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Abstract.    Stochastic processes are used to represent phenomena in many diverse fields. Numerical 
simulation method is widely applied for the solution to stochastic problems of complex structures when 
alternative analytical methods are not applicable. In some practical applications the stochastic processes 
show non-Gaussian properties. When the stochastic processes deviate significantly from Gaussian, 
techniques for their accurate simulation must be available. The various existing simulation methods of 
non-Gaussian stochastic processes generally can only simulate super-Gaussian stochastic processes with the 
high-peak characteristics. And these methodologies are usually complicated and time consuming, not 
sufficiently intuitive. By revealing the inherent coupling effect of the phase and amplitude part of discrete 
Fourier representation of random time series on the non-Gaussian features (such as skewness and kurtosis) 
through theoretical analysis and simulation experiments, this paper presents a novel approach for the 
simulation of non-Gaussian stochastic processes with the prescribed amplitude probability density function 
(PDF) and power spectral density (PSD) by amplitude modulation and phase reconstruction. As compared to 
previous spectral representation method using phase modulation to obtain a non-Gaussian amplitude 
distribution, this non-Gaussian phase reconstruction strategy is more straightforward and efficient, capable 
of simulating both super-Gaussian and sub-Gaussian stochastic processes. Another attractive feature of the 
method is that the whole process can be implemented efficiently using the Fast Fourier Transform. Cases 
studies demonstrate the efficiency and accuracy of the proposed algorithm. 
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1. Introduction 
 

Engineering structures are often subjected to stochastic loadings such as earthquakes, winds or 
ocean waves. Most loadings in nature can be modeled as Gaussian processes in light of the central 
limit theorem. However, the stochastic processes show non-Gaussian properties in some practical 
applications, such as the random vibrations generated by wheeled vehicles travelling over irregular 
terrain, and wind pressure fluctuations on building envelopes. Numerical simulation method is 
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widely applied for the solution to stochastic problems of complex structures when alternative 
analytical methods are not applicable. When the stochastic processes deviate significantly from 
Gaussian, techniques for their accurate simulation must be available.  

The simulation of Gaussian processes has been explored for several decades, while 
non-Gaussian simulation has not been as widely addressed. Yamazaki and Shinozuka (1988) 
proposed a method of simulating non-Gaussian time series by a nonlinear static transformation 
from Gaussian to non-Gaussian with the aid of an iterative procedure. Spectral Correction method 
based on modified Hermite polynomial transformation for the simulation of a class of non-normal 
random processes has been presented by (Gurley 1996). Seong and Peterka (1998) presented a new 
method based on the Fourier representation of random time series for generating artificial 
surface-pressure time series focused on the simulation of non-Gaussian spiky fluctuation features. 
Suresh Kumar and Stathopoulos (1999) presented an efficient and practical method based on the 
Fast Fourier Transform (FFT) for the digital generation of univariate non-Gaussian wind pressure 
time series on low building roofs. Gioffrè et al. (2000) proposed a simulation algorithm using the 
correlation-distortion method based on translation vector processes to generate non-Gaussian wind 
pressure fields. Choi and Kanda (2003) reviewed several simulation methods based on the 
translation method using logarithmic and polynomial functions for simulating the non-Gaussian 
stationary process. Phoon and Huang (2005) proposed a simulation algorithm using 
Karhunen-Loeve expansion to generate strongly non-Gaussian processes. Yu (2008) presented an 
algorithm for generating super-Gaussian random loadings by the Fast Fourier Transform (FFT) 
and second phase modulation (SPM). Bocchini and Deodatis (2008) reviewed and introduced the 
latest developments of a class of simulation algorithms for strongly non-Gaussian random fields. 
Poirion and Puig (2010) presented a simulation technique of multivariate non-Gaussian random 
processes and fields based on Rosenblatt's transformation of Gaussian processes. Shields and 
Deodatis (2011) presented a technique for simulation of strongly non-Gaussian stochastic vector 
processes using translation process theory. Zentner et al. (2011) presented a new method for 
generating synthetic ground motion based on Karhunen-Loeve decomposition and a non-Gaussian 
stochastic model. Aung and Ye (2011) presented a stochastic non-Gaussian simulation algorithm 
using a cumulative distribution function (CDF) mapping technique that converges to a desired 
target power spectral density. Yura and Hanson (2012) proposed a simulation method of 
two-dimensional random fields with arbitrary power spectra and non-Gaussian probability 
distribution functions. The method  relies on initially transforming a white noise sample set of 
random Gaussian distributed numbers into a corresponding set with the desired spectral 
distribution, after which this colored Gaussian probability distribution is transformed via an 
inverse transform into the desired probability distribution. Li and Li (2012) presented a direct 
simulation algorithm by expanding the autoregressive (AR) model and the autoregressive moving 
average (ARMA) model for the generation of a class of non-Gaussian stochastic processes 
according to target lower-order moments and prescribed power spectral density (PSD) function. Ye 
and Liu (2012) presented a simplified simulation method of non-Gaussian wind load based on the 
inverse fast Fourier transform (IFFT), in which the amplitude spectrum is established via a target 
power spectrum and the phase spectrum is constructed by introducing the exponential peak 
generation (EPG) model. Luo et al. (2012) presented a simulation methodology of the stationary 
non-Gaussian stochastic wind pressure field based on the zero memory nonlinearity translation 
method and the spectral representation method. Li and Wang (2012) presented an exponential 
model for fast simulation of multivariate non-Gaussian processes with application to structural 
wind engineering. Vargas-Guzmán (2012) presented new parametric heavy-tailed distributions for 
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non-Gaussian simulations with higher-order cumulant parameters predicted from sample data. 
Aung and Jihong (2012) developed a new wavelet-based CDF mapping technique for simulation 
of multivariate non- Gaussian wind pressure process. Shields and Deodatis (2013) presented a 
simple and efficient methodology to approximate a general non-Gaussian stationary stochastic 
vector process by a translation process. 

