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Abstract.  The evaluation of pressure fields acting on slender structures under wind loads is currently 
performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global 
and local wind actions is crucial for design purpose. This paper considers a particular slender structure under 
wind excitation, representative of most common high-rise buildings, whose experimental wind field on 
in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for 
several angles of attack of the wind. It is shown that an efficient reduced model to represent structural 
response can be obtained by coupling the classical structural modal projection with the so called blowing 
modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In 
particular, the elaboration of experimental data shows that the first few blowing modes can effectively 
represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number 
of blowing modes is required when the covariance wind tensor is used to decompose the wind field. 
 

Keywords:  slender structures; wind blowing modes; covariance proper transformation; spectral proper 

transformation; boundary layer wind-tunnel 

 
 
1. Introduction 
 

The evaluation of pressure fields acting on slender structures under wind loads is currently 

performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the question 

of representing global and local wind actions for design purpose is an important aspect in modern 

structural design. The main problem in this regard is the random nature of wind loads due to the 

presence of turbulence in the incoming flow. Therefore, statistical analysis is necessary and 

multi-variate random process theory are utilized to represent wind action on structures, making use 

of some a priori assumptions such as ergodicity or stationarity. The problem of choosing an 

optimal basis to represent wind action on structures is an open question and different approaches 

and representations are nowadays available in literature (see e.g., Carassale and Marré Brunenghi 

2011, Carassale et al. 2007, Solari et al. 2007, Kikuchi et al. 1997). 
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In case of experimental evaluation of pressure fields, at the real scale or at the scale of a 

wind-tunnel model, the classical approach available in literature is the Principal Component 

Analysis (PCA) where the decomposition of the covariance matrix estimated from the measured 

wind field allows for representing the random pressure field as a sum of deterministic vectors 

(blowing modes), modulated by time dependent random coefficients called principal components. 

A less common but well established representation derives from the analysis of the pressure field 

in the frequency domain. In this context it has been shown (e.g., Di Paola 1998) that the random 

field may be represented decomposing the power spectral matrix estimated from the data. Since 

the power spectral matrix is a complex-valued Hermitian-symmetric matrix, its complex 

eigenvectors are mutually orthogonal, while the eigenvalues are real and non-negative. The 

random pressure field can be represented as a sum of complex vectors (complex blowing modes), 

modulated by time dependent complex random coefficients, and this modal representation is 

referred to as Spectral Proper Transformation (SPT). The two representations are alternative, 

although not equivalent because SPT fully decorrelates the principal components, while PCA 

decorrelates them only for 0 .   

In this paper, particular attention has been devoted to reduced models of the wind loads acting 

on slender structures and their response characterization. Starting from the now well accepted 

representation of the wind field by means of blowing modes (or wind modes), i.e., coherent wind 

fields characterized by highest energetic weights and stochastically orthogonal to each other (e.g., 

Kikuchi et al. 1997, Carassale 2005, Carassale et al. 2007, Carassale and Marré Brunenghi 2012, 

Holmes et al. 1997, Kho et al. 2002, Tamura et al. 1997, Tamura et al. 1999), an investigation has 

been performed that uses experimental results obtained by means of wind tunnels tests.  

The sample case is shown in Fig. 1, where the experimental wind field on the sample building 

was measured in the CRIACIV (University of Florence) wind-tunnel laboratory (Spence et al. 

2008, Spence et al. 2011) by means of about 200 pressure taps for several angle of incidence of the 

wind, and was then reduced to resulting forces and couples acting on the 74 floors. In Fig. 2 the 

measured forcing field is shown in four different time-steps. 

 

 

   
                       (a)                              (b)                (c) 

Fig. 1 (a)-(b) Wind-tunnel tests on in-scale model, CRIACIV boundary-layer wind tunnel in Prato (Italy) and 

(c) finite elements model (FEM) of the building assumed as a sample case. 
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Wind-tunnel tests on high-rise buildings: wind modes and structural response 

Aiming to obtain a reduced model for the wind field, the paper describes two algorithms: the 

first extracts the wind-modes from the covariance matrix of the forcing time-histories, and 

represents them by means of a very expressive 3D representation; the second representation is 

instead obtained when eigenvectors of the power spectral density tensor are used, leading to a 

more precise frequency representation of the excitation load. 

