind directions, but with 

identical boundary layers. In addition, Figs. 8 and 9 present the velocity distribution near the cube, 
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(note here that both figures are taken from DES calculations). Fig. 8 especially demonstrates the 

side view along the centre-line of the cube (𝑦 = 0), whereas Fig. 9 represents the plan view at the 

mid-height, 𝑧 = 0.5ℎ. The vertical velocity profiles in different locations generated from the wind 

flowing over the cube are also shown in Fig. 8(a). These profiles indicate that the flow typically 

separates at the leading edge and reattaches along the top surface of the cube. On the lee-side of 

the cube, there reversed flow exists further downstream up to approximately 𝑥 = 0.2𝑚; after this, 

the velocity profile gradually recovers to the initial inflow boundary layer. The whole streamlines 

along the centreline of the cube are also shown in Fig. 8(b). Because of the limitations of having a 

coarse resolution, the results of Lim et al. (2009) do not clearly show the front ‘necklace’ vortex.  

 

 

 

Fig. 7 Mean surface static pressure coefficient: (a) along the centreline and (b) at the mid-height 

 

 

 

Fig. 8 Spatial distribution of the mean velocity and pressure at the central plane of the cube (y = 0): (a) 

mean axial velocity distribution and (b) mean static pressure contour with streamlines 
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However, the front necklace vortex can be observed through a different means, which will be 

shown in Figs. 12, 14 and 16. Note that the ‘necklace’ vortex appears in the windward foot of the 

cube. The vortex in the recirculation region on the top surface and the leeside of the cube can be 

observed clearly; more details can be found in Yakhot et al. (2006b). In Figs. 8 and 9, the darker 

grey colour indicates a higher pressure coefficient (see contour legend on the top right of Fig. 8(b)).  

The pressure contour in Fig. 8(b) also exhibits the highest pressure peak around the front top of the 

cube, while the lowest pressure is near the leading edge of the top surface. Obviously, the lowest 

peak of the pressure contour is consistent t with that of Fig. 7(a). 

For the case of the plan view of the cube, Fig. 9(a) shows the velocity distribution around the 

cube at the mid-height of the cube plane. As the wind flow approaches the cube, the axial velocity 

along the transverse line is approximately uniform. At the leading sharp edge, the flow separates 

and forms separation regions, but no reattachment regions, along the both sides of the cube. This 

may be due to the lower turbulence intensity at the mid-height of the prism that is placed in a deep 

turbulent boundary layer. Both the lower exponent 𝛼 and lower turbulence intensity results in a 

reattachment length that is larger than the range of the cube size; therefore, there is separation but 

no reattachment. This fact is well described in LCH and also agrees well with Gao and Chow 

(2005). Far downstream from the cube, the velocity profile gradually recovers to a uniform shape 

again. In addition, a pair of counter-rotating vortices appear on the leeside of the cube, as shown in 

Fig. 9(b). Because of the flow separation, the velocity near the cube wall drops significantly as 

compared to that in the region far away from the cube. On the leeside region of the cube, the 

substantial reduction in velocity leads to the formation of a pair of counter-rotating vortices. As 

shown in Fig. 9(b), the region with a lower velocity is called the vortex formation region, which 

can be seen around the cube, i.e. on the side and on the leeside of the cube. The counter-rotating 

recirculation vortices behind the cube and the pairs of saddle points of the recirculation vortices 

merge into a single saddle point along the symmetric plane. 

 

 

Fig. 9 Spatial distribution of the mean velocity and pressure at the horizontal plane of the cube (z = 0.5h): 

(a) mean axial velocity distribution and (b) mean static pressure contour with streamlines 
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All the results shown in Figs. 7, 8 and 9 are only time-averaged simulation data. To give an 

immediate impression of the "health" of the DES (i.e., to judge how well the turbulence is resolved) 

and also in which regions turbulence is resolved, Fig. 10 gives the visualization of an 

instantaneous (t=0.5614s) flow behavior of the unsteady flow. Fig. 10(a) shows the contours of 

velocity at 𝑦 = 0 while Fig. 10(b) is at 𝑧 = 0.5ℎ. In addition, the velocity-magnitude indicated 

in gray color can be seen on the right side of Fig. 10. As the pictures shown, the unsteady 

characteristics can be seen clearly, especially in the leeside of the cube model. 