As mentioned above, there is a wide range of different methodologies in the literature for 
simulation of non-Gaussian stochastic processes. In general, these previous methods can be 
broadly classified into three categories as follows: 1) ARMA class model with non-Gaussian white 
noise, 2) translation process-based, or nonlinear static transformation (NST), from the Gaussian 
random processes to non-Gaussian processes and 3) the spectral representation method. For 
category 1, the ARMA approach is based on the simple and well-known theory of linear difference 
equations and is computationally efficient. However, ARMA models cannot represent data 
exhibiting sudden spikes of very large amplitude at irregular intervals and having negligible 
probability of very high level crossings; therefore, these are not suitable for representing strong 
non-Gaussian time series. For category 2, the basic feature of translation process-based method is 
to generate a non-Gaussian translation field by mapping an underlying Gaussian process to the 
desired non-Gaussian marginal probability distribution function (PDF) according to a prescribed 
power spectral density (PSD). The translation process-based method usually employs iterative 
schemes to match both the prescribed non-Gaussian marginal PDF and PSD function. But because 
the transformation of Gaussian process to non-Gaussian process will change both the PDF and 
PSD in the same time, it is unable to ensure the compatibility between prescribed non-Gaussian 
PDF and PSD. The spectral representation method, of category 3, is based on discrete Fourier 
representation of random time series, which consists of the superposition of sinusoids at discrete 
frequencies that possess deterministic amplitude and random phase. The spectral representation 
method calculates the amplitude part of the Fourier coefficient (modulus of sinusoids) by the 
specified PSD, and approximates the non-Gaussian parameters (such as skewness and kurtosis) of 
a given amplitude PDF by changing the phase part of the Fourier coefficient (phase angles of 
sinusoids). Since the phase part is free from the second-order properties of random time series 
(such as PSD), the spectral representation simulation methodology can ensure the compatibility 
between prescribed Non-Gaussian PDF and PSD. However, previous spectral representation 
methods only consider and utilize the impact of the Fourier phase coefficients for non-Gaussian 
characteristics. Therefore, according to the central limit theorem, changing the randomness of the 
uniformly distributed random phases at different frequencies will strengthen the fluctuating 
features such as the sharp spike events of the generated random signal. This means that will 
increase the kurtosis value of the original Gaussian signal, resulting in super-Gaussian random 
signal. 

So the various existing methods of changing the phase part of the Fourier coefficient according 
to the non-Gaussian parameters (such as skewness and kurtosis) can only simulate non-Gaussian 
stochastic processes with the high-peak characteristics, that is super-Gaussian. This can be 
confirmed by the simulation examples of the papers listed in the references. In some cases, 
sub-Gaussian stochastic processes with less high peaks will be encountered or be useful for 
important application. For example, shaker power will be increased by the sub-Gaussian random 
control with decreased kurtosis for the purpose of less risk of damage to the test item and shaker in 
modal testing (Steinwolf 2007, 2010). Hence in order to simulate sub-Gaussian random processes, 
it is necessary to study and analysis the coupling effect of both the Fourier phase and amplitude 
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coefficients on the non-Gaussian features of simulated random process. We will discuss in detail 
on this issue through theoretical analysis and simulation experiments in the following sections. 

 
 

2. Theoretical background 
 
The well known spectral representation is based on a discretized model of the target power 

spectral density (PSD) function ( )TG f  for the desired process. The simulation consists of the 
superposition of harmonics at discrete frequencies that possess deterministic amplitude and 
random phase (DARP). A zero mean stationary Gaussian realization can be simulated by DARP as 
N   

1

0

( ) cos(2 )
N

k k k
k

x t A f t 




                             (1) 

where kA  are determined by the target one sided PSD values ( )TG f  at the corresponding 

frequencies kf  

2 ( )T
k kA G f f                              (2) 

/uf f N                                (3) 

,    0,1, , 1kf k f k N                          (4) 

uf  is the upper cutoff frequency beyond which ( )TG f  can be considered to be zero. k  is the 

kth realizations of a uniformly distributed random phase angles from 0 to 2  or from   to 
 .  