The elaboration of experimental data has shown that the multi-correlated field of wind-induced 

loads cannot in general be reduced to the contribution of the first few blowing modes of the 

covariance wind-tensor, because higher modes can play a non-negligible role, differently from 

what happens for the modal representation of the structure, that instead is satisfactorily reproduced 

by a truncated model with only the very first modes for slender structures. A more efficient 

reduction of the wind field is instead obtained when eigenvectors of the power spectral density 

tensor are used, and comparison to PCA representation is reported. 

 

 

 
 

 

Fig. 2 Top: sketch of the building assumed as a sample case; Bottom: the measured forcing fields Fx, Fy, 

(couple Mz not represented) in four generic time-steps t1,..., t4 
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2. Wind-tunnel experimental tests and reduced structural model 

 
In the framework of the research project “Wind effects on slender structures: 

Performance-based Optimal Design (Wi-POD)”, funded by the Italian Ministry for University and 

Research and by five Italian Universities, wind-tunnel tests were performed on a 1:500 in-scale 

model of  a high-rise building (Fig. 1), with dimensions 103.6 mm x 103.6 mm x 610.2 mm.  

Measurements and their elaboration were performed by researchers of Florence and Perugia 

Universities (Spence 2009, Spence et al. 2011, Cluni et al. 2011) in the boundary-layer wind 

tunnel of CRIACIV (Inter-University Research Centre on Building Aerodynamics and Wind 

Engineering) in Prato (Italy). 

The wind-field was measured for several angles of attack of the wind (0°, 10°, 20°, 30°, 40°, 

45°) by means of about 200 pressure taps, with a power-law index α̅  = 1.6 of the mean wind speed 

profile. 

The pressure field was then reduced to the resulting forces Fx, Fy and the couple Mz with 

respect to the centroid of each one of the 74 floors of the building.  

The forcing field consists then of 222 (= 74 x 3) time-histories of the load components Fx, Fy, 

Mz. 

The sampling rate was 250 Hz at the scale of the model and, depending on the scale factors 

(geometrical, wind speed, …), it corresponds to a sampling period of 0.84 seconds for wind 

time-histories representative of a return period of 50 years. 

The structural analysis of slender structures, as the one herein considered, can be simplified if a 

modal projection is considered. Indeed, for this kind of structures, only few structural modes 

enables to represent the most important mechanical and structural characteristics. This was 

confirmed for the structure under investigation by FEM analysis. An FEM model of the building 

was developed (Fig. 1) and used for numerical simulations of the structural response under 

wind-induced loads. Due to the frequency content of the forcing field, the numerical simulation of 

the structural response is dominated by few structural modes and cannot include any significant 

contribution of the higher ones. This is made evident (Bellizzotti et al. 2010), for example, by the 

power spectral densities corresponding to the modal components of the forcing field (i.e., scalar 

product of the forcing field with each modal shape); they show in fact that only the first modal 

components of the wind-induced loads have a significant energy content around the frequency of 

the corresponding mode, while only a pair of modal components contribute with significant 

non-zero mean (i.e., “static” loads) to the structural response. Moreover, the contribution of 

flexural modal loads result, in the sample cases so far considered, much higher than the 

contribution of torsional modal components of the load. 

As a consequence, a reduced model is considered in the following that includes only the first 

three modes, i.e., the first flexural mode in the x and y direction and the first torsional mode. 

As well known, this allows to reduce the equations governing the motion to the following ones 

  321             2 2 ,,jtfyyy jjjjjjj                         (1) 

where j  and j  are the frequency and damping coefficient of the j-th mode j , jy  denote 

the modal amplitudes and    ttf
T
jj F  the modal components of the forcing field  tF , with 

modal masses taken as unity. 
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3. Reduced model of the wind-induced loads based on the covariance tensor 

 
In the study of linear structures, the dynamic response is usually evaluated by applying modal 

analysis. The equations of motion are transformed from the initial Lagrangean space into the 

principal space where, under suitable conditions regarding the damping, the motion is ruled by 

decoupled equations expressed in terms of principal coordinates.  

The main ingredient of this method is the selection of an appropriate coordinate system. It is 

well known that a suitable coordinate system can be established by the structural modes 

(eigenvectors) of the linear system that are most excited by the respective loading conditions. This 

is not the only possibility; however, it is usually a good choice.  

