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Abstract.  In this paper, a probability distribution which is consistent with the observed phenomenon at the 
roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is 
consistent with the choice of probability density function suggested by the statistical thermodynamics of 
open systems and turbulence modelling in fluid mechanics. After presenting the justification based on 
physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of 
extreme negative wind pressure coefficients is explored. The predictions are compared with those actually 
observed during wind tunnel experiments (using wind tunnel experimental data obtained from the 
aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum 
and Hermite polynomial model. The predictions are also compared with those estimated using a recently 
proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. 
From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative 
wind pressure coefficients. The model has an advantage that it is consistent with the physical processes 
proposed in the literature for explaining large fluctuations at the roof corners. 
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1. Introduction 
 

It is known that when the small-scale turbulence associated with the incident wind interacts 

with low-rise buildings, it will result in large scale fluctuations of pressures induced on the roofs, 

especially nearer to regions of separation/vortex flow formation. Negative peak wind pressure 

coefficient of about -20 have been observed on the roof of the full scale experimental building at 

Texas Tech University (Tieleman 2003, Banks and Meroney 2001). Typically, the stochastic 

process associated with pressure fluctuations in the near portion of separation can exhibit 

wide-banded nature compared to the band width of incident wind turbulence spectrum (Kumar and 

Stathopoulos 2000). Depending on the mechanism of eddy formation (flow separation/vortex cone 

formation), location of pressure tap and angle of attack, for a given roof angle, generally negative 

pressure coefficients follow negatively skewed distributions. The large pressure fluctuations 

observed can be attributed to the flow separation (Bienkiewicz and Sun 1992) or initiation of large 
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vortices (Bienkiewicz and Sun 1992, Kawai and Nishimura 1996) depending on wind and roof 

angles.  

Determination of an appropriate distribution for predicting the negative peaks of wind pressure 

coefficients on low-rise building roof is an active area of research (see for instance, Holmes and 

Cochran 2003, Cope et al. 2005, Yang et al. 2013). Cope et al. (2005) identified that different 

probability density function (pdf) models need to be used for wind pressures on different regions 

of the structure. Recent efforts are towards identification of a single model for the negative tails. 

Yang et al. (2013) proposed the use of Hermite polynomial model.  

In the present investigation, applicability of alpha-stable distribution (Nolan 2009) for 

modeling the negative peak wind pressure coefficients on the roof corner regions and other 

portions of the roof of a low-rise gabled roof building is examined, using wind tunnel experimental 

data obtained from the aerodynamic database of Tokyo Polytechnic University (TPU 2013). 

 

 

2. Negative peak wind pressure fluctuations on roofs of low-rise buildings  
 

Different investigators have put forward hypotheses for explaining the large negative, 

intermittent peak pressures observed on the roofs of low-rise buildings (Tieleman 2003, 

Melbourne 1980, 1993, Banks and Meroney 2001). The reattachment of shear layer to the roof 

(which occurs for certain conditions of oncoming turbulence and angle of attack) causes the 

formation of separation bubble (see Fig. 1). The separation bubble is not steady and has two modes 

of pseudo-periodic unsteadiness (Blazawicz 2007), namely, the shedding mode and the flapping 

mode. The shedding mode is associated with the shedding of large-scale vortices downstream from 

the separation bubble with a frequency of about RxU65.0 (where, U  is the mean free stream 

flow velocity, and, Rx  is the mean length of separation bubble). The flapping mode is associated 

with the enlargement and contraction of the separation bubble and the flapping motion of the shear 

layer with a frequency of about RxU12.0 , accompanied by the shedding of much larger vortices. 

The large negative pressures observed on the roofs are caused by the large pressure drops beneath 

the vortices as they convect downstream (see Fig. 2). The intermittent nature of shedding of 

vortices leads to jumps in the pressure time history at any given point on the roof. It has been also 

identified that both small- and large- scale oncoming turbulence influence the development of 

negative peak pressures (Tieleman 2003). This is because, in the presence of only small-scale 

turbulence, the vortices do not attain full maturity before they are convected downstream and 

hence maximum peak pressures are not felt. However, when large-scale turbulence is also present, 

the vortices attain maturity before being shed downstream leading to peak suction pressures of 

larger magnitudes.  

The local environment near the corner of the roof can be modeled as a non-stationary and as a 

non-equilibrium thermodynamically open system. In such systems, it is known that the physical 

mechanisms generating the fluctuating forces are distinct from, and independent of, those 

generating dissipative forces. Hence, there may be no relation between fluctuations and dissipation, 

and such systems do not approach a thermodynamic equilibrium state asymptotically. More often, 

in such systems, the energy flux provided by the fluctuations may not be quenched by dissipation 

mechanism leading to instability (Lindenberg and West 1990). This will manifest in the form of 

jumps in the time histories of wind pressure coefficients. As pointed out by Fogarasi (2003), those 

non-gaussian distributions can be better modeled using Levy-alpha-stable distributions. The 
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presence of multiple turbulence length scales contributing to the pressure fluctuation phenomenon 

at the roof corner is also evident from the spectrum of wind pressure presented in Fig. 7 of Kumar 

and Stathopoulos (2000). To account for these fluctuations in large negative peak pressures, 

attempts have been made to fit a suitable pdf for peak negative pressure coefficients, and propose 

an equation for design peak pressure that can be used in the design of components such as 

claddings (Holmes and Cochran 2003, Cope et al. 2005, Yang et al. 2013).  

