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Abstract.  The structural vibration suppression with active constrained layer damping (ACLD) was widely 
studied recently. However, the literature seldom concerned with the vibration control on flow-induced 
vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is 
analyzed and suppressed by using random theory together with a velocity feedback control strategy. The 
piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active 
damping in the vibration control. The transverse displacement and velocity in time and frequency domains, 
as well as the power spectral density and the mean-square value of the transverse displacement and velocity, 
are formulated under wind pressure at variable control gain. It is observed from the numerical results that the 
wind induced vibration can be significantly suppressed by using a small outside active voltage on the 
constrained layer. 
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1. Introduction 
 

In the nature, wind widely acts as external random excitations on dynamic systems. The study 

for suppression of wind-induced vibration has therefore received considerable attention, and up to 

the present time many literature in this research topic have been published. Using the passive and 

active tuned mass damper systems, Kwok and Samali (1995) studied the suppression of dynamic 

response in tall buildings and other structures against wind pressure. Kubo et al. (1996) studied the 

problem to suppress aerodynamic response of square-section tall structures by a moving surface 

boundary-layer control, and investigated the effective and economical arrangements of rotors. By 

considering the model parameters and the model error as deterministic, Solari (1997) evaluated the 

wind-excited response of structures and provided closed form expressions of the first and second 

statistical moments of the maximum response. Considering the vibration in both along-wind and 

across-wind directions, Chai and Feng (1997) designed the passive and hybrid mega-sub control 

systems and examined the performance in tall controlled buildings, and a new tall building model 

and a more realistic wind load model were employed in their study. Zhang and Roschke (1999) 

studied the vibration control of a flexible laboratory structure excited by simulated wind forces, 
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and minimized along-wind accelerations of vibration by using a LQG/LTR control strategy. Li 

(2012) employed Hamilton’s principle and presented a Rayleigh–Ritz formulation to study active 

aeroelastic flutter suppression for supersonic plates. Using a layerwise optimization method, Li 

and Narita (2013) investigated the optimal design problem for supersonic laminated plate. From 

their numerical results, it is found that taking the fiber orientation angles as design variables one 

can largely raise the critical aerodynamic pressure and significantly improve the stability of 

supersonic laminated plates. 

The active control of vibration for beam structures has received considerable attention, and 

many researchers have employed the smart materials in the vibration suppression of beam. Using 

the spectral finite element method, Lee and Kim (2001) investigated the active vibration control of 

a beam with ACLD treatment. Balamurugan and Narayanan (2002) provided a beam finite element 

model to assess the performance of vibration control for beams with covered smart constrained 

layer. A new model for beams with ACLD patches was developed by Sun and Tong (2004), and in 

their study both the compressional vibration and shear damping were considered.  Using a partial 

layerwise theory, Vasques et al. (2006) developed an one-dimensional finite element model to 

study the analytical formulation and finite element modelling of beams with ACLD treatments.  

Sun and Tong also gave a solution scheme to obtain the eigenvalues and frequency response 

of the closed-loop controlled beam. Using the energy approach and the Lagrange equation, Cai et 

al. (2006) derived the motion equation for the vibration problem of a beam/ACLD system. Li et al. 

(2008) studied the active vibration control of beams with the active constrained layer damping 

treatment using Hamilton’s principle and the Rayleigh–Ritz method. They derived the equation of 

motion for the beam-ACLD system and analyzed their numerical results. Lee (2005) studied the 

vibration and acoustic control of beams with ACLD treatment and obtained the control input that 

maximizes the loss factor of the ACLD.  

