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package was compared with wind tunnel results. Huang et al. (2006) and Awruch (2009) 
investigated the wind effect on CAARC tall building with the help of CFD (Computational Fluid 
Dynamics) packages. Cluni et al. (2011), presented the effects of wind action on a regular building 
with a prismatic shape and an irregular tall buildings whose external shape was inspired by that of 
Bank of China Tower in Hong Kong with the help of higher order statistical moment analysis by 
the high frequency force balance (HFFB) technique. Some detailed field measurement of super tall 
buildings have also been conducted. Kim et al. (2008) conferred the effects of the tapper ratio and 
the damping ratio on reducing the across-wind excitation of tall buildings by increasingly reduced 
velocity. The paper concluded that it is better to increase damping ratio than to increase tapering 
ratio to reduce the RMS across wind response. Fu et al. (2008) enumerated field measurements of 
the characteristics of boundary layer and storm response of two super tall buildings. The wind 
tunnel data showed good convergence with the field data. Au et al. (2012) carried out field 
investigation on modal properties of two tall buildings. Bashor et al. (2012) and Yi et al. (2013) 
have also performed field measurements of tall buildings. Other works carried out in the field of 
wind engineering include but are not limited to wind-induced natural ventilation (Cheng et al. 
2011), wind resource assessment (Song et al. 2014), wind effect on bridges (Kwok et al. 2012) and 
reliability based design optimization of structures subjected to wind load (Spence and Gioffre 
2012). 

However, literature on irregular plan tall building is quite limited. Gomes et al. (2005) and 
Amin and Ahuja (2012) are among the few researchers to have investigated wind effect on 
irregular shapes. Further, insufficiency in information regarding irregular plans in various 
international wind load standards (ASCE 7-10, IS-875 (Part 3), AS/NZS: 1170.2, NBC (Part 4)) 
have called for research on this area.  

In current work, wind generated pressure on different faces of a ‘Y’ plan shape tall building 
have been experimentally determined with help of wind tunnel tests. Further, the results have been 
compared with numerical results obtained from Computational Fluid Dynamics (CFD) package 
CFX. Although ‘Y’ plan is quite common, experimental data for such shape is quite rare. A brief 
study on such plan has been carried out by Hayashida and Iwasa (1990).  

The objective of our current study is to assess the pressure generated on different faces of a ‘Y’ 
plan building due to different wind angles. Further, effect of change in wind incidence angle on 
pressure coefficient of different faces have also been studied. 

 
 

2. Experimental program 
 

2.1 Flow characteristics  
 
The experiment was conducted at a boundary layer wind tunnel located at Indian Institute of 

Technology Roorkee, India. The wind tunnel is having a cross-sectional area of 2 m×2 m. The test 
section is 38 m long with a round table located at 12m from the upstream side (Fig. 1). Wind 
effects on the model for various wind incidence angle can be studied by rotating the round table at 
desired angle. The experimental flow was simulated similar to that of terrain category II as per 
Indian wind load code IS: 875 – 1987 (Part 3) at a geometric scale of 1:300. Terrain category II 
corresponds to open terrain with well scattered obstructions having height between 1.5 m to 10 m. 
Gradient height for terrain category II is 300m (1m in wind tunnel). The power law index (α) of 
the wind tunnel is 0.133. Mean wind speed of 10m/s was maintained in the wind tunnel. Blocks 
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boundary layer depth and α is the exponent of the velocity profile and takes the value 0.133 in this 
case. The boundary layer velocity was considered as 10 m/s and reference pressure was considered 
as 1 atm. A comparison of ABL profile as obtained from wind tunnel and used for numerical 
analysis has been shown in Fig. 6. Further the variation of turbulence intensity with height has 
been shown in Fig. 7. The outlet has been modelled as a pressure outlet with relative pressure of 0 
Pa. The side walls and the ground of the domain has been considered as free slip wall. However, 
the surface of the model are considered as no slip wall. The different boundary conditions are 
shown in Fig. 4. 
 
 
 

 
 

Fig. 4 Details of domain and boundary condition; (a) plan and (b) elevation  
 
 

 

   

 

   

Fig. 5 Grid pattern around the model Fig. 6 Velocity profile near the model obtained 
from numerical and experimental method 
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Fig. 9 Flow around the model for 60° wind angle; (a) k-ε method and (b) SST method 

 
 

 
Fig. 10 Flow around the model for 90° wind angle; (a) k-ε method and (b) SST method 

 
 
4.2 Pressure distribution 
  
Nomenclature of different faces of the ‘Y’ plan shaped building is shown in Fig. 11. For 0° and 

