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Abstract. The most common used control device on tall buildings and high-rise structures is active and
passive tuned mass damper (ATMD and TMD). The major advantages of ATMD and TMD are discussed.
The existing installations of various passive/active control devices on real structures are listed. A set of
parameter optimization methods is proposed to determine optimal parameters of passive tuned mass dampers
under wind excitation. Simplified formulas for determining the optimal parameters are proposed so that the
design of a TMD can be carried out easily. Optimal design of wind-induced vibration control of frame
structures is investigated. A thirty-story tall building is used as an example to demonstrate the procedure
and to verify the efficiency of ATMD and TMD with the optimal parameters.
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1. Introduction

In general, structural control devices can be divided into three classes : passive control,
active control and semi-active control. Devices needed external energy to provide control
forces are called active control systems. There are three types of active control devices :
active tendon control, active tuned mass control (or hybrid mass damper) and active
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aerodynamic appendages control. Devices which do not need external energy are called
passive control systems which can be mainly divided into four types : passive tendon control,
base isolation, passive aerodynamic control, passive damper control including tuned mass
damper (TMD), tuned liquid damper (TLD) and mass pump (MP). Devices needed a little
external energy to change structural parameters are called semi-active control systems which
can be mainly divided into two types : active variable stiffness and active variable damper
system. The most common used control devices are active and passive tuned mass damper
(ATMD and TMD). TMD basically is a mass block attached with springs and dashpots. An

Table 1 Application of passive tuned mass damper

Year Mass Structure

1971 132.4 m’ water tank Centerpoint Tower, Sydney
1975 2x 300 ton mass blcks John Hancock Tower, Boston
1980 400 ton concrete mass Citicorp Center, New York
1988 10.0/15.4 ton (in x/y axis) Chiba Port Tower, Tokyo
1992 97.4 kg disc _ Funade Bridge Tower, Osaka
1992 5 ton pendulum Steel Stacks, Kimitsu City

Table 2 Application of active structural control systems

Year Active Devices Structures

1989 AMD(Active Mass Damper) Kyobashi Seiwa Building
1990 AVS(Active Variable Stiffness)  Katri No. 21 Building

1991 AMD Tokyo Port Bridge

1992 HMD(Hybrid Mass Damper) Hakucho Bridge

1992 HMD Tsurumi Fariway Bridge
1992 HMD Akashi Kaikyo Bridge

1992 AMD Sendagaya Intes Building
1992 AMD Hankyu Chayamachi Building
1992 HMD Kansai Airport Control Tower
1992 HMD ORC200 Symbol Tower
1993 HMD(DUOX) Ando Nishikicho Building
1993 HMD Long Term Credit Bank
1993 HMD KS project

1994 HMD(Trigon) Shinjuku Park Tower

1994 HMD Hamanatsm ACT Tower
1994 HMD(Avice-1) Riverside Sumida

1994 HMD MHI Yokohama Building
1994 HMD Down Fire & Marine Ins.
1994 HMD J. City

1994 HMD Porte Kanazawa

1994 HMD Osaka WTC Building

1994 HMD Hotel Ocean 45

1995 HMD(DUOX) Dowa Kasai Phoenix Tower
1995 HMD Rinku Gate Tower

1995 HMD Hirobe Miyake Building
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active tuned mass damper is a combination of a passive tuned mass damper and an active
mass damper. Table 1 and Table 2 show the application of those control devices to buildings,
bridges, towers and other structures during the last three decades. The major advantages of
active and passive tuned mass damper are summarized as follows :

1.1. High efficiency

As is well known, all of tall buildings are very heavy, the control force needed is a big
problem to control such a building. However, TMD can use a small mass as energy absorber
to passively reduce the response of the main structure. A relatively small active control force
is needed for ATMD to significantly reduce structural response by 40% to 50% (Higashino
and Aizewa 1994), which illustrates that the efficiency of ATMD is attractive.

1.2. Flexibility

Because of the mass of TMD is small, it can be installed in many places in various structures.
Furthermore, the mass of TMD may be a part of the structure. In one case, an ice thermal storage
tank was used as the mass of TMD. In another one, the heliport on the top of building was used
as the mass for ATMD (Higashino and Aizewa 1994).

