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Abstract.    This paper examines the nonlinear behaviour of corrugated steel plate shear walls under lateral 
pushover load. One of the innovations in these types of walls which have used in recent years is the use of 
the corrugated steel shear walls rather un-stiffness plates. In the last decades many experimental studies have 
been done on the on the corrugated steel shear walls. A finite element analysis that includes both material 
and geometric nonlinearities is employed for the investigation. A comparison is made between the behaviour 
of steel shear walls with sinusoidal corrugated plate and trapezoidal corrugated plate. The effects of 
parameters such as the thickness of the corrugated plate, the corrugation depth in the corrugated plates and 
the corrugation length of the infill of the corrugated plates, are investigated. The results of this study 
have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy 
dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material 
consumption. 
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1. Introduction 
 

Experimental and numerical studies conducted in the past three decades have demonstrated that 
a steel plate shear wall is an effective and economical lateral load resisting system against both 
wind and earthquake forces. In recent years, it has been demonstrated that steel plate shear walls 
can act as an effective and economical lateral bracing system. In particular, steel plate shear walls 
will respond to seismically-induced loading with a high degree of stiffness, stable load versus 
deflection behavior, and a capacity for significant energy dissipation 

A steel plate shear wall is consisted of steel in-fill plates bounded by column-beam system. 
When these in-fill plates occupy each level within a framed bay of a structure, they constitute a 
steel plate shear wall. Steel plate shear walls are well-suited for new construction and are also a 
relatively simple means for the seismic upgrading of existing structures. Both steel and concrete 
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frame buildings can be upgraded with steel plate shear panels.(Astaneh-Asl 2001, Behbahanifard 
2003). 

This system with its thin plate shows a good strength against lateral loads imposed on the 
structure using its own post-buckling behavior. The efficiency of shear walls in resisting lateral 
forces induced by earthquakes or wind in multi-storey buildings has long been recognized. They 
are often used in multi-storey buildings if other structural elements such as moment-resisting 
frames are insufficient to resist the lateral forces.The benefits of this system include high ultimate 
bearing, perfect plasticity, high energy absorption capacity, appropriate stiffness, reduced structural 
weight, lower foundation construction costs, better quality and high-speed construction. A properly 
designed steel plate shear wall has superior ductility, high initial stiffness, stable hysteresis loops, 
and good energy absorption capacity (Berman et al. 2003). 

The infill plates can be stiffened or unstiffened and the beam-to-column connections can be 
rigid or shear connections. In unstiffened walls, a series of flat plates with light thickness is used 
for utilizing the post-buckling field under overall buckling. In the second type of wall, a belt series 
or steel profiles are utilized as stiffeners with different arrangements ‒ horizontal, vertical and 
diagonal ‒ on one side or both sides of the wall until the energy dissipation, stiffness and ultimate 
bearing are increased.  

The performance of steel shear walls is similar to that of the plate girder, the plates, columns 
and beams are the same as its webs, flanges and stiffeners, respectively (Breman et al. 2005, 
Driver 1998, Sabouri-Ghomi et al. 2008). Investigations into stiffened and unstiffened steel shear 
walls and more experimental and theoretical works have been carried out by many researchers. 
Some researcher that have studied in this field: analytically, experimentally and 
numerically (Breman 2001, Bruneau 2002, Formisano et al. 2006, De Matteis et al. 2008, 
Bhowmick et al. 2011, Chen et al. 2011, Choi et al. 2010 and Clayton et al. 2011, Bayat et al,. 
2014).  

Corrugated steel plates, due to their ductility and low cost, are an appropriate alternative system 
in these walls. On the other hand, in corrugate plates, the plate’s wave function is similar to that of 
the stiffeners and it has appropriate stiffness too. The investigations of steel shear walls 
with corrugated plates are limited and more activities in this field have been done on the plate 
girder system. In the plate girder system, the plates are used vertically in a web. The investigations 
of plate girders with corrugated steel plates as a web are limited to the laboratory activities of, 
(Elgaaly et al. 1996, 1997, Usman 2001, Wang 2003, Gentilinia et al. 2008, Kovesdi 2010, Tanaka 
et al. 2008, Sause et al. 2008). Laboratory research on the steel frame with the corrugated plate is 
limited to the work of, (Chosa 2006, Stojadinovic et al. 2007), who have studied the experimental 
and numerical aspects of the shear steel panels with corrugated trapezoid-shaped plates under 
cyclic and uniform loads.  