Beams are widely used in the structures and buildings, and many structures can be simplified 

as a beam, and many of these structures are often exposed to wind pressure which may cause 

serious damages. However, the active control problem of beam structure for wind induced random 

vibration has seldom been investigated. Based on these technical needs and our previous studies on 

active vibration control of shell Li and Narita (2012a), in this study an active control method is 

expanded to reduce wind induced vibration. In the formulation, a Ritz solution is derived by the 

Hamilton’s principle. The active damping and random vibration suppressions are studied by a 

negative velocity feedback control strategy. The power spectral density and mean-squares 

displacement and velocity curves are presented to demonstrate the effectiveness of the method. 

 

 

2. The fluctuating wind pressure 
 

The wind speed profile along the vertical direction of a building is expressed as 

),()(),( tHvHvtHv da                                                           (1) 

where va(H) is the mean wind speed which is only related with height H and it is generally 

considered as a constant. vd(H, t) is the fluctuating wind speed which is stochastic and changes 

with time variation, and the fluctuating wind speed could be described by its power spectrum 

which reflects the energy distribution with frequency.  

The pressure that the wind produces on a body in the along-wind direction is of the following 

form 
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Fig. 1 The schematic diagrams of the beam and ACLD systems and the parameters under wind 
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where ρa is the density of the air  ( assumed to be 1.225 kg/m
3
 ), Cp is the drag coefficient and in 

the present paper the drag coefficient is taken to be 1.48 (Kolousek et al. 1984). 

Substituting Eq. (1) into Eq. (2) and ignoring the small term 
2

dv  (va is much larger than vd), the 

wind pressure can be expressed by da PPP   while 

2

2

1
aapa vCP 

                                                           
(3) 

daapd vvCP 
                                                          

(4) 

where Pa is the mean wind pressure which acts as a static load on the structure, and the response of 

mean wind pressure can be obtained by using a static method; Pd is the fluctuating wind pressure 

which acts as a dynamic load and induces random vibration of structure, and the response of the 

fluctuating wind pressure can be solved by using the methods of random vibration theory. In this 

paper, the response of beam under the dynamic load, the fluctuating wind pressure, is analyzed and 

controlled using the active actuators, so in the analyses hereafter only the fluctuating wind pressure 

is considered. 

 

 

 

 

The following normalized power spectral density of the fluctuating wind speed has been 

proposed as Eq. (5) by Kaimal et al. (1972)  
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where ω is the frequency in Hz, the parameter v
*
 is the shear flow velocity which is determined by 

)/ln(

)(

0HH

Hkv
v a

                                                             (6) 

where k is von Karman's constant (generally assumed to be approximately 0.4), and H0 is the 

roughness length (Simiu and Scalan (1986)), a variable characterizing the terrain.  

From Eqs. (3) and (4) one can obtain the power spectral density of the fluctuating wind pressure 
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(7) 

 

3. Analytical models  
 

In Fig. 1 is shown the schematic diagrams of a cantilevered beam with an ACLD patch and 

their parameters. The ACLD patch is composed of a viscoelastic layer and a piezoelectric layer. As 

Fig. 1 shows, h, hv and hp are, respectively, the thicknesses of the base beam, the viscoelastic layer 

and the piezoelectric layer; l and lp are the length of the base beam and the ACLD patch; and it is 

assumed that the ACLD patch has the same width b with the base beam. The axial and transverse 

displacements of the beam are set as u and w; the axial displacements of the piezoelectric layer is 

set as up; and the shear strain of the viscoelastic layer is set as γ. 

Referencing from (Li 2008), the normal strain of the base beam x , the normal strain of the 

piezoelectric layer p
x and the shear strain of the viscoelastic layer γ can be written as  
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With the modulus of elasticity 11c  the normal stress of base beam can be written as  

xx c  11                                                                (9) 