1.3. Adaptability

TMD and ATMD have been installed in many buildings and structures during the last three
decades, their application have proven their adaptability.

The effectiveness of a TMD depends on its parameters : its mass, frequency and damping ratio.
Thus, it is important to optimize the TMD parameters in structural control design. Den Hartog
(1928) first investigated the optimal design of TMD. He studied the response of the main structure
with TMD subjected to sinusoidal excitation, and developed the basic principles and procedure to
select the parameters of TMD. These so called Den Hartog's values have been widely used until
now to determine the optimal parameters of TMD, though these parameters were obtained based
on an assumption that the main structure is undamped. Warburton and Ayorinde (1980) studied the
optimal parameters of a TMD which minimizes dynamic response of a complex system that is
treated as an equivalent single degree-of-freedom (SDOF) system, subjected to harmonic excitation.
They found that Den Hartog's values are good in reduction of response of main structure if the
natural frequencies of the main structure are well separated. On the other hand, when the frequency
separation is small, the optimal parameters diverge from Den Hartog's values with this divergence
increasing as the effective mass ratio increases. Warburton (1982) discussed optimal parameters
of TMD subjected to white noise excitation for an equivalent SDOF system. Fujino and Abé
(1993) presented a set of design formulas for TMD based on a perturbation technique. Chang
and Yang (1994) further studied Warburtin's model and proposed formulae to determine the
optimal parameters for an undamped complex system that can be treated as an equivalent
SDOF system. Kareem and Kline (1995) recently examined the performance of multiple turned
mass dampers under random loading.

Many formulas proposed to determine the optimal parameters of TMD were obtained based
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on undamped SDOF systems subjected to white noise excitation. However, in general, the
damping of the main structure can not be neglected, and actual external dynamic loads such
as wind, earthquake and wave loads can not be simplified as white noise. Therefore, a more
comprehensive investigation for optimal TMD parameter design is needed.

2. Optimization of TMD parameters

Though several practical TMD and ATMD have been installed on buildings, bridges and towers
to reduce structural responses, several important issues such as optimization of the parameters of
TMD remain. In this section, a set of parameter optimization methods is proposed to determine
optimal parameters of TMD under wind excitation. Simplified formulas for determining the optimal
parameters are proposed so that the design of a TMD can be carried out easily.

A frame structure that is treated as a multi-degrees-of-freedom system (MDOF) subjected to
wind loads is shown in Fig. 1, where a TMD is installed on the ith floor of this building. The
equations of motion of the whole system can be written as

MX @)+ CX(@)+KX({t)=W(t)+F(t) (1a)
My X (1) +ca X g () +hyx,(t)=—myx (1) (1b)

in which M, C and K are the mass, damping and stiffness matrices of the main structure, and
m,, ¢, and k, are the mass, damping coefficient and stiffness of the TMD, respectively, X(z),
W(¢) and F (f) are vectors of displacement of the main structure, wind loads and the forces
acting on the main structure induced by the TMD, respectively. x(f) is the displacement of
the ith floor of the structure. x, is the relative displacement of the TMD with respect to the ith
floor.

Assume that wind loads are acted on each floor and can be expressed as

W) m,
k,
1 ]
= Ny
[ my K
(- — vV V7 ki,
m, k;
— m, -k,
wi(t)
k,

P P
Fig. 1 Scheme of structure/TMD system
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W@)={s;}v ) @)
where s, is a parameter related to wind and structural characteristics at the j-th floor, v(t) is

wind velocity at a reference height.
If only one TMD is installed on the i-th floor, (in general, i=n), ie.,

0 j#i
FO)y={f;i®}, fi®)=1 3)

CiXgq +kdxd=i ]:l

If only the first m mode shapes of the structure are considered herein, according to the
method of mode superposition, the displacement vector can be expressed as