 

 

Fig. 1 Formation of separation bubble due to the reattachment of shear layer to the roof (from Melbourne 

1980) 

 

 

Fig. 2 Visualization of flow over a low-rise flat roof building (from Banks et al. 2000) (The numbers 1-11 

at the bottom indicate the pressure taps locations. The different lines joining the points above the 

pressure taps represent the pressure fluctuations measured while the image of the vortex is being 

captured. The numbers in the legend indicate the time instants at which the surface pressures are 

recorded) 
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Narasimha et al. (2007), in a different context, studied the statistical characteristics of positive- 

and negative- fluxes in wall bounded flow turbulence in a nearly neutral atmospheric boundary 

layer, and found that the flow form coherent structures and exhibit burstiness, calling for a separate 

distribution other than that follows Fourier description. The intermittency/burstiness causes jumps 

and thus large local pressure fluctuations.  

From the above discussion, it is clear that there is a need to use probability distributions with 

heavy tails to model these pressure fluctuations. It may be better to use distributions with power 

law decaying tails than exponential tails (which gives low values of probability to the tail regions) 

to predict very large pressures. One candidate distribution with power law decaying tails, which 

has found applications in different fields (Nolan 2009), is the alpha-stable distribution. In this 

paper, an attempt is made to study the applicability of alpha-stable distribution for modeling the 

negative peak wind pressure fluctuations on low-rise building roofs. The required wind pressure 

data is obtained from the aerodynamic database of Tokyo Polytechnic University. 

 

 

3. Justification for use of alpha-stable distributions 
 

The focus in this paper is to justify the use of alpha-stable distribution for modeling the 

negative peak wind pressure fluctuations on low-rise building roofs based on mechanics- and- 

phenomenological considerations and experimental observations. The motivation for the study is 

based on the following observations: 

 The probability density functions of fluctuating pressures measured on a building model in a 

boundary layer wind tunnel are found to be negatively skewed with heavier negative tails and 

sharper peaks than normal distributions (Li et al. 1999). Hence, there is a need to use 

probability distributions with heavy tails to model the large pressure fluctuations and to 

estimate the extreme values. While there are number of heavy-tailed probability distributions, 

such as alpha-stable distribution, log-normal distribution, Student‟s t-distribution, hyperbolic 

distribution, the use of alpha-stable distribution is supported by the generalized central limit 

theorem. Log-normal distribution is another heavy tailed distribution which is found to be 

useful in large number of applications, and has also been used for modeling wind pressure 

fluctuations measured in wind tunnel experiments (Li et al. 1999). However, the applicability 

of log-normal distribution for pressure fluctuations consisting of both positive- and negative- 

pressures need to be carefully examined. 

 Alpha-stable distributions are a rich class of probability distributions, which can accommodate 

fat tails and asymmetry (Nolan 2009). The normal-, Cauchy-, and Levy- distributions are 

special cases of alpha-stable distributions, suggesting the generality of alpha-stable 

distributions. Therefore, alpha-stable distribution will be a suitable candidate in the efforts 

towards identifying a single model for the peak wind pressure coefficients in different regions 

of the roof of a structure. 

 For wind pressure measurement on a building model, the flow is assumed to be steady (i.e., 

long run behavior of fluctuations is same) and the process of pressure fluctuation is ergodic. In 

such a condition, the environment around the building envelope vary slowly but, the 

aerodynamic interaction provides a heterogeneous environment that would result in trapped 

and hopping behavior (observed in such systems) of pressure field. This is clear from typical 

time traces of pressure coefficients reported in literature. The trapped and hopping behavior of 

local pressure field results in complexity in the pressure process leading to anomalous 
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diffusion. The consistent distribution to model such a process is the long tailed Levy stable 

distribution (Metzler and Klafter 2004). As has been pointed out by Wang et al. (2012), the 

phenomenon underlying the observed stochastic pressure process can be modeled using 

Fickian non-Gaussian process. Their study considered a Gaussian central and non-Gaussian 

(exponential) tails for describing the probabilistic variations in displacements. It has also been 

pointed out that the application of non-Gaussian distributions such as alpha-stable distribution 

is going to be the future area of research. An exhaustive review of recent research needs in 

bluff body aerodynamics and the need to develop different modeling philosophies have been 

lucidly brought out by Kareem (2010). 

 

 

4. Alpha-stable distribution - some preliminaries 

 

For alpha-stable distribution, an explicit expression for pdf generally does not exist. The 

characteristic function of alpha-stable distribution is given by (Nolan 2009] 
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where, X - random variable, i - imaginary unit, t - argument of the characteristic function ( t ),

.E  - expected value,  - characteristic exponent or stability parameter (  2,0 ),  - skewness 

parameter (  1,1 ), c - scale parameter ( 0c ),  - location parameter (  ), ln - natural 

logarithm, and, sign(t) - a logical function having values -1, 0, 1 for t < 0, t = 0 and t >0, 

respectively.   

The lack of closed form expressions for probability density functions and/or probability 

distribution functions for general alpha-stable distributions have been pointed as the major 

drawback for the application of the same in practice. However, as noted by Nolan (2009), 

computer programs are now available for computation of probability densities, probability 

distributions and quantiles. Also, number of methods have been proposed by different researchers 

for the estimations of the parameters (namely, , , c and ) of the alpha-stable distribution (see 

Balaji Rao et al. (2013) for a brief survey). These facilitate the practical applications of 

alpha-stable distributions. 