For the ACLD system, the piezoelectric layer is assumed to be transversely isotropic and the 

polarization direction is in thickness direction. The constitutive equation of the piezoelectric layer 

is expressed as 

z
p
x

pp
x Eec 3111   ,  z

p
xz EeD 3331                                    (10) 

where p
x  is the normal stress, Dz and Ez are the electric displacement and the electric intensity in 

thickness direction, and 
pc11 , e31 and 33 are the elastic constant, piezoelectric constant and 

dielectric constant of the piezoelectric layer. It is assumed that the electric field is uniform, so Ez 

can be expressed by the external voltage applied on the piezoelectric layer V0 and the thickness hp  

p

z
h

V
E 0                                                             (11) 
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Another component of the ACLD treatment, namely the viscoelastic layer is assumed to be 

frequency dependent material with complex shear modulus )i1(0 vv GG   where G0 and ηv are 

the storage shear modulus and loss factor which are dependent upon the vibration frequency, i 

denotes the imaginary symbol 1 .  

The total kinetic energy T and potential energy U of beam/ACLD system can be written by 

VwuVwuVwuT
vp V

vp
V

p
V

t d)(
2

1
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2

1
d)(

2

1 222222                           (12) 
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where the dot denotes the differentiation with respect to time, ρ, ρp and ρv are the mass densities of 

the base beam, piezoelectric layer and viscoelastic layer; and V, Vp and Vv are the volumes of the 

base beam, piezoelectric layer and viscoelastic layer, respectively. 

The work includes the works done by the fluctuating wind pressure and by the external applied 

electrical fields. The virtual work of the whole structural system can be written by 

 
pA

z
A

t AVDAwPW dδdδδ 0d                                             (14) 

where δ(·) denotes the first variation, A and Ap are the surface area of the base beam and the 

piezoelectric layer. In this analysis, it is assumed that the dimensions (l and b) of the beam is 

relatively small compared with the position (H) of the beam, so the fluctuating wind pressure in 

the surface areas of the beam is independent of l and b. In the other word, the fluctuating wind 

pressure in any point of the surface area A is a constant. 

        To use the Rayleigh-Ritz method, the displacements u, w and up should be expressed in 

terms of generalized coordinates 

)()()()(),( T

1

txtxtxu u

n

i

uii pUpU 


                                           (15) 

)()()()(),( T

1

txtxtxw w

n

i

iwi pWpW 


                                         (16) 

)()()()(),( T

1

txtxtxu pp

n

i
ippip pUpU 



                                       (17) 

where
T)](,......,[)( tt unuiu ppp  , 

T)](,......,[)( tt wnwiw ppp   and 
T)](,......,[)( tt pnpip ppp   are the 

generalized coordinates or modal coordinates of the structural system, and 
T

1 )](),......,([)( xxx nUUU  , 
T

1 )](),......,([)( xxx nWWW   and 
T

1 )](),......,([)( xxx pnpp UUU   are 

the displacement shape functions or the principal vibration mode shapes which must satisfy the 

geometric boundary conditions. 

Hamilton’s principle is written by 
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0dδd)(δ
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t

t

tt tWtUT                                                  (18) 

Substituting Eqs. (8)-(17) into Eq. (18) and performing the variation operation in terms of pu, 

pw, pp and V0, the equations of motion of the whole system can be obtained  

dtet PV fpKKpM  0
                                                    (19) 

where Mt, Ke, Kt and f are the generalized mass matrix, electromechanical coupling matrix, 

stiffness matrix, and forcing matrix of the whole system, respectively, and all of these matrices are 

listed in Appendix A. In Eq. (19) p is the arrangement of the generalized coordinates pu, pw, pp as 

the following column matrix 
T])()()([)( tttt T

p
T
w

T
u pppp                                             (20) 

 

 
4. Active vibration control and analysis using random theory 
 

Using appropriate external control voltage the piezoelectric constrained layer can be activated 

to obtain active damping and suppress structural vibration. Here, a negative velocity feedback 

control strategy is applied. The control voltage exerted to the piezoelectric actuator is proportional 

to the velocity at the position x0.  With this set the control voltage of the piezoelectric actuator can 

be expressed in terms of the transverse velocity at the position x0 of the beam as 

),()( 00 txwKtV                                                     (21) 

where K is the feedback control gain for the piezoelectric actuator. By changing the value of K, we 

can get different results of structural vibration control. 