X()=Y, @) @

where @ and y,(?) in Eq. (4) are the j-th mode shape function and generalized modal coordinate

of the structure, respectively.
It is assumed that the damping of the structure is Rayleigh one, then, we can obtain the
equations of generalized coordinates, y; (f), and relative displacement of the TMD, x,(?), as follows :

v, (0)+2& w;y;(t)+ @] y; (1)1 D [2&; 0 x,(t)+ @7 x, ()] =A; v (2)

=1
where,
]\/\4} = ) d)iimn .u'] = ’Ild
i=1 M]
n k
Aj = /\1 (Dij S; dZ:m_d
Mj i=1 d
C,
26,1 ay =m_2 (6)

where & and @, are critical damping ratio and natural frequency of the TMD, A is the j-th
mode participation factor for wind excitation and M, is the jth modal generalized mass.

In general, the first mode shape is dominant in the wind-induced vibration of a structure.
Thus, only the first mode shape is considered herein and taking the value of the first mode
shape function at the TMD (the i-th) floor as one (@,=1), then, Eq. (5) becomes

M Y(@)+C' Y(O)+K Y()=F"(t) (7)
( . A
Y(t)= {ﬁd%))} , F'(t)= { 0 } v(t)

, |10 L |26 o0 2ué, . | —pop
M=111-¢=| o 286al| X7, w? ®

where
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where u =y,
The power spectral density (psd) of the response of the generalized coordinates can be

expressed as
Sy(@)=H" (i0) Ser(0) H ({0) ©)

in which S, is the psd of the generalized force F .

A2 0
See=| o o S»(@ (10)

where S,, (@) is the psd of wind velocity at the reference height.
H (iw) is the frequency response function corresponding to Eq. (7)

.1 Ay hy
H(iw) = 3 {hm ha, (11)
in which
hy=—a+2& o, (i 0)+ 0}
hip=2ug, (i )+ pw; (12)
h21:(02
hy == +2& oy 0)+o; (12)
and
4 A
=0
adog= a)lza);, aq :2w12§d ay +2a)1 51 (Odz
a,= o} +4& 0 & o, +(1+p) 0f
a3:2510)1+2(1+u)§d a)d,a4:1 (13)
Substituting Egs. (10) and (11) into Eq. (9) gives
Srir(@) Srv@)| __AL_ | huhl ok,
S ) = Y174 Y172 — 11 Sw ) 14
(@ {Sml(w) Srard @] T TAT [ muns o] (1)
The psd of Y, can be expressed as
3
Yo
(@)= = R (014228 -1) 0] 0+ 015 5

When the excitation is a white noise with unit intensity, S,, (@)=1, the parameter b; in Eq. (15)
are

bo= A2w, b,=—2A2@2+4A2E20F, by=A?, by=0 (16)
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The variance of Y, is (Roberts and Spanos 1990)

,  Burm

O, = ——— 17
Yl A4a4 ( )

in which

As,=ag(—asat+asa,a,—a}ay)
B,=b3b,(a,a,—asay)+a,(b,a,ag+byasa,—byasa,+basa,) (18)

The optimal damping ratio can be obtained when the minimum of o, is reached (i.e., its
derivative with respect to &; become zero).

0 B4 =L|:B4%—A4%}:O (19)

agd A, A42 aéd agd
Then,
oA, . OB,
B,——-A,— =0 20
T (@0)

Similarly, the optimal TMD frequency and mass ratio can be obtained from the following two
equations, respectively.

aA 4 aB4

B 4 aa)d _A 4 aa)d = 0 (21)
aA 4 aB 4
B,—-A =0

Egs. (20) to (22) are obtained based on the criterion of minimum displacement. If other
criteria, such as minimum velocity and minimum acceleration of the main structure, are
adopted, then the equations for determining the optimal parameters are as follows

30, 9o, oo,

3, 0 e, 0 T Y @3)
or

ac-j- aof 80';1

38 " a0 Taw ! @)