 

 

5. Wind pressure coefficient data (from TPU 2013) 

 

In this study, an attempt is made to examine the applicability of alpha-stable distribution to 

model the peak wind pressure coefficients on the roof corner regions and other portions of the roof 

of a low-rise gabled roof building, using wind tunnel experimental data from the aerodynamic 

database of Tokyo Polytechnic University (TPU 2013). Salient information regarding the 

experimental investigations is as follows. The test model considered is gabled roof with eave 

height (H0) of 80 mm, breadth (B) of 160 mm and depth (D) of 400 mm (see Fig. 3). In the present 
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study, the roof pitch angles considered are 0, 4.8, 9.4 and 14, and, the wind angle of attack () 

considered are 0, 45 and 90. The tested wind field was the suburban terrain corresponding to 

terrain category III of AIJ (TPU 2013). The turbulence intensity and the test wind velocity at a 

height of 100 mm were about 0.25 and 7.4 m/s, respectively. The wind pressure taps were placed 

as shown in Fig. 3. Total number of pressure taps was 210 for all roof pitch angles except for 14
o
. 

The sampling frequency was 500 Hz and the sampling period was 18 seconds for each sample 

(which corresponds to 15 Hz and 600 seconds, respectively, in full scale, based on simulated 

length scale of 1:100 and assumed velocity scale of 1:3). The time history of wind pressure 

coefficients (ratio of the measured wind pressure to the reference wind pressure of the approaching 

wind velocity at the average roof height, H) for each of the taps were moving averaged at every 

0.006s (corresponding to 0.2s in full scale), and, are given in a database. The effective frontal area 

associated with 0.2-second moving average gust for the range of mean wind speeds of interest to 

the structural designers considered is about 10 m
2
 to 40 m

2
 (Ginger and Fricke 2012), which is in 

the order of the area of one cladding sheet on the roof of the building. Hence, the 0.2-second 

moving average gusts are considered in the present study. 

 

 

6. Statistical analysis of peak wind pressure coefficients 
 

The time histories of wind pressure coefficients (Cp) corresponding to the taps 72, 32, 82, 51, 

52, 54 and 56 for  = 0 and 90, and, taps 72, 52, 54, 56, 32, 73 and 74 for  = 45, are considered 

in the study. It can be noted from Fig. 3 that most of these pressure taps correspond to roof corner 

where either flow separation would take place or along which conical vertices may initiate. The 

1-second peak negative wind pressure coefficients (Čp) are obtained (the duration of 1 second is 

adopted adhocly), and the alpha-stable distribution and Gumbel minimum distribution (which is 

proposed by Tieleman et al. (2008) for peak suction pressures in separation regions of low-rise 

structures) are fitted to Čp. Here, 1-second peak corresponds to the 1 second peak in the full-scale. 

In the present study, the parameters of alpha-stable distribution are determined using the procedure 

proposed by Koutrouvelis (1980). (A brief discussion on the estimation of parameters of 

alpha-stable distribution is presented in Appendix). 

 

 

 
Location of taps (circles indicate the taps considered in the present study) 

 

Fig. 3 Test model considered and locations of wind pressure taps (TPU 2013) 
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Recently, Yang et al. (2013) have proposed a Hermite polynomial-based model for modeling 

the non-Gaussian pressure variation on roofs of low-rise buildings. This method is a promising 

approach for data driven probabilistic modeling as pointed out by Fogarasi (2003). It is a 

non-parametric approach, requiring establishing regions of stability for moments of random 

variable. Peng et al. (2014) presented a method to obtain the refined points for which Hermite 

polynomial can be fitted for the points slightly away from the stability region. An attempt has been 

made in this paper to compare the predictions made by using alpha-stable distribution with that of 

Hermite polynomial model (Yang et al. 2013, Peng et al. 2014), for regions wherein stability 

conditions are satisfied.   

 

 

7. Results and discussion 
 

The time history and frequencies of experimentally determined wind pressure coefficients, 

typically for measurement tap 72, for roof pitch angle of 0 and  = 90, are shown in Figs. 4(a) 

and 4(b), respectively. The large negative pressure coefficients seen in Fig. 4(a) indicate the 

formation of large pressure drops due to the intermittent nature of shedding of vortices leading to 

jumps in the pressure time history. In Fig. 4(b) and also in following portion of the paper, 

„observed‟ denotes the wind pressure coefficients computed from the measured wind pressures in 

the wind tunnel experiments. The frequencies determined assuming wind pressure coefficients 

follow normal distribution is also shown in Fig. 4(b), for the purpose of comparison. From Fig. 

4(b), it is noted that, as expected, the distribution of wind pressure coefficients is negatively 

skewed and the assumption of normal distribution for wind pressure coefficients is not appropriate. 

The statistical properties (namely, mean, standard deviation, skewness and kurtosis) of 

1-second peak negative wind pressure coefficients (Čp) have been computed, and are given in 

Table 1. The values of parameters of the alpha-stable- and Gumbel minimum- distributions, fitted 

to Čp, are also given in Table 1. (A brief discussion on the estimation of parameters of alpha-stable 

distribution is presented in Appendix). 