 

 

3.2 A cubic model with different wind direction 
 
To investigate the effects of wind direction on the flow characteristics around the cube model, 

five azimuth angles (symbolized as 𝜙, with values of 0°, 10°, 20°, 30°, and 45°) were set in this 

study. The projection view with the wind direction can be seen in the left bottom of Figs. 11(a) and 

11(c). 

Although the wind direction is varied, the notations used in the graph are all the same, such as 

𝑥 ℎ⁄ .  For a precise and relatively well-resolved calculation, a DES was performed. The effects of 

the wind direction on the pressure variations are shown in Fig. 11. Fig. 11(a) presents the mean 

static pressure coefficient along the centreline, whereas Fig. 11(c) presents the pressure 

distribution at the mid-height. According to the vertical black line in the position of 𝑥 ℎ⁄ =
0.5, 1.5, and 2.5 Figs. 11(b) and 11(d) show the pressure variation with different wind directions. 

As shown in these figures, the DES results are generally in good agreement with the earlier data of 

Richards et al. (2007). In spite of the different wind directions, the overall pressure distributions 

shown in Figs 11(a) and 11(c) have the expected shape: positive values at 𝑥 ℎ⁄ = 0~1; negative 

 

Fig. 10 Instantaneous contours of velocity at the slice of y=0 (a) and z=0.5h (b) for the unsteady flow 
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values at 𝑥 ℎ⁄ = 1~3; and an approximately constant level on the leeside at 𝑥 ℎ⁄ = 2~3.  The 

pressure distribution tends to vary on the surface as the wind direction changes, and is highly 

sensitive on the top and side surfaces. In particular, increasing the angle of the wind direction can 

change the pressure coefficient of the side surface at the mid-height from a negative to a positive 

value, as shown in Fig. 11(c). As the wind direction changes, the oncoming wind begins to turn 

towards the side face of the cube so that the sharp leading edge no longer generates a separated 

flow; rather, it faces the oncoming wind flow with a positive pressure. However, the pressure 

variation on the top face (see Fig. 11(a)) remains negative (i.e., no change to the positive value) 

although the wind direction changes so that the sharp leading edge still plays an effective role. 

Even along the centreline and at the mid-height of the cube the pressure coefficient decreases with 

an increasing angle of wind direction at the measurement locations 𝑥 ℎ⁄ = 0~1 and 2~3.  

 

 

 

 

 
 

 

Fig. 11 Mean surface static pressure coefficient under different wind directions: (a) along the centreline and 

(b) at the mid-height 
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However, the variation in the wind direction tends to produce an opposite trend, that is, an 

increasing wind direction angle causes an increase in the pressure coefficient at the location 

𝑥 ℎ⁄ = 1~2, as indicated in Figs. 11(b) and 11(d). Regarding the difference between the results of 

DES and Richards et al. (2007) at 𝑥 ℎ⁄ = 1.5, a couple of explanations can be possible to make 

regarding this difference. Firstly, there is an obvious difference in the upstream flow. In particular, 

even though the inflow mean velocity profiles are all similar, the turbulence intensities are slightly 

different at heights of 10%(DES) and 12% (Richards et al. 2007) at cube height and heights of 

13% (DES) and 15% (Richards et al. 2007) at the mid-height, respectively. Note that the higher 

the turbulence intensity is, the lower the surface pressure is, which is almost to the same as the 

result in Fig. 11(d). Secondly, as noted in Lim et al. (2007), which includes a comparison between 

the cube models of 0 and 45°, strong conical vortices could be observed along the edge where two 

sides of the cube meet so that the surface pressure is further increased in the experiment, whereas 

due to the lack of precise modelling, weak conical vortices could be generated along the side 

corner so that the discrepancy still appears to be on the top and side surfaces. 