In practice, Davenport spectrum and some other spectra of wind velocity rather than white
noise are widely used for describing wind excitation, thus, Davenport spectrum is adopted
herein to determine the optimal parameters. It is difficult to obtain the analytical solution for
this case, a numerical method is thus proposed. Davenport spectrum has a form
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_ x2
Sw ((0) = 4KV10 m s
600@ (25)

where V,, is the mean wind velocity at 10 meters height, K is the coefficient related to
ground roughness.
When the excitation is not white noise, the variation Y, can be given by

ot =] F(@, &, 1)S. (@do (26)

in which

1
F(w;, &5 W)= |A|2Af[w4+2(2§§-1)w§af+w3] 27)
It is assumed that S,, (@) is independent of @,, &, and 4, so, we have

2
doy,

= [ 8w (@ S 40=0 (28)

The optimal frequency or frequency ratio can be obtained numerically from Eq. (28). In the
same way, the optimal damping and mass ratio can be obtained from the following equations,
respectively

007, = OF

= S, (w)—dw=0 29
g, " LS @5 do *
doy, .= oOF ,
5 =[_S. (w)wdw—o (30)

Similarly, the optimal parameters based on other criteria, such as minimum velocity and
minimum acceleration of the main structure, can also be obtained numerically based on the
Davenport spectrum or other wind velocity spectra.

The formulas for determining the optimal parameters of TMD proposed by Warburton
(1982) are

Ot = Wopt _ NV1+0.5u 31)
oy I+u
_ L(1+0.75u)
o _\/ 4(1+u)(1+0.5u) (32)

where o, and &, are optimal frequency ratio and damping ratio of TMD.

When mass ratio 4 is very small, it is clear that optimal damping ratio &, can be expressed
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as

Ep =05V (33)

The optimal frequency ratio Oy = a;‘;‘l” computed from Eq. (21) for white noise excitation

and from Eq. (28) based on the Davenport spectrum with different mass ratios and damping
ratios are shown in Fig. 2 and Fig. 3, respectively. Unstable results are found for the undamped
main structure for Davenport spectrum as shown in Fig. 3. The results calculated by use of the
approximated formula, Eq. (31), are also plotted in these figures for comparison purposes. The
approximated formula gives results with good accuracy when the damping ratio of the main
structure and the mass ratio are relatively small. However, it can be seen from these figures that
the optimal frequency ratios calculated from Eq. (21) and Eq. (28) are slightly larger than those
obtained from the approximated formula Eq. (31). Thus, the following approximated formula for
determining the optimal frequency ratio is proposed to best fit the calculated results presented in
Figs. 2 and 3.

1
‘N
0.98 fommrmmmm o T = o
2 —e—£a. 3]
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Fig. 2 Optimal frequency ratio (wind excitation-white noise)
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Fig. 3 Optimal frequency ratio (wind excitation-Davenport spectrum)
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Fig. 5 Optimal damping ratio (wind excitation-Davenport spectrum)
Oy = Wopt =V1+O.4u (34)
Y 1+4

Optimal damping ratio &, as a function of mass ratio 4 for wind excitation (white noise and
Davenport spectrum) is shown in Fig. 4 and Fig. 5. It is clear that the optimal damping ratio
of a TMD is dependent on the damping ratio of the main structure, implying that the higher
the damping ratio of the main structure, the higher the optimal TMD damping ratio. It is
noted that the approximated formula Eq. (33) gives results with good accuracy, suggesting the
simplified formula is applicable to determining the optimal damping ratio of TMD.

It can be seen from Figs. 2 to 5 that the difference between the optimal parameters based

on white noise excitation and those determined by Davenport spectrum 1is not significant.
3. Numerical example 1

Realistic structural parameters taken from a communication tower are considered in this
numerical example. The first natural frequency and critical damping ratio of the tower are 1.53
rad/sec and 0.02%, respectively. The first modal mass is 5356 Ton and the mass of TMD is
chosen as 60 Tons (u=1.06%). The optimal frequency ratio and damping ratio for wind
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Table 3 Optimal TMD parameters

Optimal parameters White noise Davenport spectrum  Approximated method
£=0.0106
Optimal frequency (rad/sec) 1.514 (1.529) 1.510 (1.525) 1.517
Optimal damping ratio 0.051 (0.052) 0.052 (0.052) 0.051
#=0.0424
Optimal frequency (rad/sec) 1.477 (1.521) 1.466 (1.510) 1.480
Optimal damping ratio 0.102 (0.108) 0.103 (0.105) 0.101

Note : The results in parentheses are obtained based on minimum acceleration criterion.

excitation (white noise and Davenport spectrum) are presented in Table 3. The results obtained
based on the minimum acceleration criterion are also listed in Table 3 (if it is not specified in the
figures and tables presented in this paper, the minimum displacement criterion is used). It can be
seen that the optimal parameters obtained from different methods are also the same, illustrating
again that the simplified formulas proposed in this paper are applicable to determining the optimal
parameters of TMD.