 

 

 

(a) 

 

(b) 

Fig. 4 (a) Time history- and (b) Frequency distribution- of wind pressure coefficients for measurement tap 

72 (roof pitch angle = 0,  = 90) 
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Table 1 Statistical properties of 1-second peak wind pressure coefficients and parameters of fitted 

alpha-stable and Gumbel minimum distributions 

Measurement 

 tap 



(º) 

Roof 

pitch 

angle (º) 

wind pressure coefficients Applicability 

of Hermite 

polynomial 

model5 

statistical properties 

parameters of alpha-stable 

distribution 

parameters of Gumbel 

minimum distribution4 

mean SD1 Skew2 Kurt3     c       

32 

0 

0 -1.31 0.49 -1.08 1.59 1.84 -1 0.30 -1.35 0.38 -1.09 No 

4.8 -1.31 0.57 -1.64 4.76 1.67 -1 0.31 -1.38 0.44 -1.06 Yes 

9.4 -1.44 0.59 -1.06 0.97 1.76 -1 0.36 -1.50 0.46 -1.18 No 

14 -1.24 0.52 -1.09 1.27 1.74 -1 0.31 -1.30 0.41 -1.01 No 

90 

0 -0.88 0.35 -1.18 1.81 1.66 -1 0.20 -0.92 0.28 -0.72 No 

4.8 -0.81 0.27 -1.15 3.08 1.87 -1 0.17 -0.82 0.21 -0.68 Yes 

9.4 -0.96 0.30 -0.99 1.98 1.82 -1 0.19 -0.98 0.24 -0.83 Yes 

14 -1.17 0.38 -1.01 1.56 1.78 -1 0.24 -1.19 0.30 -0.99 No 

51 

0 

0 -0.26 0.11 -0.36 -0.13 2.00 -* 0.08 -0.26 0.09 -0.21 No 

4.8 -0.25 0.11 -0.43 0.62 1.91 -1 0.07 -0.25 0.09 -0.20 Yes 

9.4 -0.26 0.11 -0.31 0.32 1.96 -1 0.08 -0.26 0.09 -0.21 Yes 

14 -0.25 0.10 -0.28 0.32 1.96 -1 0.07 -0.25 0.08 -0.20 Yes 

90 

0 -1.02 0.38 -1.02 1.79 1.83 -1 0.23 -1.05 0.30 -0.85 Yes 

4.8 -0.86 0.29 -0.80 0.72 1.89 -1 0.19 -0.88 0.22 -0.73 No  

9.4 -0.91 0.30 -1.56 6.15 1.81 -1 0.18 -0.93 0.24 -0.77 Yes  

14 -0.88 0.26 -0.88 0.92 1.88 -1 0.17 -0.90 0.20 -0.77 No 

72 

0 

0 -1.57 0.65 -1.29 2.27 1.75 -1 0.39 -1.63 0.51 -1.28 No 

4.8 -1.59 0.72 -1.12 1.64 1.78 -1 0.44 -1.66 0.56 -1.27 No 

9.4 -1.68 0.74 -1.58 3.78 1.63 -1 0.39 -1.76 0.58 -1.35 No 

14 -1.49 0.70 -1.47 3.73 1.69 -1 0.39 -1.57 0.54 -1.18 Yes  

90 

0 -2.04 0.78 -1.51 3.47 1.67 -1 0.43 -2.12 0.61 -1.69 No 

4.8 -2.21 0.74 -0.67 0.37 1.95 -1 0.51 -2.23 0.58 -1.88 No 

9.4 -2.33 0.73 -0.88 1.48 1.86 -1 0.46 -2.38 0.57 -2.00 Yes 

14 -1.86 0.62 -1.03 1.52 1.66 -1 0.35 -1.94 0.48 -1.59 No 

82 0 0 -0.27 0.15 -1.14 3.07 1.86 -1 0.09 -0.28 0.12 -0.20 Yes 
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4.8 -0.26 0.14 -0.96 2.44 1.83 -1 0.08 -0.27 0.11 -0.20 Yes 