All of the above researches on steel shear walls with corrugated plates have been experimental 
and have examined only the overall behaviour of the walls under uniformly and cyclic lateral 
loading, indicating in the end the advantages of this system. According to experimental activities 
and the outcomes of these types of studies, the investigation has been limited to negligible 
components of these systems, neglecting different aspects of the corrugated plate, such as the 
effect of plate thickness on the walls, the effect of the height and length of the plate’s wave, and 
other parameters on the behaviour of these walls. Hence, in this paper these parameters have been 
studied. 
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Eq. (4(a)) is used when the plate boundary conditions are simple, such as for corrugated plates 
that are in the web of the plate girder, while Eq. (4(b)) is used for the longer edges that are simply 
supported with the shorted edges clamped; Eq. (4(c)) is used when all edges are clamped. The 
sample of clamped boundary conditions on the short edge of the plate’s corrugate is used in the 
composite beam, with a web of corrugated plates and concrete flanges. This system is usually used 
in bridge construction. 

In Eq. (2), if the inclined width of the corrugated plate a is larger than the horizontal panel 
width of the inside trapezoidal plate b, it should be considered as the critical width, in which case 
the inclined width of the plate is the critical zone of its local buckling mode 

.
5.34

2s
w w

s h
k

h t
                     Sinusoidal (5)

 

Where h is the height of sinusoidal waves. 
According to the stated conditions, if 0.8l y   then inelastic local buckling will occur on the 

plate; therefore, inelastic buckling stress is defined by (Galambos 1998) 

, 0.8l i l y    (6)

In the equation above, l  is shear stress due to local buckling and ,l i is shear stress due to 

inelastic local buckling on the corrugated plate. 
According to Fig. 5, the global buckling is formed with global diagonal buckling of the multi- 

waves in the corrugated plate. In this case, the critical shear stress is estimated with respect to the 
corrugated plate as an orthotropic plate. The critical shear stress of this mode is defined by 
(Sayed-Ahmed 2005, 2007, Kiymaz et al. 2010) 
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Where gk  is the global buckling coefficient, which is a function of the panel aspect ratio and 

the boundary conditions. In a trapezoidal corrugated plate, it is 36 when the longer edges are 
simply supported and the shorted edges are clamped, such as in the web plate on a plate girder. It 
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is 68.4 for plates where all the edges are clamped, such as in the web plate on a composite beam. 
In a sinusoidal corrugated plate, gk is 32.4 for simply supported and 60.4 for clamped boundary 

conditions. The factors xD and yD are plate rigidities in the longitudinal, x, and traverse, y, 

direction that are given as 
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where a is the inclined panel width in the trapezoidal plate, d is the horizontal projection of the 
inclined panel width, w is the horizontal projection of the one wave on the sinusoidal plate and 

yI is the second moment of the area of one wave length of the web, which has a projected length 

as defined by (Szilard et al. 2004) 
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If 0.8g y  , then inelastic buckling will happen on the plate and the inelastic critical shear 

stress for the global buckling mode will be as given by (Galambos 1998).  

, 0.8l g g y    (14)

 

In the equation above, g is shear stress due to global buckling and ,g i is shear stress due to 

inelastic global buckling in the corrugated plate. 
Elgaaly (1996) in his laboratory research on the trapezoidal corrugated plates has shown that if 

the waves of the corrugated plate are large then the local buckling can form in the horizontal 
portion of each corrugated plate; however, if the lengths of waves are small then the global 
buckling can form in the plate without control. 