60° wind angles, the symmetrical faces are having identical pressure distribution due to symmetry 
in flow pattern and thus investigating pressure variation on five faces is sufficient to understand 
the pressure variation on all the faces of the ‘Y’ plan building. However for 90° wind incidence 
angle, investigating all the nine faces of the ‘Y’ plan shaped building is essential. Fig. 12 shows 
the pressure distribution on different faces of the model, as obtained from k-ε method, for normal 
incidence angle. As expected, positive pressure has been observed on Face A with maximum 
pressure at stagnation point. The pressure decreases as we move toward the edges. Furthermore, a 
symmetry in pressure variation is observed about the vertical centerline. Face B (B1 and B2) have 
experienced positive pressure due to interference effect of Face C (C1 and C2). Wind reverts back 
after hitting Face C and results in positive pressure on Face B. Face C is also subjected to positive 
pressure. However, the edge near Face D (D1 and D2) have experienced suction. Leeward faces, 
namely Face D and Face E (E1 and E2) are subjected to suction.   

The pressure contours for 60° wind angle, as obtained from k-ε method are shown in Fig. 13. 
Face A and D2 are predominantly subjected to negative pressure with a thin line of high suction 
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near the edge due to separation of flow from the edges of Face B2. Face B2 and C2 are having 
identical pressure variation with maximum pressure at the stagnation zone. Leeward faces, viz., 
Face B1, C1, E2, E1 and D1 are subjected to suction. Pressure contour on Face D1 is symmetrical 
about the vertical centerline with maximum pressure near the top. Furthermore, Face B1 and C1 
are having identical pressure distribution as that of Face E2 and E1 respectively. 

The pressure contours for 90° wind angle, as obtained from k-ε method are shown in Fig. 14. 
While, faces B2, C2 and D2 are predominantly subjected to positive pressure, all the other faces 
have experienced suction. While maximum suction (Cp= -1.22) is observed on Face E2 due to 
separation of flow from the edge of Face D2, maximum positive pressure (Cp=1.00) is observed on 
Face C2. 

 
4.3 Experimental versus numerical results  

 
Sectional plots showing the variation of pressure in terms of pressure coefficient at a height of 

150 mm for wind incidence angle of 0° and 60° are shown in Figs. 15 and 16 respectively. Since 
no experiment was conducted for 90° wind angle, the sectional plot for the same has not been 
shown. The pressure distribution as obtained from the numerical models, namely k-ε and SST 
model, and the wind tunnel experiment are identical in nature. Even the pressure variation at the 
zones of separation of flow, i.e., Face B and face D is identical. However, SST method yields 
pressure coefficient of higher magnitude. 

Figs. 17 and 18 shows the comparison of pressure coefficient along the vertical and horizontal 
centerline as obtained from the two numerical models and wind tunnel test for normal incidence 
angle. The results obtained from the two numerical method are having a good agreement with the 
experimental results with maximum discrepancy observed in case of Face D. For windward faces, 
the result obtained from k-ε model are having better agreement with the experimental results as 
observed from Fig. 16 whereas SST model yields better result for the leeward surfaces. 
 
 
 

Fig. 11 Nomenclature of different faces of ‘Y’ plan model along with the two wind angles 
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Fig. 12 Pressure contour on different face of ‘Y’ plan model for normal incidence angle 

 

 
Fig. 13 Pressure contour on different face of ‘Y’ plan model for 60° wind angle 

 

 

Fig. 14 Pressure contour on different face of ‘Y’ plan model for 90° wind angle; (a) Face A, (b) Face B1, 
(c) Face B2, (d) Face C1, (e) Face C2, (f) Face D1, (g) Face D2, (h) Face E1 and (i) Face E2 
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Figs. 19 and 20 demonstrates the pressure coefficient along the vertical and horizontal 
centerline as obtained from the two numerical models and wind tunnel test for 60° wind incidence 
angle. The general agreement among the results is quite good on all the surfaces. However on a 
closer inspection, SST model is found to overpredict the pressure generated on different faces of 
the model in low turbulent zone. As a result, pressure coefficient obtained from SST method on the 
top half of the building is having higher magnitude as compared to k-ε model and wind tunnel 
results. Similar to the normal incidence angle, k-ε model predicts accurate result along the 
horizontal centerline of the windward surfaces whereas SST model yields better result for the 
leeward surfaces. 
 
 

 

Fig. 15 Sectional plot of pressure at 0.15m height for 0° wind angle 
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Mean surface pressure coefficients on different faces of the ‘Y’ plan building as obtained from 

the experimental and numerical method have also been compared. While Table 1 presents the 
surface pressure coefficient for normal incidence angle, Table 2 presents the same for 60° wind 
angle. Good agreement among the experimental and the numerical methods has been observed 
with SST model yielding results of higher magnitude. SST model overpredicts the pressure at 
point of separation of flow. As a result, SST method have yielded quite high suction for Face D 
and Face E for normal incidence angle. 
 