In order to improve simulation efficiency by employing the Fast Fourier Transform (FFT), Eq. 
(1) can be rewritten as 

1
2

0

( ) Re ,  0,1, , 1k k

M
i i f n t

k
k

x n t A e e n M 






     
 
                   (5) 

Where Re{.} represents the real part of the expression enclosed in brace, and M is the number 
of time intervals of length t , which is defined by sampling frequency sf  

1

s

t
f

                                   (6) 

According to sampling theorem, sf  must satisfy 

2s uf f                                (7) 

It is obvious that                         
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 u sf f
f

N M
                                  (8) 

Thus, M and N must satisfy 2M N .  
Inserting Eq. (4), (6) and (8) into (5) yields a discrete fourier representation of time series 

  
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Where IDFT means Inverse Discrete Fourier Transform, and kC  is 

= = (cos sin ),  0,1, , 1ki
k k k k kC A e A i k M                      (10) 

 
Note that M is selected to be a power of 2 to use the IFFT algorithm.  
The realizations of ( )x t  obtained using either (1) or (5) follow a Gaussian distribution in the 

limit as N   due to the Central Limit Theorem and can be considered approximately 
Gaussian for most practical applications if N  is greater than approximately 100.  

Zero mean Gaussian stochastic processes can be adequately described by power spectral 
density, while for non-Gaussian stochastic processes, higher marginal moments, more precisely 
the marginal skewness and kurtosis, are additionally used to describe the non-Gaussian features. 
The kurtosis (K) and skewness (S) value of a stochastic processes X is defined by the expression 

 
  

4
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 3

( )

E X E X
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E X E X


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                        (11) 
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E X E X





                        (12) 

It should be noted that the kurtosis defined in the Eq.(11) is a normalized value. Under this 
definition, the kurtosis value of a Gaussian random signal is 0, which is equivalent to a kurtosis 
value 3 defined in some other literatures.  

Kurtosis (K) is used to describe the tail distribution feature of amplitude probability density 
function, and skewness (S) is used to describe the asymmetry of amplitude probability density 
function. In case of symmetrical distributions, kurtosis is the most important coefficient used to 
find out how much the distribution differs from the normal distribution. It is well known that both 
skewness and kurtosis of Gaussian stochastic processes are equal to zero, and the stochastic 
processes with 0K   are said over-Gaussian or super-Gaussian stochastic processes, while 
stochastic processes with 0K   are said sub-Gaussian stochastic processes.  

To simulate non-Gaussian processes with given PSD, skewness and kurtosis values by suitable 
amplitude modulation and phase reconstruction, the relationships between the target 
characteristics(PSD, skewness and kurtosis) and the variables in the fourier series model in Eq. (10) 
(amplitude and phase part) should be considered. Since the PSD does not depend on the phase 
angles (see Eq. (2)), the variation of phase part does not affect the second order 
characteristics(variance, PSD) of the time series. On the other hand, an earlier study by shows that 
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the spikes in the time domain, responsible for non-Gaussian nature, are strongly dependent on the 
phase part of the fourier transform (Seong and Peterka 2001). In this paper, further analysis 
showed that the skewness and kurtosis of the simulated random process depend not only on the 
phase part of the fourier transform, but also on the amplitude part. This paper presents a theoretical 
background of the method in the appendix and a series of simulation experiments in section 3 to 
understand the mechanism of phase reconstruction by amplitude modulation, which provides a 
fundamental framework for the simulation method. 

As discussed in the appendix, the kurtosis of the random process ( )x t  can be expressed as the 
following form  

21 1
2 4 3 2

0 0 3 2
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 (13) 

A similar expression can also be obtained for skewness 

1.51
2 2

0 2 , 

1 3 3
cos( 2 ) cos( )

2 4 2

N

k j k j k j k m m j k
k j k j k m j k
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Eqs. (13) and (14) clearly show that the kurtosis and skewness value of the simulated random 
process depend not only on fourier phase angles k , but also on fourier amplitudes kA . From 

intuition, it is not difficult to imagine that if we choose some fourier amplitudes in the Eq. (19) 
equal to 0, it will make the kurtosis value decreases from 0, so it is possible to generate a 
sub-Gaussian random signal. However, it is difficult to establish a quantitative relationship 
between the non-Gaussian parameters (such as kurtosis and skewness ) and the Fourier amplitude 
and phase coefficients. Next, we will reveal the coupling effect of the amplitudes and phases on 
the non-Gaussian features by two simulation experiments. Then we will further develop the 
methodology for simulation of various types of non-Gaussian signals by amplitude modulation and 
phase reconstruction. 