 However, these equations above were used on a plate girder with trapezoidal and sinusoidal 
waves. Therefore, this paper refers to the comparison of results obtained by the finite element 
method. 
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3. Numerical Modeling and analyses of steel shear wall  
 
 

 
(a) (b) 

Fig. 5 the schematic corrugated steel shear wall with a) sinusoidal and b) trapezoidal waves 
 
 
The numerical analyses were performed on one-storey and one-span wall of 3000 mm width 

and 2600 mm height. The boundary element was IPB180 for columns and IPE180 for beams. The 
infill plate used in this wall was a sinusoidal and trapezoidal corrugated plate, rigidly connected to 
the surrounding frame. The geometry and meshing configurations of these walls are shown in Fig. 
5. The walls were supported by clamps on the bottom of the wall, giving simple support in the 
out-of-plane direction for the prevention of out-of-plane displacement all around the frame. In 
these models, an elastic-plastic material model was assumed with a yield strength value of 240 
Mpa, a modulus of elasticity of 200 Gpa, a Poisson ratio of 0.3 and a tangent modulus of 3% of 
the modulus of elasticity. Additionally, geometric nonlinearity was used because of the large 
displacement. 

 
 

4. Evaluation of the parametric study results 
 
In this part, the results of the effects of some geometric properties, such as thickness of plate, 

depth or wave height of plate, length of wave, corrugated density and stiffness of beam and 
column, on corrugated steel walls were investigated. The results of these parameters are presented 
in detail. 

 
4.1 The thickness effect of the corrugated plate 
 
The thicknesses that are considered for the study of the effect of thickness on sinusoidal and 

trapezoidal corrugated plate are 1.5, 3, 5, 10, 15 and 20 mm. In these models, the columns and 
beams were considered to be IPB180 and IPE 180. The geometric properties of the applied plates 
are demonstrated in Figs. 2 and 3 and tables 1 and 2. In these tables, w is the horizontal projection 
of the single wave on the sinusoidal plate, b is the horizontal panel width in the trapezoidal plate, h 
is the corrugation magnitude, wt is the plate thickness, s is the unfolded length of one corrugation in 
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4.4 Comparison behavior of corrugated plates with similar corrugation density 
 
Based on the results of of various factors on steel shear wall behaviour with sinusoidal and 

trapezoidal corrugated plates, in this part, the behaviour of two types of plate with similar depth, 
length and corrugation density have been compared. Sinusoidal and trapezoidal corrugated plates 
with different thickness of 3, 5, 8, 10, 12 and 15 mm were used for this comparison. The results for 
the uniform load for these specimens are shown in Table 7. 

These results demonstrate that for plates with similar weight and geometric characteristics, the 
ultimate bearing, energy dissipation and ductility show an increasing trend with increasing plate 
thickness. However, comparing these plates shows that the trapezoidal corrugated plate has better 
behaviour as demonstrated through better ultimate bearing, ductility and energy dissipation values. 
Furthermore, the sinusoidal corrugated plate has slightly more stiffness than the trapezoidal 
corrugated plate. 

 
 

5. Conclusions 
 
In this paper, an investigation into the geometric characteristics of sinusoidal and trapezoidal 

corrugated one-storey steel shear wall when subject to uniform lateral load was carried out. The 
following results were obtained: 

1. With increasing corrugated plate thickness in steel shear walls, the ultimate bearing, ductility 
and energy dissipation increase significantly. The results obtained for sinusoidal and trapezoidal 
types of corrugated plates with similar corrugation depths show that increasing the plate thickness 
in sinusoidal plates produces greater stiffness and ultimate bearing compared to trapezoidal plates, 
but the ductility of trapezoidal plate increased with thickness changes. 

2. The other parameter investigated in this paper was the corrugated depth. The corrugated 
depth has greater effects on stiffness, ultimate bearing and energy dissipation of the sinusoidal 
plates compared to the trapezoidal corrugated plates. 

 3. The study of corrugation length in the corrugated plates shows that the ultimate bearing is 
decreased with increases in the corrugation length, but also that length has no effect on the 
stiffness of the sinusoidal plate. However, the stiffness of the trapezoidal plate increases with 
increased corrugated length and the ductility is decreased. 

4. The comparison of the results obtained for sinusoidal and trapezoidal corrugated plate show 
that the trapezoidal corrugated plates have better performance and are the corrugated plate needed 
for steel shear walls with specific weight, thickness, corrugation depth and length, and will ensure 
better ultimate bearing, energy dissipation, ductility and stiffness. 
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