Fig. 12 demonstrates the comparison of the three-dimensional iso-surface contours of the 

second invariant of the velocity gradient around the cube in different wind directions: (a) 0°; (b) 

10°; (c) 20°; (d) 30°; and (e) 45°. The dark colour portrays the cube model and the grey colour 

signifies the Q-criterion (Π), which is defined as 

Π = −LijLji        (11) 

where 𝐿𝑖𝑗 ≡ ∂𝑢𝑖/ ∂𝑥𝑗. The Q-criterion is a measure of the regions of flow dominated by rotation 

rather than shear or stretching. In addition, all these figures show the instantaneous flow behaviors. 

These visualizations qualitatively indicate the features of the flow, which can also be seen in some 

existing literatures (e.g., see Lim et al. 2009).  

In this study, the vortex indicator for different wind directions is captured with the same value 

(Π = 600) in the entire domain (i.e., iso-surface contour). As shown in these figures, the wind 

direction change causes substantial change in the resulting vortex structures around the cube. 

When wind flow is incident on the front face of the cube, the front iso-surface is transformed into 

the shape of a shield and strong large-scale rolling vortices are generated by the leading edge of 

the top face and side surface. As the cube gradually turns by 45°, this simple shield shape breaks 

into two different boulder-like piles, which are attached together. This complicated shape tells us 

that two conical vortices separated from the front corner of the roof and propagated far 

downstream. In addition, most of the calculations in Fig. 12 are made in the unsteady state so that 

 

Fig. 12 Iso-surface contours of the vorticity around the cube with the varying wind directions: (a) 0°; (b) 

10°; (c) 20°; (d) 30°; and (e) 45° 
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each figure represents a snapshot of the state of the system at a particular time, showing the 

general characteristics of turbulent vortices around the bodies. Due to the unsteady simulations, 

the plot in Fig. 12(e) may give some scatter from symmetry. 

 

3.3 Models with different aspect ratios and a 0° wind direction 
 
In this section, we varied the aspect ratios of rectangular prisms to understand the effects of 

prism geometry on the flow characteristics. The aspect ratio is responsible for the shape and size of 

the separated wakes and, ultimately, for the structural loading and pressure, especially structure 

excitation. For example, the drag coefficient of an elongated rectangular prism placed in a 

boundary layer is a function of the elongation 𝑙 𝑤⁄  of the prism, as shown, for example, by Simiu 

and Scanlan (1996). In this study, we compared the numerical calculation with the tunnel data.  

Fig. 13 portrays the mean surface pressure distribution around the models with different transverse 

widths, while the other heights and lengths of the models are all equivalent. Fig. 13(a) shows the 

surface pressure coefficient along the centreline, while Fig. 13(b) shows the surface pressure 

distribution at the mid-height. The subsequent figures in Figs. 15 and 17 are arranged in the same 

format as Fig. 13. In the figure, the symbols denote the experimental data, the solid or dotted lines 

denote the DES data, and schematics showing the measurement points around the models are 

shown on both sides.  

Fig. 13 shows how the surface pressure coefficient varies with only changing the transverse 

width (e.g., 0.5h, 1.0h, or 2h) while maintaining the area of the side face. Although the comparison 

of the DES model results with the experiment results has some discrepancy, the variation data 

tends to agree well. The immediate implication of Fig. 13 is that a wider prism geometry correlates 

to a stronger surface suction pressure on both the top and side surfaces. The solid arrow lines in 

Fig. 13 speculate the direction of the pressure drop as only the transverse width changes.  