On the other hand, even if modal analysis is assumed, the projection of the external wind load 

on the structural modes involves, because of cross correlations, a coupling between modes that are 

not statistically independent. A more suitable representation of the wind load can be obtained by 

considering a statistically consistent coordinate system. In contrast to the deterministic case, the 

probability density function (PDF) of the wind loading should be described by a low number of 

coordinates. The most essential characteristic of wind statistics are certainly its mean and second 

moments in terms of the covariance matrix. Therefore, a suitable coordinate system must be 

capable of representing the covariance matrix of the wind load. In the Karhunen-Loeve 

representation (the same concept is also known as principal component analysis, PCA), the 

eigenvectors of the covariance matrix associated with the largest eigenvalues lead to the best 

choice in the sense that the differences between the norms of the original covariance and the 

approximated matrices, respectively, are minimal. The PCA, based on the decomposition of the 

covariance response matrix, has been successfully applied in many areas, such as image decoding, 

physiology, climatology, and speech analysis (e.g., Honerkamp 1994).  

The main idea of this technique consists in the evaluation of the wind process on an optimal 

basis, which coincides with the determination of the eigenvectors of the covariance matrix. In 

structural stochastic dynamics, PCA has been utilized mainly for simulation of stochastic fields 

(e.g., Yamazaki and Shinozuka 1990) and stochastic finite element analysis (e.g., Yamazaki et al. 

1988; Ghanem and Spanos 1991, Vasta and Schueller 2000). 

For the structure under examination, let         tM ,tF  ,tF ziyixi be the resulting forces and torsional 

moment at the i-th floor, derived as resultant components of the measured pressure field. Denoting 

by p the number of floors (p = 74 in the sample case here discussed) the forcing components may 

be collected in a m x 1 vector process F(t), with m = 3p 
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The elements of the m x m covariance matrix     
jiFFRFR  of the vector process  tF  are 

defined as 
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           m,jitFEtFEtFtFER jijiFF ji
...,1,           )(                   (3) 

The decomposition of the covariance matrix      jiFFRFR  returns, for 0 , the wind 

modes  n21  Φ , eigenvectors of  0FRR  , with associated eigenvalues  ndiag  21Λ   

ΦΛΦR                                   (4) 

ΛΦRΦIΦΦ  TT ,                             (5) 

 Thanks to these properties the covariance matrix R  can be represented by the spectral 

decomposition 

T
n

k

k
T
kk ΦΛΦR 

1

                           (6) 

Following the idea of Karhunen and Loeve (see e.g., Loeve 1978), an optimal basis to represent 

the wind load F(t) is a linear combination of the wind modes k  by the amplitude gk(t)  

     




m

k

FkkF ttgt

1

gΦF μμ                        (7) 

where μF denotes the vector of mean forces. 

In Eq. (7) the  tgk  are zero-mean stationary vector processes whose components are referred 

to as covariance principal components. Combining Eqs. (5) and (4) yields 

 

 

 
 

 

Fig. 3 Top: first three wind modes of covariance tensor R for the forcing field corresponding to angle of 

attack  = 40° (torsional component not represented); Bottom: projection on the plane Fx-Fy 
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    
 


 


otherwise    

0 if                  
ttE

ΦΦ

Λ
gg






F
T

T

R
                      (8) 

It is worth noting that since measurement of F(t) are known in the case here described, the   

gk(t) processes can be evaluated by Eq. (7) using the orthogonality properties of the wind modes ϕk 

    F

Τ

kk ttg μ F                              (9) 

If the eigenvalues are sorted in decreasing order, then the summation in Eq. (7) can be truncated 

considering only a limited number of principal components. In the case here considered, the 

covariance matrix is of order 222 (3 resulting force components for each floor). 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4 Displacement in x and y direction and rotation  at the top floor for angle of attack  = 30°; ratio 

between standard deviations of top displacement components σ x

(n)
, σ y

(n)
, σ θ

(n)
 obtained with a truncated 

model of the wind-loads and the complete one σx, σy, σθ as a function of the number n of wind-modes 

of the covariance tensor R included in the truncated model 
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The decomposition described above has been applied to the forcing field measured in the 

CRIACIV wind tunnel for the sample building described in Sect. 2 (Vasta and Sepe 2011). 