 
 

3. Experiments of coupling effect of fourier coefficients on the non-Gaussian 
features 
 
The simulation experiments were performed by modifying the amplitude and the phase 

separately, or one part was replaced by another signal. Investigation was made of the variation of 
the non-Gaussian features of the signal obtained by IFFT of the modified Fourier coefficients. 
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(a) Target PSD ( )TG f  (b)  Fourier amplitudes [ ]TA k  of 1[ ]x n  

 
(c) Phase angles 

1[ ]k  of 1[ ]x n  (d) Simulated Gaussian signal 1[ ]x n  

 
(e) Modulated signal 2[ ]x n  (f) PSD of 2[ ]x n  

 
(g) Phase angles 

2[ ]k  of 2[ ]x n  (h) Simulated signal 3[ ]x n  

Fig. 1 Simulation experiment 1 
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Fig. 3 The difference in APDF between non-Gaussian and Gaussian signal 

 
 
 
According to the distributions of Probability Density Function (PDF) of Gaussian and 

non-Gaussian amplitude sequences in Fig. 3, it can be observed that the main difference between 
the two PDFs lies in the different tail distributions i.e. in the regions on both sides (less than p or 
greater than q), super-Gaussian random process has a more significant amplitude distribution than 
normal Gaussian process. Similarly, Gaussian random process also has a more significant 
amplitude distribution than sub-Gaussian process in these regions. Thus, in order to artificially 
generate super-Gaussian signal, we can ‘move’ some parts of the Gaussian PDF within the region 
between the two reference values p and q to the outer regions on both sides (less than p or greater 
than q) according to the axis of symmetry at p and q respectively. This is shown in Eq. (15). 
Conversely, in order to generate sub-Gaussian signal, we can ‘move’ some parts in the outer 
regions (less than p or greater than q) of Gaussian amplitude distribution to the inner region 
(greater than p and less than q) according to the axis of symmetry at p and q respectively. It is also 
shown in Eq. (16). Then the required non-Gaussian phases can be obtained through Fourier 
transform of the acquired non-Gaussian signal. 

Then according to Eq. (15), the modification of amplitude distribution from Gaussian sequence 

1[ ]x n  to super-Gaussian sequence 2[ ]x n  in the time domain can be implemented.  

1 1
2

1 1

2 [ ] [ ] 0
[ ]

2 [ ] 0 [ ]

p x n if p x n
x n

q x n if x n q

  
    

                     (15)  
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Where ,p q        . And   is root mean square value (RMS) of Gaussian 

sequence 1[ ]x n . Specifically,  and   are the parameters which control the size of interval for 

the amplitude modulation. And these two parameters also control the number of the modulated 
amplitudes together with some other parameters. Compared with the Gaussian stochastic processes 
whose most amplitudes (99.74%) are located within the range from 3  to 3  on the 
horizontal axis of APDF, the super-Gaussian stochastic processes has a much wider tail 
distribution which means more amplitudes outside the range, while the sub-Gaussian stochastic 
processes has a much narrower tail distribution which demonstrates more amplitudes inside the 
range. Therefore, these two parameters can be generally set in the range 1 , 3   . Moreover, 
according to Eq. (15), the larger the kurtosis value of a super-Gaussian sequence is, the closer the 
values of  and   should be selected to 3. In this way, there will be a larger number of 
adjustable amplitudes, and will help to increase the kurtosis value of the sequence more after 
amplitude modulation. 

Similarly, Eq. (16) is the special amplitude modulation formula for sub-Gaussian sequence. 

1 1
2

1 1

2 [ ] [ ]
[ ]

2 [ ] [ ]

p x n if x n p
x n

q x n if x n q

 
   

                    (16) 

Taking Eq. (16) into consideration, the smaller the kurtosis value of a sub-Gaussian sequence is, 
the farther the values of  and   should be selected from 3. On the basis of this, there will be a 
larger number of adjustable amplitudes, and will decrease the kurtosis value of the sequence more 
after amplitude modulation.  

Further, whether the same value is selected to  and   determines that the adjusted 
amplitude distribution is symmetric or not. Thus it plays a role in determining the value of 
skewness. That is to say, if   , a non-Gaussian random sequence with the symmetric 

amplitude distribution will be generated; If   , the amplitude distribution will shift toward 
the negative direction of the horizontal axis of APDF and skewness value will become negative; 
Whereas, if    , the amplitude distribution will shift toward the positive direction of the 
horizontal axis of APDF and the skewness value will become positive. 

Now we use the above idea to modulate the amplitudes of Gaussian signal 1[ ]x n  step by step 

in the time domain according to the target kurtosis value TK of 4.0. Fig. 1(e) shows the 
modulated signal 2[ ]x n  obtained by amplitude modulation of the original Gaussian signal 1[ ]x n  

using Eq. (15). Apparently 2[ ]x n  has a distinctive super-Gaussian feature. The kurtosis value of 

2[ ]x n  is about 3.98, while the PSD of 2[ ]x n  shown in Fig. 1(f) deviates from the target PSD 

( )TG f  because of the amplitude modulation. But it does not matter since the main purpose of 
amplitude modulation is to get the phase angles corresponding to non-Gaussian features. Fig. 1(g) 
shows the reconstructed phase angles 2[ ]k  obtained by FFT of the modulated signal 2[ ]x n . 