4. Optimal control of frame structures

After the optimal parameters of TMD are determined, optimal control of frame structures
by using active TMD is investigated in this section.

It is assumed that a frame structure with an active TMD installed at the top floor of the
building subjected to wind excitation is treated as a multi-degrees-of-freedom system. Only
along-wind response control of the structure is considered herein. In this case, the equation of
motion of the whole system, Eq. (1), can be rewritten as

MX(@)+CX(t)+KX(t)=DW +U (35)
in which, )
m, 0 - 0 (0 - 0
0 m, 0 ¢, 0
M= - " . Cc =" "
m, +my 0 Cn € —C
0 - 0 m,., 0 - - ¢
ktks —k, O 0] D, 0 - 0 |
—k, kytks —ks - O 0 D, 0
K = D= ": :
0 oy ko +k —k D,
0 —k k g - Dn+1




80 Qiusheng Li, Hong Cao, Guiging Li, Shujing Li and Dikai Liu

D, =A, ls (x), U=[0,0-,0,-u,u], W=[w;,w,, —w,, w,,+1]T

where ¢, is the viscous damping coefficient, A, is the area of windward face, y,(x,) is the

drag Coefficient and w, is the wind pressure at x,, m,, ¢ and u are the mass and the viscous

damping coefficient of the TMD as well as the control force acting on the TMD, respectively.
Using the method of mode superposition and substituting Eq. (4) into Eq. (35) obtain

yi)+2& @ y; )+ @iy, )= f;+U; u (36)
Eq. (36) can be expressed in state form as follows
in which
0 1
_ _J0 _ 1Y _J0
N P R

© 1 1
Mj:¢j~TM(pj szTq)jTDW Uj:T((p}jnﬂ_(pjT,n)
M M

The LQR control strategy, due to its simplicity and inherent stability, is the most widely
used control strategy in civil engineering, especially in the application of ATMD. Thus, the
LQR control strategy is adopted herein.

Using the following criterion

1 -
lefjo[z;‘Qij"'?’f”z]dt_’mm 38)
yields
L1 o _| Py Py
w=- B'P,Z, Pj_{szj P;,] (39)

where u is the optimal control force.
The matrix P can be determined by solving the following Riccati equation

1

P;+P;A; +ATP, P/ B,B[P,+0; =0 (40)
J
If set
=7 Q=0 (41)
then
1 .
u*=——jUj(P2,-y,-+P3,- Yi) (42)

The equation of the j-th generalized coordinate, Eq. (36), can be rewritten as



Optimal design of wind-induced vibration control of tall buildings and high-rise structures 81

y; @)+ [251‘ o; "'ly U’Ps; ) yi(t)+ [0),27“%; UPy; Jyj(t):fj (43)

The relationship between the spectrum of the generalized coordinate y and that of the generalized
force, f, can be derived as follows

S,V]‘,Vk ((U) =Hj* (l w)Hk (l (O) Sfj Tr (0)) (44)
in which
H,(i 0) . 45)
[w;’-+ly UP,, J-aﬂ (25,. ; +ly U?P; )iw
1 n+l n+l -
S5 (0 =———— 33 @; & DD p*V; V, S (@) ¥(hi , 1) (46)
Mj M, I=1i=1

in which ‘7, is the mean wind velocity at the coordinate x;, and y(h,, k) that is the coefficient
of correlation of wind velocity is given by (Cao, 1997)

Y(hi , by ) =exp[—0.232495 | b, —hy | /N B +hy ] (47)
The spectrum of structural response is
n+l n+l
le_ (w) = z z D, D, S, ik (0) (48)