As an example, Fig. 3 reports the first three wind-modes in case of angle of attack  40 ; 

only the components Fx, Fy of the wind-modes at each floor, amplified by the corresponding 

eigenvalue, are included in the representation, and this gives a more effective visualization of the 

relative weight of the wind-modes that contribute to the forcing process; however torsional 

component Mz, not included in Fig. 3, were obviously taken into account in the modal projection 

and in the numerical evaluation of structural response described below. 

According to the reduced structural model described in Sect. 2, that only includes  three 

structural modes (first flexural ones along x and y directions and first torsional one), the loading 

field is described by the time-histories of the modal loads  tf j
, j =1, 2, 3 (Eq. (1)), where, 

denoted by  tF  the forcing field and by 
i  the i-th structural mode,    ttf

T
jj F . 

On the other hand, the forcing field  tF  can be approximated by means of a linear 

combination of the wind-modes as described in Eq. (7), truncated to the first n contributions, and 

the question arises about the level of approximation (i.e., the value of n) required to satisfactorily 

reproduce the main characteristics of the structural response. 

 

 

 
(a) 

 
(b) 

 

Fig. 5 (a) 3D graph of displacement in x direction at the top floor for several angles of attack α[]; ratio 

between standard deviations of top displacement σ x

(n)
 obtained with a truncated model of the 

wind-loads and the complete one σx, as a function of the number n of wind-modes of the covariance 

tensor R included in the truncated model and (b) contour plots 
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For this reason Eq. (1) has been numerically integrated with software in Matlab environment, 

for several angles of attach   of the wind and for an increasing number of wind-modes in the 

decomposition of Eq. (7). 

As an example, for the case  30  Fig. 4(a) reports the ratio between the standard deviation 

of the top displacement (74th floor) in the x direction obtained with truncated models of the wind 

field and the standard deviation of the same displacement corresponding to the complete 

wind-field, as a function of the number n of wind modes considered. 

It is evident from the plot of such a ratio that an acceptable approximation of the “real” 

standard deviation (i.e., the one corresponding to the whole wind field  tF  acting on the reduced 

structural model of Eq. (1)) requires, in this example, to include at least a dozen of wind-modes of 

the covariance tensor R. 

At least in this case, therefore, and differently from what happens for structural modes, the 

forcing field cannot be satisfactorily reduced to the contribution of the first few modes, because 

the higher ones play a not negligible role. A similar trend has been found for top displacements 

along y, while rotation of the top floor (as an example) seems less sensitive to the number of 

wind-modes included in the truncated model of the loads, and can be accurately represented even 

with 4-5 wind-modes (Figs. 4(b)-4(c)). 

 

 

 
(a) 

 

 
(b) 

 

Fig. 6 (a) 3D graph of displacement in y direction at the top floor for several angles of attack α[]; ratio 

between standard deviations of top displacement σ y

(n)
 obtained with a truncated model of the 

wind-loads and the complete one σ y, as a function of the number n of wind-modes of the covariance 

tensor R included in the truncated model and (b) contour plots 
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Fig. 7 3D graph of rotation of the top floor for several angles of attack α[]; ratio between standard 

deviations of top rotation σ θ

(n)
 obtained with a truncated model of the wind-loads and the complete 

one σθ, as a function of the number n of wind-modes of the covariance tensor R included in the 

truncated model 

 

 

Fig. 8 Ratio between variance σ
2

y1y1
(n) and cross-covariances σ

2

y1y1
(n), σ

2

y1y3
(n) of the amplitudes y1(t), y2(t) 

and y3(t) of the structural modes obtained with a truncated model of the wind-loads and the complete 

ones σ
2

y1y1
, σ

2

y1y2
, σ

2

y1y3
 as a function of the number n of wind-modes of the covariance tensor R 

included in the truncated model; angle of attack α = 30° 

 

 
Although no general conclusion can be drawn from the sample cases so far examined, this trend 

is confirmed for all the different angles of attack considered in the wind-tunnel tests described in 

Sect. 2; the ratios between standard deviations of top displacements along x and along y for the 

truncated and the complete model of wind-induced loads for several angles of attack, are reported 

in Figs. 5(a) and 6(a) respectively (3D representation) and in Figs. 5(b) and 6(b) (contour lines), 

showing that in general at least 8-10 modes are required to obtain a satisfactorily estimation of the 

top displacement, while a faster convergence is observed for the rotation of the top floor (Fig. 7). 