Then the fourier amplitudes [ ]TA k  and the phases angles 2[ ]k  are combined in the subsequent 

Inverse Fast Fourier Transform (IFFT) to generate the final signal 3[ ]x n . However, despite 
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having the phase angles of the super-Gaussian signal 2[ ]x n , the time history of 3[ ]x n  shown in 

Fig. 1(h) has no significant non-Gaussian features. Further, the kurtosis value of 3[ ]x n  is about 

0.06, which is very close to the theoretical kurtosis value 0 of Gaussian process. It is obvious that 
the PSD bandwidth of the modulated signal 2[ ]x n  has a significant effect on the non-Gaussian 

features of the final signal 3[ ]x n . Further it can be seen that the modulated signal 2[ ]x n  and the 

original Gaussian signal 1[ ]x n  have the same PSD bandwidth, and the PSD bandwidth has a 

direct relationship with fourier amplitudes defined by Eq. (2). Therefore simulation experiment 1 
shows that non-Gaussian features of the simulated signal by IFFT is not only sensitive to the phase 
part of IFFT, but also sensitive to the amplitude part of IFFT. This result is very interesting and 
further inspires us to try to change PSD bandwidth of the original Gaussian signal to obtain the 
required non-Gaussian signal, since the PSD bandwidth has a direct effect on the amplitude part. 
Simulation experiment 2 is designed to investigate the effects of the PSD bandwidth of the original 
Gaussian signal on the final non-Gaussian features. 

The idea is to change the bandwidth of the original Gaussian signal 4[ ]x n  by the bandwidth 

coefficient  . The value of   is in the range between 0 and 1. Here we set 3 / 5  as an 

example, which means that the PSD bandwidth of 4[ ]x n  is equal to 3/5 of the target PSD 

bandwidth. In order to maintain the same RMS value of 6.29Grms, the target PSD magnitude of 

4[ ]x n  is adjusted to 0.0335g2/ Hz. Fig. 4(a) shows the modified target PSD 1 ( )TG f  of 4[ ]x n , 

and Fig. 4(b) shows the fourier amplitudes 1 [ ]TA k  of 4[ ]x n  calculated by 1 ( )T
kG f  using 

Eq.(2). The kth realizations of uniformly distributed random phase angles 4[ ]k  from   to 

  shown in Fig. 4(c) are generated for the simulation of Gaussian signal 4[ ]x n . Then a sample 

sequence 4[ ]x n  of Gaussian stochastic processes shown in Fig. 4(d) is simulated by Inverse 

Fast Fourier Transform of 1 [ ]TA k  and 4[ ]k . Fig. 4(e) shows the modulated signal 5[ ]x n  

obtained by amplitude modulation of the original Gaussian signal 4[ ]x n  using Eq. (15). The 

PSD of 5[ ]x n  is shown in Fig. 4(f). Fig. 4(g) shows the reconstructed phase angles 5[ ]k  

obtained by FFT of the modulated signal 5[ ]x n . Then the fourier amplitudes [ ]TA k  

corresponding to the target PSD ( )TG f  and the phases angles 5[ ]k  are combined in the 

subsequent Inverse Fast Fourier Transform (IFFT) to generate the final signal 6[ ]x n . It is 

obvious that the time history of 6[ ]x n  shown in Fig. 4(h) has significant super-Gaussian 

features. The kurtosis value of 6[ ]x n  is about 4.06, which is very close to the target kurtosis 

value TK of 4.0. The PSD of 6[ ]x n  is strictly equal to the target PSD ( )TG f  because the 

fourier amplitudes of 6[ ]x n  is [ ]TA k . 

In summary, simulation experiment 1 and 2 show that the amplitudes and phases of IFFT have 
a coupling effect on the non-Gaussian features, and the non-Gaussian features of the simulated 
signal by IFFT is specifically sensitive to the PSD bandwidth. Then we will further develop a new 
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methodology for simulation of various types of non-Gaussian signals by amplitude modulation and 
phase reconstruction, which will be described as follows. 
 

 
(a) Modified target PSD 

1 ( )TG f  of 4[ ]x n  (b) Fourier amplitudes 
1 [ ]TA k  of 4[ ]x n  

 
(c) Phase angles 

4[ ]k  of 4[ ]x n  (d) Simulated Gaussian signal 4[ ]x n  

 
(e) Modulated signal 5[ ]x n  (f) PSD of 5[ ]x n  

 
(g) Phase angles 

5[ ]k  of 5[ ]x n  (h) Simulated super-Gaussian signal 6[ ]x n  

Fig. 4 Simulation experiment 2 
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4. Simulation algorithm of Non-Gaussian stochastic processes 
 
 According to the above simulation results, the new algorithm for simulation of non-Gaussian 

stochastic processes by amplitude modulation and phase reconstruction is divided into 11 steps 
shown in Fig. 5. 