Substituting Eq. (16) into Eq. (21), the control voltage can be written by 

)()()( 0

T

0 tKxKtV ww pKpW                                       (22) 

where the coefficient matrix Kw is written by 

]0)(0[ 0xT
w WK                                                  (23) 

Substituting Eq. (22) into Eq. (19), one can get the following equation of motion with active 

damping 

dttt PfpKpCpM  
                                                 

(24) 

where Ct is so called the active damping matrix due to the piezoelectric layer and is written by 

wet K KKC                                                          (25) 

It can be seen from Eq. (24) that the algorithm of negative velocity feedback control provides 

the active damping effect to control the structural vibration. In order to analyze the controlling 

properties of the active control of wind induced vibration, the dynamic Eq. (24) must be decoupled.  

404



 

 

 

 

 

 

Analysis and active control for wind induced vibration of beam with ACLD patch 

However, it can be seen from Eq. (25) that the matrix Ct is not symmetric. As a result, the 

equation of motion cannot be decoupled. Therefore, the complex modal analytical theory must be 

employed.  

Defining the state vector 
TTT ],[ ppr  and introducing this state vector into Eq. (24), one can 

obtain the state equation  

dPFBrrA 
                                                      

(26) 

where A, B and F are written as  
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(27) 

Solving the eigenvalue problem of Eq. (26), one can easily determine the system eigenvalue λi, 

and the left eigenvector ΨLi, as well as the right eigenvector ΨRi (i =1, 2 . . . , 6n). 

Considered the orthogonality of the left and the right modal matrices, one has 

iiRi
T
LiRi

T
Lii J  BΨΨAΨΨ

 
,    (i =1, 2 . . . , 6n)                          (28) 

where Ji is the complex norm quantity, then the decoupled dynamic equations of Eq. (26) can be 

expressed as 

d
T
Li

i

ii P
J

FΨss i

1
 ,    (i =1, 2 . . . , 6n)                                     (29) 

where s is the complex modal coordinate and one has the transform relationship 

sΨr R
                                                             

(30)
 

while ΨR is the matrix composed right eigenvectors, similarly, ΨL is the matrix composed left 

eigenvectors. 

By Duhamel integration, the solution of Eq. (29) can be expressed as 

 dPth
J

t d
T
Lii

i

i 



 )()(

1
)( FΨs

 

,   (i =1, 2 . . . , 6n)                          (31)

 

where hi(t-τ) is the impulse response function, the solution of Eq. (29) in the frequency domain can 

be written as 

dteHP
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)( 




 FΨs

 

,   (i =1, 2 . . . , 6n)                         (32) 

where )(iH is the ith modal complex frequency function and has the following form 






   dethH t
ii

)(i)()( ,    (i =1, 2 . . . , 6n)                                 (33) 

With the transform relationship (30) r in the frequency and time domain can be obtained as
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)()(  sΨr R
 
, )()( tt RsΨr 

                                           
 (34) 

From Eqs. (16), (20) and (34), the transverse vibration responses w and vibration velocity ẇ of 

the cantilevered beam in the frequency domain and time domain can be obtained  


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4 )()(),( rW                                 (36) 

From expression (29) the cross-power spectrum of s can be obtained  

)()()()( *
,  jjLj

T
q

T
Liiiijs HSHS ΨFFΨ , (i, j =1, 2 . . . , 6n)                 (37) 

where )(* jH is the jth modal conjugate complex frequency function. By further considering the 

expression of the model transformation (30), the response power spectrum matrix Sr(ω) in state 

space can be expressed as 

    T)()( RsRr S ΨΨS                                                    (38) 

where Ss(ω) is the power spectrum matrix composed by elements Ss,ij.  