9.4 -0.27 0.14 -1.20 4.28 1.85 -1 0.09 -0.27 0.11 -0.21 Yes 

14 -0.25 0.12 -0.65 1.46 1.93 -1 0.08 -0.25 0.09 -0.19 Yes 

90 

0 -1.84 0.77 -1.26 2.20 1.72 -1 0.45 -1.92 0.60 -1.49 No 

4.8 -2.37 0.89 -0.59 0.10 2.00 -* 0.63 -2.37 0.69 -1.97 No 

9.4 -2.24 0.82 -1.45 4.81 1.81 -1 0.49 -2.27 0.64 -1.87 Yes  

14 -1.91 0.61 -0.56 0.31 1.96 -1 0.42 -1.92 0.48 -1.63 No 

32 45 0 -1.64 0.48 -0.46 -0.20 1.99 -1 0.34 -1.65 0.37 -1.42 No 

52 45 0 -2.21 0.80 -0.52 0.09 1.99 -1 0.56 -2.22 0.62 -1.85 No 

72 45 0 -0.94 0.49 -2.80 12.29 1.47 -1 0.19 -1.00 0.38 -0.72 Yes 

73 45 0 -2.41 0.75 -0.75 1.26 1.90 -1 0.49 -2.45 0.59 -2.08 Yes 

74 45 0 -1.82 0.51 -0.76 0.79 1.92 -1 0.34 -1.85 0.40 -1.59 No 

52 0 0 -1.35 0.51 -1.38 3.41 1.77 -1 0.30 -1.39 0.40 -1.12 Yes 

54 0 0 -0.54 0.23 -0.80 1.40 1.90 -1 0.15 -0.55 0.18 -0.44 Yes 

56 0 0 -0.27 0.14 -0.47 0.30 1.99 -1 0.10 -0.27 0.12 -0.20 No 

52 90 0 -1.45 0.44 -1.09 1.61 1.78 -1 0.27 -1.48 0.34 -1.25 No 

54 90 0 -1.58 0.49 -1.05 1.39 1.80 -1 0.30 -1.63 0.38 -1.35 No 

56 90 0 -1.57 0.52 -1.30 2.38 1.67 -1 0.29 -1.63 0.41 -1.34 No 

52 45 0 -2.21 0.80 -0.52 0.09 1.99 -1 0.56 -2.22 0.62 -1.85 No 

54 45 0 -0.55 0.39 -2.00 4.70 1.25 -1 0.14 -0.77 0.30 -0.38 No  

56 45 0 -1.16 0.50 -0.38 -0.24 2.00 -1 0.36 -1.17 0.39 -0.93 No  

52 0 4.8 -1.37 0.59 -1.35 2.69 1.68 -1 0.33 -1.44 0.45 -1.11 No 

54 0 4.8 -0.57 0.28 -1.62 5.26 1.71 -1 0.15 -0.60 0.22 -0.45 Yes 

56 0 4.8 -0.27 0.15 -0.54 0.60 1.94 -1 0.10 -0.27 0.11 -0.20 Yes  

52 90 4.8 -1.05 0.35 -0.79 0.63 1.91 -1 0.23 -1.07 0.27 -0.89 No  

54 90 4.8 -1.42 0.47 -0.89 1.55 1.90 -1 0.30 -1.44 0.36 -1.21 Yes  

56 90 4.8 -1.55 0.50 -0.42 0.04 2.00 -1 0.35 -1.56 0.39 -1.32 No  

52 45 4.8 -2.17 0.90 -0.93 1.36 1.86 -1 0.57 -2.23 0.71 -1.76 Yes  

54 45 4.8 -0.56 0.35 -1.75 3.29 1.27 -1 0.13 -0.71 0.27 0.40 No  

56 45 4.8 -1.01 0.47 -0.70 0.27 1.96 -1 0.33 -1.03 0.37 -0.80 No 

52 0 9.4 -1.49 0.59 -1 0.99 1.79 -1 0.37 -1.54 0.46 -1.23 No  
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54 0 9.4 -0.66 0.31 -0.97 1.42 1.86 -1 0.19 -0.68 0.24 -0.52 No  

56 0 9.4 -0.29 0.16 -0.77 1.65 1.86 -1 0.10 -0.30 0.13 -0.22 Yes 

52 90 9.4 -0.88 0.31 -1.24 2.38 1.75 -1 0.18 -0.91 0.24 -0.74 No  

54 90 9.4 -1.24 0.44 -1.55 4.95 1.74 -1 0.26 -1.27 0.35 -1.04 Yes 

56 90 9.4 -1.34 0.47 -1.15 1.69 1.74 -1 0.28 -1.39 0.37 -1.13 No  

52 45 9.4 -1.87 0.87 -0.54 0.24 1.99 -1 0.61 -1.88 0.68 -1.48 No 

54 45 9.4 -0.54 0.27 -2.07 6.42 1.50 -0.97 0.12 -0.57 0.21 -0.41 No 

56 45 9.4 -0.91 0.43 -1.31 1.91 1.55 -1 0.22 -0.99 0.33 -0.72 No 

52 0 14 -1.29 0.55 -1.09 1.34 1.78 -1 0.34 -1.34 0.43 -1.04 No  

54 0 14 -0.53 0.26 -1.25 2.58 1.75 -1 0.15 -0.56 0.20 -0.42 Yes 

56 0 14 -0.26 0.13 -0.41 0.36 1.95 -1 0.09 -0.26 0.10 -0.19 Yes 

52 90 14 -0.74 0.25 -0.99 1.61 1.80 -1 0.15 -0.76 0.19 -0.63 Yes  

54 90 14 -0.91 0.31 -1.16 1.87 1.76 -1 0.19 -0.94 0.24 -0.77 No  

56 90 14 -1.00 0.32 -1.24 3.16 1.79 -1 0.19 -1.02 0.25 -0.85 Yes 

52 45 14 -1.84 0.87 -0.59 0.24 1.98 -1 0.61 -1.86 0.68 -1.45 No 

54 45 14 -0.55 0.25 -2.55 12.06 1.56 -0.93 0.11 -0.57 0.19 -0.44 Yes 

56 45 14 -0.82 0.38 -1.91 5.96 1.51 -1 0.17 -0.93 0.29 -0.66 Yes 

(Note:- 
1
: SD - standard deviation, 

2
: Skew - skewness, 

3
: Kurt – excess kurtosis; 

4
: the distribution function 

of Gumbel minimum is given by
0,;expexp)( 


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
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


x

x
xFX

, 
5
: based on stability criterion (see 

Fig. 6); *: when α = 2, the parameter β loses its significance) 

 

From Table 1, it is noted that, in almost all the cases considered, the value of skewness 

parameter () of the alpha-stable distribution is equal to the lower bound value of -1, indicating 

that the distribution is maximally negatively skewed. This indicates that while the lower tail of the 

distribution is Paretian (behaves like 


x  for large x ), the upper tail has no Paretian 

component. The values of location parameter () of the alpha-stable distribution are found to be in 

good agreement with the mean (see Fig. 5), which is expected since  is the mean of the 

alpha-stable distribution for cases where  > 1 (which is indeed true for the cases considered as 

can be noted from Table 1). 