 
 
 

 

Step 1: Set or calculate target value of ( )TG f ,
TS ,

TK from sample data; set sf , M , f  according to Eq. (3,6,7,8) 

Step 3: Establish the modified target PSD 1 ( )TG f  according to the value of   and ( )TG f  

Step 4: 1 ( )TG f  is discretized to 1 ( )T
kG f  according to Eq. (4); 1 [ ]TA k  is calculated by 1 ( )T

kG f  using Eq.(2) 

Step 7: Set  and  ; 1[ ]x n  is modulated to a non-Gaussian random sequence 2[ ]x n  according to Eq (15) or (16) 

Step 6: A sample sequence of Gaussian stochastic processes 1[ ]x n  is generated by IFFT of 1 [ ]TA k  and 1[ ]k  according to Eq(9,10) 

Step 5: Using random number generator to create random phases angles 1[ ]k with a uniform distribution in [ , ]   

Step 8: 2[ ]x n  is processed by FFT to extract the non-Gaussian phase angles 2[ ]k  

Step 9: A sample sequence of non-Gaussian stochastic processes 3[ ]x n  is generated by IFFT of [ ]TA k  and 2[ ]k  according to Eq(9,10) 

&T T
S KS S K K     ?

Step 10:  Calculate S  and K  of 3[ ]x n  according to Eq(11,12) 

Y

N

END

Step 2: ( )TG f  is discretized to ( )T
kG f  according to Eq. (4); [ ]TA k  is calculated by ( )T

kG f  using Eq.(2); set bandwidth coefficient 1/ 2   

Step 11: Update the value of    

Fig. 5 Simulation algorithm of non-Gaussian stochastic processes 
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In the simulation process, the initial value of   can be set to 1/2. Each time after the 

amplitude modulation and phase reconstruction, skewness S  and kurtosis K  of the signal 

simulated by IFFT will be calculated and compared with the target values TS and TK . If the 

errors are larger than the acceptable errors of skewness and kurtosis( S and K ), the parameters 

  should be updated. So it will be an iteration process before finally reaching the target values. 
Since this method directly using the amplitude modulation to approximate target non-Gaussian 
parameters is more clear and concise than other modulation approaches, it is able to approach the 
target value more quickly, efficiently and accurately. In addition, FFT is generally used to 
calculate the spectrum, but this algorithm takes advantage of the FFT to extract phase information 
and the IFFT to generate random signal. This is another feature of the present algorithm. 

 
 
5. Cases studies 

 
5.1 Case Study 1: Simulation of super-Gaussian truck road vibration record 
 
Fig. 6(a) is a time history of truck body vertical acceleration from road vibration measurements.  

With the sampling rate of 1280Hz, the time history record was about 12.8 seconds long with 
16384 data points. From these measured real-life data, the PSD has been calculated and shown in 

Fig. 6(b). The skewness and kurtosis coefficients have also been calculated, and the value of TS

and TK  is 0.53 and 12.32 respectively. The total RMS value of acceleration is about 1.48Grms. 

The APDF of the measured data is shown in Fig. 6(d) by the blue dashed curve, which is 
significantly different from the red solid curve of standard normal distribution. Fig. 6(c) shows the 
time history of the simulated vibration data. The APDF of simulated vibration data is shown in Fig. 
6(d) by the green dotted curve, which is close to that of the measured dada. Obviously, the 
amplitude distribution of measured and simulated data are super-Gaussian. The kurtosis value of 
simulated vibration data is 12.23, which is very close to the target value 12.32. And the skewness 
value of simulated vibration data is 0.58, which is very close to the target value 0.53. In addition, 
the PSD of simulated vibration data is strictly equal to that of the measured dada, and the RMS is 
also equal to 1.48Grms. 

 
5.2 Case study 2: simulation of sub-Gaussian random vibration for structural modal 

testing 
 
Modal testing is useful to identify resonances and notches in the structural dynamic response. 

Suppose we need the shaker to provide a broadband random excitation that is typical for modal 
testing with a uniform PSD shown in Fig. 7(a). The total RMS value of excitation is about 20 
Grms. 

If we use traditional Gaussian random vibration control mode with a crest factor of 4, the 
acceleration time history will look something like what is shown in Fig. 7(c) with the maximum 
peak value somewhere around 80g. The APDF of traditional Gaussian random vibration control 
signal is shown in Fig. 7(b) by the blue dashed curve, which is close to the red solid curve of 
standard Gaussian distribution. However，the maximum acceleration limit of the shaker design 
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capability is 70g. Then it is necessary to generate sub-Gaussian vibration excitation with a lower 
peak value on the shaker for modal testing. The time history of simulated sub-Gaussian vibration 
excitation with a decreased kurtosis value of -0.46 is shown in Fig. 7(d). The APDF of simulated 
sub-Gaussian vibration excitation is shown in Fig. 7(b) by the green dotted curve. The maximum 
peak value of the sub-Gaussian vibration excitation with the same RMS is about 56 g, which is in 
the maximum acceleration limit of the shaker design capability. Hence, the sub-Gaussian random 
vibration control mode can increase the shaker power in structural modal testing. 