 
 

 

Fig. 16 Sectional plot of pressure at 0.15m height for 60° wind angle 
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Fig. 17 Pressure co-efficient along the vertical centreline on different faces of ‘Y’ plan model for 
incidence angle 00 

 

Fig. 18 Pressure coefficient along the horizontal centerline for normal incidence angle 
 

Fig. 19 Pressure co-efficient along the vertical centreline on different faces of ‘Y’ plan model for 
incidence angle 600 
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Fig. 20 Pressure coefficient along the horizontal centerline for 60° wind incidence angle 
 
 

Table 1 Comparison of mean surface pressure coefficient on different faces of ‘Y’ plan building for 
normal incidence angle 

Location 

Mean Cp 

Remarks 
k‐　 SST Wind Tunnel 

FACE A 0.607 0.726 0.666 

(-ve) indicates 
suction 

FACE B1, FACE B2 0.224 0.267 0.189 

FACE C1, FACE C2 0.262 0.269 0.330 

FACE D1, FACE D2 -0.373 -0.572 -0.347 

FACE E1, FACE E2 -0.292 -0.442 -0.279 

 
 

Table 2 Comparison of mean surface pressure coefficient on different faces of ‘Y’ plan building for 60° 
wind incidence angle 

Location 
Mean Cp 

Remarks 
k‐ SST Wind Tunnel 

FACE A, FACE D1 -0.523 -0.676 -0.621 

(-ve) indicates suction

FACE B1, FACE C1 0.679 0.760 0.715 

FACE E1, FACE B2 -0.406 -0.551 -0.461 

FACE E2, FACE C2 -0.371 -0.512 -0.459 

FACE D2 -0.321 -0.475 -0.391 
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4.4 Comparative study  
 
Graphical plots representing effects of change of wind angle on different faces of the ‘Y’ plan 

building are shown in Figs. 21 and 22. Pressure on all the faces have been compared along the 
vertical centerline for the three wind incidence angles. The comparison along the perimeter has 
been carried out at a height of 0.35 m. The key features observed are discussed below: 
 
 

 

Fig. 21 Comparison of pressure coefficient along the vertical centerline on different faces of the ‘Y’ plan 
model; (a) Face A, (b) Face B1, (c) Face B2, (d) Face C1, (e) Face C2, (f) Face D1, (g) Face D2, 
(h) Face E1 and (i) Face E2 
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Fig. 22 Comparison of pressure coefficient along the perimeter of the ‘Y’ plan model at a height of 0.35m. 
The end point of each face is marked in the figure 

 
 

• Nature of pressure on faces A, B1 and C1 has changed with change in wind angle (Figs. 
20(a), 20(b) and 20(d)). While positive pressure is observed for normal incidence angle, 
suction is observed for 60° and 90° wind incidence angles. 

• Face B2 and C2 have experienced positive pressure for all three wind incidence angles 
(Figs. 20(c) and 20(e)). Furthermore for Face B2 (Fig. 20(c)), pressure coefficient obtained 
for 60° and 90° wind angles are identical. 

• Faces D1, E1 and E2 have experienced suction for all three wind incidence angles (Figs. 
20(f), 20(h) and 20(i)). Furthermore for all the three faces, maximum suction is observed 
for 90° wind incidence angle. 

• Although Face D2 has experience suction for 0° and 60° wind incidence angles, positive 
pressure is observed for 90° wind incidence angle (Fig. 20(g)).  

• The nature of variation along the perimeter at 0.35m height for 60° and 90° wind angles 
are identical with only variation observed for Face D2 (Fig. 21). 

 
 

5. Conclusions 
 

Present study has shown that wind induced pressure on a ‘Y’ plan shape building is quite 
different from that of a regular rectangular plan building. The work was carried out with help of 
wind tunnel test and CFD simulation on this particular plan building for wind incidence angle of 
0° and 60°. Two numerical models, namely k-ε and SST model has been used for the numerical 
simulation. The significant outcomes of the current study are summarized as follow:  

 
1. Symmetry in flow pattern has resulted in identical pressure distribution on symmetrical faces 

for 0° and 60°, 90° wind angles. However, no such symmetry is present for 90° wind angle. 
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2. For normal incidence angle, side faces, namely Face B1 and B2 have experienced positive 
pressure due to interference effect. However no such interference effect is observed for 60° and 
90° wind angle. 

3. Good agreement has been observed among the numerical and experimental results. Overall 
accuracy of k-ε model is better as compared to SST model. However, SST model predicts 
pressure in high turbulence zone with higher degree of accuracy. 

4. Nature of pressure on Face A, B1 and C1 has reversed due to change in wind angle. While 
positive pressure is observed for 0° wind angle, suction occurs for 60° and 90° wind angles.  

5. Critical pressure on faces B1, D1, E1 and E2 is observed for 90° wind angle. Similarly, faces 
B2, C2 and D2 have experienced critical pressure for 60° wind angle.  
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