=1 k=1

Neglecting the correlation between the mode shapes, the variances of displacement of the
structure is determined by

o, =2 ;0 (49)
j=1
in which
0, = jo |H, (o)|*S), (0)do=g; Ao, (50)
1 n+l n+1 y— =
8 = A ZZ D, D,;D;D,p V.V, y(h:, hy) (51)
Mj2 I=1 i=1
Ao; = jo |H, (i 0)|*S, (0)d o (52)

If S, (@) is taken as the Davenport spectrum, then, the analytical expression of A, is derived as
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Aoy =6KvZ /(bib) { -y [O.Sdi In(1—-2r cos 6, +r2)

3
i=1

r+3c.059,- d; g 1—r.c056,- +£_9i (53)
2sin 6, r sin 6, 2

where
b=m,/600, x;=w/b, by=(1+x?)’-4Ex?
by=(+x2-282x2)/by, by=1/\b =r3, 6, =arccos (b,/b2)/3
0,=0,+21/3, 6,=0,+4m/3, d, =2sin 6, (b,cos 6, +b,)/(3r?sin 36,)

4. Numeric example 2

A tall building considered herein has 30 stories, the mass, height, shear stiffness and the
damping ratio of each story are as follows

m,= 1152 Tons, h,=3.1 m, k;= 6.0 10° KN/m, £ =0.033

The Davenport spectrum is adopted. The other parameters for determining wind loading on
the building are : A =124 m’, (x,)=1.3 The variation of mean wind velocity along height of
the structure can be expressed as

x 033
= (X —
ij - [ 10 j VlO

The first circular natural frequency of the main structure is found as : @=3.1

The mass of TMD that is installed at the top floor of the building is chosen as 230.4 Tons
(1=0.111) due to geographical considerations. The optimal damping ratio and circular natural
frequency calculated by the present method and the approximated formulae, Eq. (34) and Eq.
(33), are as follows :

W =2.867(2.852), & =0.1764(0.1666)
The values in parentheses are obtained from Eqgs. (34) and (33).

Three cases, the structure without control device, with active TMD and passive TMD (the
control force u=0) are considered in this numerical example. Two set of parameters of the TMD :
@,=3.1, £=0.1006 and the optimal parameters determined, are adopted for the computation.

Table 4 The variance of structure response

Without control

Response device Passive TMD Active TMD
X 3.6 cm 22cm (2.0) 1.6 cm (1.4)
X0 45 cm/s’ 26.7 cmy/s’ (25.4) 1.5 cm/s’ (1.3)

Note : The values in parentheses are calculated by used of the optimal parameters.
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The results are calculated and listed in Table 4. It can be seen from the results presented in Table
4 that the control efficiency of active TMD with the optimal parameters is the best.

5. Conclusions

The active and passive tuned mass damper installed on tall buildings and high-rise structures
have many advantages, such as high efficiency, flexibility and adaptability. A set of parameter
optimization methods is proposed to determine optimal parameters of passive tuned mass dampers
under wind excitation. The calculated results show that the difference between the optimal
parameters calculated based on white noise excitation and those determined by Davenport
spectrum is not significant. It is found that the optimal damping ratio of a TMD is dependent on
the damping ratio of the main structure, but independent of the natural frequency of the main
structure. Simplified formulas for the determination of the optimal parameters are proposed so that
the design of a TMD can be carried out easily. The numerical example 1 shows that the optimal
parameters determined by the approximated formulas are close to those calculated by the exact
methods proposed in this paper, suggesting that the simplified formulas are applicable to the
design of the optimal parameters of TMD. The present methods and simplified formulas provide
not only the optimal parameters for the TMD design under wind excitation but also the good
estimates or initial values for other excitations.

Optimal design of wind-induced vibration control for frame structures is investigated. A
thirty-story tall building is used as an example to demonstrate the procedure and to verify the
efficiency of ATMD and TMD with the optimal parameters. The numerical example shows
that the control efficiency for both displacement and acceleration responses of a structure by
use of ATMD and TMD is very good, especially, the control efficiency of ATMD with the
optimal parameters is the best.
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