As shown by Figs. 5, 6, 7, the number of wind modes required for a satisfactory representation 

of the dynamic structural response significantly depends on the angle of attack  . This aspect, 

together with the actual wind tunnel setup, can possibly explain some differences between the 

results discussed here and those reported in Kikuchi et al. (1997) about the number and 

characteristics of wind-modes to be included in a reduced model of the forcing field. 
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Fig. 9 Ratio between standard deviations            of forcing components of the first three structural 

modes obtained with a truncated model of the wind-loads and the complete ones             as  
a function of the number n of wind-modes of the covariance tensor R included in the truncated model; 

angle of attack  = 30° 

 

 
It is also worth to underline that the truncated model of the forcing field is based on wind 

modes stochastically orthogonal to each other, as described in Sect. 3; however, this does not 

corresponds, in general, to the orthogonality of the modal components yj(t) of the structural 

response (Sect. 2), defined with respect to a different base (structural modes).  

This is clearly evident in Fig. 8, where the cross-covariance between some of the modal 

amplitudes y1(t), y2(t) and y3(t) is shown. As a consequence, the standard deviation of the structural 
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response may be non monotonically increasing when new wind modes are added (e.g., Fig. 4), 

while of course a monotonic trend is observed for wind load components, as shown in Fig. 9 

(forcing components f1, f2, f3 of the first three structural modes) and Fig. 10 (wind-induced loads Fx, 

Fy, Mz at the top floor). 

 

 

 
 

 
 

 
 

Fig. 10 Ratio between standard deviations              of wind-induced loads          at the top floor 

obtained with a truncated model of the wind-induced loads and the complete ones             as 

a function of the number n of wind-modes of the covariance tensor R included in the truncated 

model; angle of attack = 30° 
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In the experimental case discussed here it has also been found a faster convergence of the 

torsional moment Mt compared to the shear forces Vx, Vy and the flexural moment M2 along wind 

(i.e., in the mean wind direction, see Fig. 2), as shown by Fig. 11. 

In the case here considered, where the measured wind field is deterministically known, the 

proposed representation of wind loads also allows a detailed reconstruction of the forcing and 

response time-histories, when an appropriate number of wind modes is taken into account. This is 

for example shown in Fig. 12 (forcing components f1(t), f2(t), f3(t) of the first three structural 

modes) and in Fig. 13 (structural displacements sx(t), sy(t), θ(t) at the building top). 
 

 

4. Reduced model of the wind-induced loads based on the PSD wind-tensor 

 

A more suitable representation of the wind field may be achieved by means of the 

decomposition in fully coherent independent vectors (Di Paola 1998). Although the non 

gaussianity of the pressure wind field  tF , its main characteristics can be represented by the 

knowledge of the second order spectral properties. To this end, let us consider the PSD matrix of 

F(t) 
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Fig. 11 Standard deviations σVx, σVy, σM 2, σMt of shear forces Vx and Vy, flexural moment M2 (direction 2 

defined in Fig. 2) and torsional moment Mt along the height of the building for a reduced model with 

3, 9 and 12 wind-modes of the covariance tensor R, compared with experimental standard 

deviations; angle of attack  = 30° 
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(a) 

 

 
(b) 

 

 

Fig. 12 Time-history of the forcing components f1(t), f2(t), f3(t) on the first three structural modes 

reconstructed with truncated models of the wind- induced loads: (a) 3 wind-modes and (b) 12 

wind-modes of the covariance tensor R; angle of attack  = 30° 
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(a) 

 

 

 

 
(b) 

 

 

Fig. 13 Time-history of the structural displacements sx(t), sy(t), θ(t) at the building top reconstructed with 

truncated models of the wind- induced loads: (a) 3 wind-modes and (b) 12 wind-modes of the 

covariance tensor R; angle of attack  = 30° 
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The elements of  FS  are the direct and cross power spectral densities, defined as the Fourier 

transform of the correlation components   
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or equivalently, starting from measurements of the process  tF  
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where  TFi ,  denotes the Fourier transform of  tFi
 over the observation time T 
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The psd matrix is Hermitian and non-negative definite, thus its eigenvalues 

         mdiag 21  are real and non-negative, with orthonormal complex 

eigenvectors          m 21   
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Following (Di Paola 1998) an optimal basis to represent the wind load  tF  is a linear 

combination of the spectral wind modes  k  
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where N is the number of discretization frequency points and   the integration mesh step size, 

while 
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In Eq. (13), when digital simulation is performed,  k
jR  and  k

jI  are independent zero mean 

gaussian distributed variables with variance equal to 1/2 (Di Paola 1998). 