 
5.3 Case study 3: design and validation of non-Gaussian random vibration controller 
 
Vibration environment is one of most important environmental factor that may cause structure 

failure. The simulation of vibration environment in laboratory is very necessary. To further verify 
the above algorithm, we developed a new non-Gaussian random vibration controller (NRVCS) for 
electrodynamic or hydraulic shaker. Figs. 8(a) and 8(b) respectively show the hardware and 
software of non-Gaussian random vibration controller. The actual non-Gaussian vibration testing 
on the shaker shown in Fig. 8(c) confirmed that NRVCS met the real-time requirement of closed 
loop vibration control, which validated the efficiency and accuracy of the proposed algorithm. 

 
 

(a) Time history of truck road vibration data (b) PSD of truck road vibration data 

(c) Time history of simulated vibration data (d) APDF of measured and simulated data 

Fig. 6 Case study 1 
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(a) Target PSD of vibration excitation (b) APDF of simulated random vibration 

(c) Time history of Gaussian random vibration (d) Time history of sub-Gaussian random vibration

Fig. 7 Case study 2 
 
 
 

 

(a)  Hardware of Non-Gaussian random vibration controller 
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(b) Software of Non-Gaussian random vibration controller 

 
(c) Actual non-Gaussian vibration testing on the shaker 

Fig. 8 Case study 3 
 
 
 

6. Conclusions 
 
By revealing the inherent coupling effect of the phase and amplitude part of discrete Fourier 

representation of random time series on the non-Gaussian features (such as skewness and kurtosis) 
through theoretical analysis and simulation experiments, a novel simulation technique by 
amplitude modulation and phase reconstruction for non-Gaussian stochastic processes is 
developed. The major innovation of the proposed methodology is that the desired phase part of the 
Fourier coefficient for the simulation of non-Gaussian stochastic processes is reconstructed by 
direct amplitude modulation in the time-domain. As compared to previous spectral representation 
method using phase modulation to obtain a non-Gaussian amplitude distribution, this 
non-Gaussian phase reconstruction strategy is more straightforward and efficient. So this method 
can easily obtain the desired non-Gaussian amplitude distribution characteristics, not only 
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applicable to the simulation of the super-Gaussian but also the sub-Gaussian random processes, 
having a wide adaptability. Another goodness of this method is taking full advantage of the fast 
fourier transform technique to improve the simulation efficiency and accuracy. Cases studies have 
verified the efficiency and accuracy of this method. The proposed method has a wide range of 
applicability to engineering problems involving stochastic fields where the Gaussian assumption is 
not appropriate. This will aid in the modeling and simulating the stochastic dynamic behavior of 
complex structures to rationally improve their safety and reliability.  
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Appendix 
 
The nth-order moments of the random process ( )x t  can be determined by using the basic 

definition 

      
0 0

1 1
lim ( ) ( ) , 2,3,4

r Tn n

n
r

M x t dt x t dt n
r T

                  (1) 

When the mean value 1M  of ( )x t  is zero, the kurtosis and skewness expression of ( )x t  

can be calculated on a basis of the first four moments 

4
2

2

3
( )

M
K

M
                              (2) 

3
3/2

2( )

M
S

M
                               (3) 

The variance 2M  of ( )x t  is given by Bendat (1986) 

1
2 2

2
0

1
( )

2

N

k k
k

M a b




                             (4) 

The fourth moment 4M  of ( )x t  can be given by the similar expression 

41

4 0
0

1
( cos 2 sin 2 )

NT

k k
k

M a k ft b k ft dt
T

 




 
     

               (5) 

In formulae (4) and (5), instead of the Fourier amplitudes kA  and phase angles k , the cosine 

ka  and sine kb  harmonic components are represented as 

cos ,    sink k k k k ka A b A                          (6) 

Integral (5) has been taken in closed analytical form and the formula for kurtosis has been 
obtained by Steinwolf (1996) 
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To further visually see the relationship between the variables in fourier series model and 
kurtosis, inserting Eq. (6) back into Eq. (7) and applying trigonometric formulas yields 

1 1
2 2 2

0 0

( )
N N

k k k
k k

a b A
 

 

                              (8) 

1 1
2 2 2 4

0 0

( )
N N

k k k
k k

a b A
 

 

                             (9) 




2 2 2 2

3

3 3 2 2

3

3 2 2

3

3 2 2

3

( 3 ) ( 3 )

( ) 3( )

cos cos cos sin sin sin )

         3 sin sin cos cos cos sin

cos cos (c

j k k k j k k k
j k

j k j k j k k j k k
j k

j k j k k j k k
j k

j k j k k j k k

j k j k

a a a b b b b a

a a b b b b a a a b

A A

A A

A A

     

     