In order to apply the Hermite polynomial model proposed by Yang et al. (2013) and Peng et al. 

(2014), the region of stability in skewness-kurtosis space needs to be established. The stability 

region along with the pairs of computed skewness and kurtosis values for the wind pressure data 

considered in this investigation are shown in Fig. 6. From this figure, it is noted that only a subset 

of the wind pressure data considered are in the stability region. Recent investigations by Peng et al. 

(2014) presented a method to obtain the refined points (for the points slightly away from the 

stability region) for which Hermite polynomial can be fitted. The possible differences in tail 
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behavior of probability density functions for cases having approximately the same values of 

skewness and kurtosis but, falling in different regions of Fig. 6, are examined. The histograms of 1 

second peak wind pressure coefficients for three sets, with each set having two cases (one inside 

the effective region of Hermite polynomial model and the other one outside) with comparable 

values of skewness and kurtosis are shown in Fig. 7. From this figure, it is noted that for the points 

falling outside the stability region, the rising tails are more pronounced and the tail rises slowly 

compared to the corresponding points falling within the stability region. Hence, the Hermite 

polynomial model may not be able to predict the extreme tail information (extreme values of 

1-second peak negative wind pressure coefficients in this case). It is noted that the Hermite 

polynomial approach belongs to a „model-free‟ approach and is a non-parametric approach. It 

disregards the study of underlying process and is completely data-driven, and is highly dependent 

on the construction architecture of the fitting technique used (Fogarasi 2003). While the recent 

investigations by Peng et al. (2014) can be used to fit the Hermite polynomial for the points falling 

slightly away from the stability region, this approach would be considered by the authors in the 

future. 

 

 

Fig. 5 Comparison of location parameters of alpha-stable distribution with mean values of Čp (estimated 

from wind tunnel records) 

 

 

Fig. 6 Skewness and kurtosis for the 1-second peak wind pressure coefficients for the cases considered in 

the present study (see Table 1) and the effective (stability) region for Hermite polynomial model 

(Note: *- the value of kurtosis presented in Table 1 is the excess kurtosis, and the kurtosis presented 

in this figure is obtained by adding 3 to the excess kurtosis) 
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(a) 

  

(b) 

  

(c) 

Fig. 7 Comparison of histograms of 1 second peak wind pressure coefficients for three sets, with each set 

having two cases (one inside the effective region of Hermite polynomial model and the other one 

outside) with comparable values of skewness and kurtosis  

 

 

The cumulative distribution functions (cdf) of 1-second peak wind pressure coefficients, for 

measurement taps 32 and 72, for  = 0 and   = 90 and for the roof pitch angles considered, are 

shown in Figs. 8 and 9, respectively. The cdfs of 1-second peak wind pressure coefficients for 

measurement taps 72, 52, 32, 73 and 74 for  = 45 and roof pitch angle = 0 are shown in Fig. 10. 

The maximum absolute differences between the alpha-stable- and Gumbel- distributions with the 

probability distribution of observed wind pressure coefficients for the lower tail portion 

(probability ≤ 0.2) are estimated, and are given in Table 2. Since only a subset of the data 

considered satisfied the stability criterion of Yang et al. (2013), the Hermite polynomial-based fit 

is not considered in this table. However, this approach would be considered by the authors in the 

future by using the method proposed by Peng et al. (2014). From the results given in Table 2 and 
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Prediction of negative peak wind pressures on roofs of low-rise building 

from the cdfs shown in Figs. 8-10 and similar figures prepared for other measurement taps 

considered, it is noted that in most of the cases, alpha-stable distribution provides a better estimate 

of the lower tail portion of peak wind pressure coefficients. 

 

 

  
(a)                                       (b) 

  
(c)                                       (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 8 Comparison of cdfs of 1-second peak wind pressure coefficients for measurement tap 32: (a) roof 

pitch angle = 0,  = 0; (b) roof pitch angle = 0,  = 90; (c) roof pitch angle = 4.8,  = 0; (d) 

roof pitch angle = 4.8,  = 90; (e) roof pitch angle = 9.4,  = 0; (f) roof pitch angle = 9.4,  = 

90; (g) roof pitch angle = 14,  = 0; (h) roof pitch angle = 14,  = 90 
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 (a)                                       (b) 

  
 (c)                                       (d)    

  
(e) (f) 

  
(g) (h) 

Fig. 9 Comparison of cdfs of 1-second peak wind pressure coefficients for measurement tap 72: (a) roof 

pitch angle = 0,  = 0; (b) roof pitch angle = 0,  = 90; (c) roof pitch angle = 4.8,  = 0; (d) 

roof pitch angle = 4.8,  = 90; (e) roof pitch angle = 9.4,  = 0; (f) roof pitch angle = 9.4,  = 

90; (g) roof pitch angle = 14,  = 0; (h) roof pitch angle = 14,  = 90 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 10 Comparison of cdfs of 1-second peak wind pressure coefficients for  = 45 (roof pitch angle = 0): 

(a) measurement tap 32; (b) measurement tap 52; (c) measurement tap 72; (d) measurement tap 73; 

(e) measurement tap 74; 

 

 

It is known that one of the possibilities for the parent distribution which generates an extreme 

value distribution is that distribution itself (Ang and Tang 1984). Hence, it is justifiable to make an 

assumption that the parent distribution of Čp should have power law decaying tails. This would 

become evident from the phase plane plot of Cp. The plots of Cp versus Ċp (i.e., the rate of change 

of Cp with time) corresponding to the measurement taps considered are prepared. The phase plane 

plots, typically for some of the measurement taps considered, are shown in Figs. 11 and 12. From 
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these figures and similar figures prepared, it is noted that the phase plane plots show large scatter 
suggesting the need to use probability distributions with heavy tails to model the large pressure 

fluctuations, which occur due to the jumps observed in the trace of Cp (see Fig. 4(a)). It is also 

noted that, in general, when the phase plane plot for Cp is symmetrical, the best fitting alpha-stable 

distribution for Čp have  values close to 2 (suggesting normal distribution). 