It is worth noting that since measurement of  tF  are known in the sample case here described, 

the  k
jR  and  k

jI  coefficients may be evaluated as Fourier coefficients of the expansion Eq. (13), 

because of the orthonormality Eq. (11), as 
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Fig. 14 Comparison between the standard deviations σ y 
(n)

 of the displacement in the y direction at the top of 

the structure obtained with SPT (tensor S) or CPT (tensor R) truncated models, as a function of the 

number n of wind-modes included in the truncated model; σ y denotes the standard deviation of 

displacement obtained with a complete wind model 

 

 
(a) psd of top displacement along x 

 
(b) psd of top displacement along y 

 
(c) psd of top rotation 

 
(d) cpsd of top displacements along x and y 

 

Fig. 15 Power spectral density (psd) and cross power spectral density (cpsd) of displacement components at 

the building top, for a reduced model of the wind-induced loads based on the PSD wind-tensor 

(Sect. 4); approximate solution (thick curve) for a truncated model with n = 3, 6, 12 blowing-modes, 

compared with the exact solution (thin curve) for a complete wind model 
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If the eigenvalues are sorted in decreasing order, then the summation in Eq. (13) can be 

truncated considering only a limited number of principal components.  

In the case here described, the reduced model obtained in this way (known as spectral proper 

transformation, SPT, (Carassale et al. 2007, Solari et al. 2007) turns out to be more efficient with 

respect to the reduced model of Sect. 3 (covariance proper transformation, CPT), in the sense that 

a lower number of blowing-modes is needed to reproduce the effect of the measured wind field. 

This is shown in Fig. 14, where the standard deviations of top displacements obtained with SPT 

or CPT truncated models are compared. The higher efficiency of SPT with respect to CPT is also 

shown by the comparison of psd and cpsd curves reported in Fig. 15 (SPT) and Fig. 16 (CPT), 

where the approximate solution (thick curve) is compared with the exact solution (thin curve) for 3, 

6 or 12 blowing-modes. 

 

 

 
 

(a) psd of top displacement along x 

 

 
 

(b) psd of top displacement along y 

 

 
 

(c) psd of top rotation 

 

 
 

(d) cpsd of top displacements along x and y 

 

Fig. 16 Power spectral density (psd) and cross power spectral density (cpsd) of displacement components at 

the building top, for a reduced model of the wind-induced loads based on the covariance 

wind-tensor (Sect. 3); approximate solution (thick curve) for a truncated model with n = 3, 6, 12 

blowing-modes, compared with the exact solution (thin curve) for a complete wind model 
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5. Conclusions 
 

Starting from the well accepted representation of the wind field by means of blowing modes (or 

wind modes), i.e., coherent wind fields characterized by highest energetic weights and 

stochastically orthogonal to each other an investigation has been performed in this paper for the 

case of high-rise buildings; the investigation described here is based on experimental results 

obtained on a in-scale model by researchers of Florence and Perugia Universities in the 

boundary-layer wind tunnel of CRIACIV (Inter-University Research Centre on Building 

Aerodynamics and Wind Engineering) in Prato (Italy). 

Aiming to obtain a reduced model for the wind field, the paper describes an algorithm that 

extracts the wind-modes from the covariance matrix of the forcing time-histories, and represents 

them by means of a very expressive 3D representation. 

As discussed in the paper, the elaboration of experimental data shows that the multi-correlated 

field of wind-induced loads cannot in general be reduced to the contribution of the first few 

blowing modes of the covariance wind-tensor, because higher modes can play a non-negligible 

role. 

A more efficient reduction of the wind field is instead obtained when eigenvectors of the power 

spectral density tensor are used in the reduced model of wind-induced loads. 

The two alternative representations are in fact not equivalent, because SPT fully decorrelates 

the principal components, while PCA decorrelates them only for 0 . However their physical 

implications are still under investigation and the question of optimal representation of stationary 

multi-variate random processes remains open. 
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