 







    

     

    

  









2 2 2 2

3

3 2 2

3

3

3

3

os 3sin ) sin sin (3cos sin )

cos cos (1 4sin ) sin sin (4cos 1)

cos cos (2cos 2 1) sin sin (2cos 2 1)

2cos 2 (cos cos sin sin

k k j k k k
j k

j k j k k j k k
j k

j k j k k j k k
j k

j k k j k j

A A

A A

A A

     

     

     

    







    

     

     

 







3

3

3

3

3

) (cos cos sin sin )

2cos 2 cos( ) cos( )

2cos 2 cos( ) cos(2 )

k j k j k
j k

j k k j k j k
j k

j k k j k k j k
j k

A A

A A

   

    

     







   

     

      





                              

713



 
 
 
 
 
 

Yu Jiang, Junyong Tao and Dezhi Wang 

3

3

3

3

3

3

2cos 2 cos( ) cos 2 cos( ) sin 2 sin( )

cos 2 cos( ) sin 2 sin( )

cos( 3 )

j k k j k k j k k j k
j k

j k k j k k j k
j k

j k j k
j k

A A

A A

A A

        

     

 







       

     

 







 

                                                           (10) 
 

2 2

2
   

2 2 2 2

2
   

2

2

( )( ) 2( )

( cos cos sin cos )( cos sin )

          -2(- cos sin sin cos )( sin cos )

cos(

j k j k n n j k k j n n
j k n

k n

j k j k j k j k n n n n
j k n

k n

j k j k j k j k n n n

j k n j

a a b b a b a b a b a b

A A A A A A

A A A A A

A A A

     

     

 

 


 


     

  

  

 





2 2 2

2
   

2 2

2
   

2

2
   

2

)(cos sin ) 2 sin( )sin cos )

cos( )(2cos 1) sin( )sin 2   

cos( )cos 2 sin( )sin 2    

co

k n n j k n j k n n
j k n

k n

j k n j k n j k n
j k n

k n

j k n j k n j k n
j k n

k n

j k n

A A A

A A A

A A A

A A A

     

     

     

 


 


 


    

      

     









2
   

s( 2 )j k n
j k n

k n

  
 


 
  

                (11) 
 

2 2

2
   

2 2 2 2

2
   

2

2

( )( ) 2( )

( cos cos sin cos )( cos sin )

          +2(- cos sin sin cos )( sin cos )

cos(

j k j k n n j k k j n n
j k n

j k

j k j k j k j k n n n n
j k n

j k

j k j k j k j k n n n

j k n j

a a b b a b a b a b a b

A A A A A A

A A A A A

A A A

     

     

 

 


 


     

  

  

 





2 2 2

2
   

)(cos sin ) 2 sin( )sin cos )k n n j k n j k n n
j k n

j k

A A A     
 


    

      

2 2

2
   

2

2
   

2

2
   

cos( )(2cos 1) sin( )sin 2   

cos( ) cos 2 sin( )sin 2    

cos( 2 )

j k n j k n j k n
j k n

j k

j k n j k n j k n
j k n

j k

j k n j k n
j k n

j k

A A A

A A A

A A A

     

     

  

 


 


 


      

     

  







                   

         (12) 

714



 
 
 
 
 
 

Simulation of non-Gaussian stochastic processes by amplitude modulation… 

 

     
   , ,

     
   , ,

( )( ) ( )( )

( cos cos sin sin )( cos cos sin sin )

                  ( cos si

j k j k n m n m j k k j n m m n
j k n m

j k n m j n

j k j k j k j k n m n m n m n m
j k n m

j k n m j n

j k j

a a b b a a b b a b a b a b a b

A A A A A A A A

A A

       



  
  

  
  

      

   







     
   , ,

     
   , ,

n sin cos )( cos sin sin cos )

cos( )cos( ) sin( )sin( )

cos( )

k j k j k n m n m n m n m

j k n m j k n m j k n m j k n m
j k n m

j k n m j n

j k n m j k n m
j k n m

j k n m j n

A A A A A A

A A A A A A A A

A A A A

      

       

   

  
  

  
  

   
       

   





                

(13) 
 

   

   

( )( ) ( )( )

( cos cos sin sin )( cos cos sin sin )

          ( cos sin sin cos )( cos

j k j k n m n m j k k j n m m n
j k n m

j k n

j k j k j k j k n m n m n m n m
j k n m

j k n

j k j k j k j k n m n

a a b b a a b b a b a b a b a b

A A A A A A A A

A A A A A A

       

    

  
 

  
 

      

   

  





   

   

sin sin cos )

cos( )cos( ) sin( )sin( )

cos( )

m n m n m

j k n m j k m n j k n m j k m n
j k n m

j k n

j k n m j k n m
j k n m

j k n

A A

A A A A A A A A

A A A A

  

       

   

  
 

  
 

 
       

   





 

                                                                  (14) 
 
Then the Eq. (7) for kurtosis can be rewritten as  
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