 

 

 

 

 

Fig. 13 Mean surface static pressure coefficient (a) along the centreline and (b) at the mid-height with only 

changing the transverse width 
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Furthermore, Fig. 14 illustrates the effect of only changing the transverse width on the 

iso-surface contours of the vorticity around the rectangular prisms. Similar to Fig. 12, the vortex 

indicator that is denoted by the grey colour is captured with the same value (Π = 600) at the same 

time. Interestingly, the ‘necklace’ vortex is connected to the prism when the transverse width is 

0.5h. With increasing the transverse width, the necklace vortex becomes wider and gradually 

stretches to both sides in the foreside of the rectangular prism. When the transverse width is 2.0h, 

the necklace vortex strength is the weakest and begins to show signs of disappearance. With the 

increasing transverse width, the vortex indicator on the top surface moves to the prism edge while 

leaving the central region of top surface empty, as shown in Fig. 14(c). 

Fig. 15 shows the variation of the surface pressure distribution around the prism after only 

changing the longitudinal length of the prism (e.g., 0.5h, 1.0h, or 2h). In this case, the value of the 

area of the body’s frontal face is maintained. Figs. 15(a) and 15(b) show the surface pressure 

distribution along the centre-line and at the mid-height. As shown in the figure, the pressure 

distributions along the centre-line all appear similar. Although the length of the model is different, 

the overall distributions of the surface pressure are in good agreement. In addition, Fig. 16 also 

shows the iso-surface contours of the vorticity around the rectangular prisms after only changing 

the longitudinal length. As shown in Fig. 16, the vortex indicator (Π = 600), denoted by the grey 

 

Fig. 14 Iso-surface contour plot of the vorticity around the rectangular prisms with increasing transverse 

width 

 

Fig. 15 Mean surface static pressure coefficient (a) along the centreline and (b) at the mid-height with only 

changing the longitudinal length 
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colour, also predicts the overall vortex structure around the prisms far downstream. The ‘necklace’ 

vortex in front of the rectangular prism does not vary significantly with the change in longitudinal 

length. When the longitudinal length is 2.0h, the Q-criterion is not sufficient to cover the entire 

body, as shown in Fig. 16(c). 

Fig. 17 shows the results when the length and the width of the prism change, but the width over 

length ratio (𝑤 𝑙⁄ ) is maintained. Fig. 17(a) demonstrates the pressure distribution on the top 

surface when 𝑤 𝑙⁄  is 0.5, and Fig. 17(b) demonstrates the distribution when 𝑤 𝑙⁄  is 2. What is 

emphasized here is how the scale effect of the bluff prisms depends on the wind direction (i.e., a 

factor of 2 in size). Therefore, while the sizes of the two models are substantially different, the 

ratio of the width to the length (𝑤 𝑙⁄ ) remains the same. Because of this, we observed the pressure 

distribution on the top surface only. As shown in Fig. 17, the comparison between the experiment 

and the calculation reveals a much closer agreement. While there are some differences between 

each case, we posit that this scatter of pressure differences is caused by tunnel blockage effects. 

Furthermore, a larger body is far more prone to blockage effects. 

 

 

 

 

 

 

 

Fig. 17 Mean surface static pressure coefficient along the centreline with changing both the width and the 

length, but maintaining the value of w/l 

 

Fig. 18 Spectra distribution around the cube in 0° wind direction: (a) velocity spectra immediately above the 

centre of the top surface and (b) pressure spectra at the centre of the top surface 
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3.4 Spectral analysis around the cubic model 
 
In order to observe the flow characteristics as a function of time, the instantaneous velocity can 

be measured immediately above the centre of the top surface (𝑧 = 1.14ℎ) and the instantaneous 

pressure can be measured at the centre of the top surface (𝑧 = 1.0ℎ). Both measurements are taken 

with a small time step in the DES model (i.e., 0.0001 s). Fig. 18 shows the velocity and pressure 

spectra around the cubic model at a wind direction angle of 0°. In addition, as the fitting lines 

show in Fig. 18, the velocity spectra have an expected slope of -5/3 and the pressure spectra have 

an expected slope of -7/3 in the inertial sub-range region, which shows the energy transfer from 

low to high frequency. Furthermore, because of the numerical limitations (i.e., the limited grid 

resolution), both the velocity and the pressure spectra still show a rapid drop when 𝑓𝑧 𝑈ℎ⁄  

exceeds 25. These results are discussed in detail in the paper LCH. Although LCH contained 

exclusively experimental results, we observed the qualitative shape of the spectra of velocity and 

pressure variation over the prism so that it is worthwhile to compare the DES results with 

experiment. 