Finally, the mean-square value of the transverse vibration responses and vibration velocity of 

the cantilevered beam can be obtained 
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In order to solve Eq. (26), one must present the formulations of the principal mode shapes U(x), 

W(x) and Up(x) in Eqs. (15)-(17). According to the theory of structural dynamics, the mode shapes 

for the longitudinal and transverse displacements of the cantilevered beam can be expressed as 

xx ii sin)( U ,  
l

i
i

2

)12( 



 , (i, j =1, 2 . . . , 6n)                        (41) 

)sin(sinh
sinsinh

coscosh
coscosh)( xx
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ll
xxx ii

ii

ii
iii 




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


W , (i, j =1, 2 . . . , 6n)        (42) 

where γi is determined by 

01coshcos ll ii  , (i, j =1, 2 . . . , 6n)                              (43) 

The axial mode shape Upi for the piezoelectric constrained layer is modeled as the longitudinal 

vibration mode shape of the rod with free-free boundaries. It can be given by 
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xx ipi cos)( U ,  
p

i
l

i
  ,   (i, j =1, 2 . . . , 6n)                                     (44) 

In this study, the first five vibration mode shapes are considered, i.e. n equals to 5.  

 

 

5. Numerical simulations and discussions 
 

In this section, the performance of active treatments is studied for suppressing wind induced 

vibration of the cantilevered beams. The base beam is aluminum and the active piezoelectric 

constrained layer is PZT-4. The chosen structure and material parameters are taken as following 

(a) 11c = 70.0 GPa, ρ=2710 Kg/m
2
, l = 1.0m, b = 0.1 m and h = 0.01 m 

(b) 
pc11 = 64.5 GPa, e31=-5.203 C/m

2
, ρp=7500 Kg/m

2
, lp = 0.2 m, hp = 0.0005 m 

(c) ρv = 750 kg/m
3
,vv=0.499, hv = 0.0005 m 

The Young’s modulus and the loss factor of the viscoelastic material referenced from (Li and 

Narita 2012b, 2013a) are given by 

)MPa(,52.1log106.0])1(2log[ vvv GGv  
                                 

(45)

 
(%),log56.54.39 vv  

                                                     
(46) 

 

5.1 Analysis of the natural frequencies 
 
The natural frequencies of the cantilevered base beam without ACLD patch have been 

calculated by presenting analysis and comparing with the results obtained by dynamics theory. 

Using the dynamics theory the formula of the first five frequencies can be written as  

D2
1 875.1 , D2

2 694.4 , D2
3 855.7 , D2

4 )5.3(   , D2
5 )5.4(  

              

(47) 

where 324/ mlEJD  and J is the area moment of inertia of the base beam and m is the mass 

of the beam. The results are listed as follow: 

Present analysis: 8.2100 Hz, 51.4514 Hz, 144.0653 Hz, 282.3105 Hz, 466.6795 Hz   

Dynamics theory: 8.2091 Hz, 51.4494 Hz, 144.0742 Hz, 282.3122 Hz, 466.6794 Hz   

It is seen that the results of the present approach are in excellent agreement with the results of 

the dynamics theory and the validity of the analytical method is established. 

 

5.2. Active control of wind pressure 
 
For different control gains, the transverse responses at the top of the beam in the time domain 

and frequency domain are investigated. The velocity sensor is on the top of the beam and its 

position coordinate is x0 = 1.0 m. It has been found that an ACLD patch placed close to the fixed 

end is more effective in controlling the vibration of beam (Li et al. 2003). In this study the ACLD 

patch is bonded at x1 = 0.2 m and x2 = 0.4 m of the beam.  