 

 
Table 2 Fitness of the alpha-stable- and Gumbel- distributions- for the lower tail of probability distribution 

of observed wind pressure coefficients 

Measurement 

tap 


(º) 
Roof pitch angle (º) 

𝑚𝑎𝑥(|𝐹𝑓𝑖𝑡𝑡𝑒𝑑(. ) − 𝐹𝑜𝑏𝑠(. )|)  for lower tail 

(i.e., CDF ≤ 0.2) 

alpha-stable distribution Gumbel (min) distribution 

32 

0 

0 0.029 0.019 

4.8 0.021 0.023 

9.4 0.016 0.017 

14 0.013 0.014 

90 

0 0.014 0.015 

4.8 0.016 0.015 

9.4 0.024 0.016 

14 0.017 0.012 

51 

0 

0 0.027 0.022 

4.8 0.012 0.014 

9.4 0.030 0.017 

14 0.015 0.022 

90 

0 0.012 0.016 

4.8 0.023 0.014 

9.4 0.018 0.017 

14 0.019 0.023 

72 

0 

0 0.028 0.023 

4.8 0.024 0.026 

9.4 0.012 0.022 

14 0.015 0.017 

90 

0 0.013 0.013 

4.8 0.014 0.024 

9.4 0.021 0.015 

14 0.019 0.020 

82 

0 

0 0.020 0.014 

4.8 0.012 0.019 

9.4 0.007 0.024 

14 0.014 0.025 

90 

0 0.021 0.015 

4.8 0.019 0.038 

9.4 0.016 0.015 

14 0.019 0.032 
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32 45 0 0.025 0.035 

52 45 0 0.018 0.026 

72 45 0 0.009 0.082 

73 45 0 0.014 0.018 

74 45 0 0.018 0.028 

52 0 0 0.014 0.011 

54 0 0 0.019 0.014 

56 0 0 0.014 0.033 

52 90 0 0.018 0.020 

54 90 0 0.022 0.016 

56 90 0 0.015 0.014 

52 45 0 0.018 0.026 

54 45 0 0.035 0.081 

56 45 0 0.023 0.024 

52 0 4.8 0.013 0.021 

54 0 4.8 0.019 0.016 

56 0 4.8 0.022 0.009 

52 90 4.8 0.027 0.021 

54 90 4.8 0.021 0.011 

56 90 4.8 0.024 0.016 

52 45 4.8 0.024 0.008 

54 45 4.8 0.022 0.062 

56 45 4.8 0.017 0.030 

52 0 9.4 0.015 0.020 

54 0 9.4 0.020 0.018 

56 0 9.4 0.013 0.015 

52 90 9.4 0.023 0.020 

54 90 9.4 0.012 0.015 

56 90 9.4 0.021 0.015 

52 45 9.4 0.022 0.030 

54 45 9.4 0.019 0.048 

56 45 9.4 0.017 0.016 

52 0 14 0.013 0.011 

54 0 14 0.023 0.015 

56 0 14 0.030 0.010 

52 90 14 0.029 0.016 

54 90 14 0.013 0.014 

56 90 14 0.009 0.015 

52 45 14 0.030 0.027 

54 45 14 0.021 0.075 

56 45 14 0.043 0.050 

(Note: * - since the Hermite polynomial model is not applicable for most of the cases considered in the 

present study, the same is not considered while identifying the best fitting probability distribution) 
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( for 1-sec peaks = 1.75) 

 
( for 1-sec peaks = 1.84) 

 
( for 1-sec peaks = 1.86) 

 
( for 1-sec peaks = 2.00) 

 
( for 1-sec peaks = 1.67) 

 
( for 1-sec peaks = 1.66) 

 
( for 1-sec peaks = 1.72) 

 
( for 1-sec peaks = 1.83) 

Fig. 11 Phase plane plots of wind pressure coefficients for different measurement taps (roof pitch angle = 0) 
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( for 1-sec peaks = 1.63) 

 
( for 1-sec peaks = 1.76) 

 
( for 1-sec peaks = 1.85) 

 
( for 1-sec peaks = 1.96) 

 
( for 1-sec peaks = 1.86) 

 
( for 1-sec peaks = 1.82) 

 
( for 1-sec peaks = 1.81) 

 
( for 1-sec peaks = 1.81) 

Fig. 12 Phase plane plots of wind pressure coefficients for different measurement taps (roof pitch angle = 

9.4) 
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Fig. 13 Ratio of observed- to model- 1-second peak wind pressure coefficients corresponding to 1% 

probability of non-exceedance 

 

 

 

 