Fig. 19 presents the spectral analysis around the cubic model in different wind directions (i.e., 

0°, 10°, 20°, 30°, and 45°). In the same arrangement as Fig. 18, Figs. 19(a) and 19(b) show the 

velocity spectra immediately above the centre of the top surface (𝒛 = 𝟏. 𝟏𝟒𝒉) and at the centre of 

the top surface (𝒛 = 𝒉). Although the wind direction changes, the measurement location does not 

change. As mentioned in section 3.2, the flow characteristics around the cube are extremely 

sensitive to the wind direction. Both the velocity and the mean static pressure distribution on the 

top surface differ depending on the wind direction. However, as shown in Fig. 19, the spectra that 

are obtained from different wind directions show the expected shape and agree well with each 

other. That is, although the wind direction is different, the velocity and the pressure spectra are 

approximately same; if any, there is a negligible amount of fluctuation. 

 

 

 

 

 

 

Fig. 19 Spectra distribution around the cube in different wind directions: (a) velocity spectra immediately 

above the centre of the top surface and (b) pressure spectra at the centre of the top surface 
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4. Conclusions 
 

The paper presented a wind tunnel experiment and a DES calculation around rectangular 

prisms placed in a deep turbulent boundary layer. We summarise our major findings as follows. (i) 

For flows and wind loads around rectangular obstacles, the size and azimuth angle are very 

important and can be used for the design of the deployment and arrangement of a variety of 

buildings and structures. (ii) Despite the lack of wind-tunnel data, there are new data on mean flow, 

as well as data quantifying the variation of the fluctuating flow, for the single cube and rectangular 

obstacles. In addition, (iii) the revised paper includes much more reasonable and improved mean 

and turbulence quantities, as well as a quantification of the azimuthal effect of obstacles according 

to the DES calculation. (iv) We observed that the size and azimuth angle have a substantial effect 

on the surface pressure around rectangular obstacles. The conclusions of this study can be 

summarized as follows:  

 

1. The DES results of the surface static pressure distribution are in overall agreement with the 

experimental results, including existing results of previous papers.  

2. The turbulent flow around the rectangular prisms separates at the front edge of the prism, and 

then reattaches on the top and side surfaces. Multiple horseshoe and recirculation vortices are 

formed around the bluff prisms. Regarding the pressure distribution, the largest negative pressure 

occurs just beyond the separation region on the top and side surfaces, while the largest positive 

pressure occurs on the front surface.  

3. Once the wind direction towards the bluff prisms changes, the flow characteristics are highly 

sensitive to the wind direction. The variations of the surface pressure and vortex structure on the 

top and side faces show a substantial difference.  

4. The necklace vortex forms perpendicularly in the foot of the bluff prisms, and as the wind 

direction changes, it turns towards the wind direction but its strength and shape decrease in size. 

However, the velocity and pressure spectra in different wind directions show the expected shape. 

Alternatively, if the aspect ratio of the rectangular prism changes, the influence of the prism 

geometry on the flow characteristics should be considered.  

5. The transverse width has a substantial effect, while the longitudinal length shows little or no 

influence on the surface static pressure variation. Explicitly, as the prism widens, the surface 

suction pressure on the top and side surfaces becomes stronger. In addition, as the transverse width 

increases, the necklace vortex in front of the cube widens, but its strength decreases.  

 

Although the results presented here apply to a limited number of rectangular prisms, these 

conclusions may also be valid for other sharp-edged body shapes. (e.g., rectangular prisms of a 

wide variety of heights and aspect ratios that produce flows containing both strong and relatively 

steady concentrated vortices). More comparisons are still required to validate more definitive 

conclusions. Hence, the design of laboratory experiments intended to simulate a typical case 

should be undertaken. 
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