Fig. 14 Ratio of observed- to model-1-second peak wind pressure coefficients corresponding to 33% 

probability of non-exceedance 
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To study the efficacy of alpha-stable distribution in modeling the lower tail portion of peak 

wind pressure coefficients, the values of Čp, typically corresponding to 1%- and 33%- probability 

of non-exceedance are determined. The ratio between observed- and model- of 1-second peak 

wind pressure coefficients corresponding to 1%- and 33%- probability of non-exceedance are 

shown in Figs. 13 and 14. In Figs. 13 and 14, „model‟ denote the values of 1-sec peak wind 

pressure coefficients corresponding to the probability of non-exceedance considered assuming Čp 

follows alpha-stable-, Gumbel minimum- or Hermite polynomial-based model (where applicable)- 

distribution. From these figures, it is noted that: 

 

i. For 1% probability of non-exceedance (Fig. 13), the Gumbel minimum distribution gives 

conservative estimates of Čp when the values of Čp are low (less than 1.0). For higher values of Čp, 

the alpha-stable distribution gives conservative estimates of Čp. The performance of the Hermite 

polynomial-based model is comparable with that of alpha-stable distribution. 

ii. For 33% probability of non-exceedance (Fig. 14), the alpha-stable distribution give 

conservative estimates of Čp regardless of the value of Čp. The Gumbel minimum distribution 

gives lower estimates of Čp for most of the cases. The performance of the Hermite 

polynomial-based model is comparatively better than the performances of the alpha-stable 

distribution and the Gumbel minimum distribution. 

 

The above results suggest that to predict maximum suction wind pressure coefficients, 

alpha-stable distribution is a suitable candidate distribution. The alpha-stable distribution has an 

advantage that it is consistent with the physical processes proposed in the literature for explaining 

large fluctuations at the roof corners. The generality and flexibility offered by alpha-stable 

distribution makes it a candidate distribution as a single model (Fama and Roll 1968) for 

predicting the extreme values of negative peak wind pressure coefficients at different regions on 

the building roof. The alpha-stable distribution can be used to estimate the extreme peak negative 

wind pressure coefficients.  

 

 
8. Conclusions 
 

In this paper, the alpha-stable distribution is proposed for prediction of peak wind pressure 

coefficients on roofs of low-rise buildings. The use of alpha-stable distribution is justified through 

its generality (generalized central limit theorem) and the physics of non-Gaussian diffusion 

process. The fit of alpha-stable distribution for peak wind pressure coefficients is explored using 

wind tunnel experiment data obtained from the aerodynamic database of Tokyo Polytechnic 

University. The predictions are compared with those actually measured during wind tunnel 

experiments, and those predicted by using Gumbel minimum and Hermite polynomial-based 

model (where applicable). From the comparisons, it is noted that the proposed model can be used 

to estimate the peak negative wind pressure coefficients.          
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Appendix 
 

Estimation of Parameters of Alpha-Stable Distribution 
 

Different methods have been proposed in literature for the estimations of the parameters , , c 

and  of the alpha-stable distribution. Fama and Roll (1968) suggested a quantile-based method for 

estimation of characteristic exponent and scale parameter of symmetric alpha-stable distributions 

with  = 0. However, this method is applicable only for distributions with >1. This method has 

been modified by McCulloch (1986) to include even non-symmetric distributions with  in the 

range [0.6, 2.0]. Koutrouvelis (1980) proposed a characteristic function-based method involving 

an iterative regression procedure for estimation of the parameters of the alpha-stable distribution. 

Kogon and Williams (1995) improved this method by eliminating the iterative procedure and 

simplifying the regression. Ma and Nikias (1995) and Tsihrintzis and Nikias (1996) proposed the 

use of fractional lower order moments (FLOMs) for estimating the parameters of symmetric 

alpha-stable distributions. Bates and McLaughlin (2000) studied the performances of the methods 

proposed by McCulloch (1986), Kogon and Williams (1995), Ma and Nikias (1995) and 

Tsihrintzis and Nikias (1996) using two real data sets. They found that there are marked 

differences between the results obtained using the different methods. In the present study, the 

parameters , , c and  of the alpha-stable distribution are estimated using an optimization 

procedure by minimizing the sum of squares of the difference between the observed cumulative 

distribution function (empirical distribution function) and the cumulative distribution function 

(CDF) of the alpha-stable distribution.  

 

In the present study, the parameters , , c and  of the alpha-stable distribution are estimated 

using an optimization procedure by minimizing the sum of squares of the difference between the 

observed cumulative distribution function (empirical distribution function) and the cumulative 

distribution function (CDF) of the alpha-stable distribution. The procedure used is as follows: 

 

1. Given the N ordered observed data points x1, x2, x3, …,xN, define the empirical distribution 

function as  

 
1


N

)i(n
iEN               (A-1) 

where n(i) is the number of data points less than or equal to xi, and xi are ordered from smallest to 

largest value. 

 

2. Define the objective function as 

    



N

i

iSN ,,,;xF
~

iEZ
1

2

             (A-2) 

where   ,,,;xF
~

iS  is the CDF of the alpha-stable distribution. ~ denotes the fact that the 

form of distribution function is generally not available and has to be approximated numerically. 
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Determine , , c and  by minimizing Z subject to the constraints 20  , 11    and 

0c . In the present study, the minimization is carried out using the constrained nonlinear 

optimization function available in the software MATLAB. The CDF of the alpha-stable 

distribution,   ,,,;
~

iS xF , is computed by numerical integration [23]. 
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