 Noticed that the wind pressure as random dynamic load can be considered as consisting of a 

series of pulses, firstly, the response at the top of the beam is investigated under a Gaussian 
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impulse (the amplitude of the Gaussian pulse is 1 N/m
2
) which simulates a fluctuating wind 

pressure pulse acting as a dynamic load. Figs. 2 and 3 illustrate the response and velocity at the top 

of the beam in the time domain with the control gain K = 0, 1.5×10
4
 and 3.0×10

4
. From Figs. 2 and 

3 one can observe that with the increase of control gain K the amplitudes of the displacement and 

velocity reduce seriously. This shows that the ACLD patch can significantly improve the damping 

characteristics of the beam and the vibration can be suppressed effectively. Fig. 4 shows the active 

control voltages corresponding to Fig. 2. It is seen from this numerical result that with a much 

smaller control voltage (only 30 V) one can achieve a significantly attenuation of the vibration.  
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Fig. 2 Displacement vs. time under different control gain K 
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Figs. 5, 6 and 7 show the uncontrolled and controlled frequency responses at the top of the 

beam, the same active damping effects are obtained. And it is found that for different control gain 

the maximum control voltage for every resonant response is almost the same especially for the first 

and second one. 
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To investigate the effects of active constrained layer on the vibration control of a cantilevered 

beam under wind pressure, the power spectrum and mean-squares displacements are simulated 

under different control gains. To use the velocity conversion of Eqs. (4) and (5), the terrain is 

regarded as the city centre with high- and low-rise buildings where the roughness length is taken to 

be H0=2.0 (Wieringa 1998). The height of the beam is assumed to be H=10 m and the mean wind 

speed at this height is va(10)=8 m/s (Moderate breeze). Using Kaimal wind velocity conversion, at 

the top of the cantilevered beam the power spectrum curves of response and velocity, with and 

without active control, are drawn up and shown in Fig. 8. It can be found that the peak value of 
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spectral density at a low natural frequency is much larger than at a high natural frequency. That is 

to say the mean-square value of the transverse displacement is mainly decided by the first few 

vibration modes especially the first one which corresponding the lowest natural frequency. 

Because the random vibration power is mainly distributed in the low frequency band, the vibration 

suppression for the first few vibration modes is very important. From these figures, one can find 

that, with increasing feedback gain, the peak values of power spectral density of the first three 

modes attenuate significantly. 
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          Fig. 8 Spectral density of displacement vs. frequency 
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         Fig. 9 Spectral density of velocity vs. frequency 
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To study the influences of the control gain on the wind induced vibration, the Mean-squares 

displacements and velocity under different control gains are studied. From Figs. 10 and 11 one can 

find that with the increase of control gain K the amplitudes of the displacement and velocity 

reduce seriously. And with the increase of control gain the descent rate of Mean-squares values 

(the slopes of curves in the figures) decrease. From these figures one also finds that the 

cantilevered beam position significantly affects the values of Mean-squares displacements and 

velocity, it will be further studied in the next section. 
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        Fig. 10 Mean-squares displacement vs. control gain K 
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            Fig. 11 Mean-squares velocity vs. control gain K 
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Using Kaimal wind velocity conversion, the mean-squares displacements and velocity vs. H are 

illustrated in Figs. 12 and 13. From these figures one can find that the mean-squares displacements 

and velocity are strongly influenced by the height of beams. And when the height increases to a 

certain value (here it is about 20 m), its effect becomes limited. Also it can be found from these 

curves that with increasing feedback gain, the mean-squares displacements under wind pressure 

attenuate significantly, this clearly shows that this method can effectively reduce the vibration 

caused by wind pressure. 
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6. Conclusions 
 

The present paper is devoted to the analysis of active control of the wind induced vibration with 

ACLD patch. The equation of motion is derived by Rayleigh-Ritz method and random vibration 

theory. The active vibration control of beam under wind pressure is analytically investigated. It is 

seen from the numerical results that using a negative velocity feedback control strategy the active 

damping is obtained and the amplitudes of the wind induced vibration can be efficiently attenuated 

with much smaller control voltages. The analytical methodology can be expanded to other kinds of 

random vibration such as earthquake induced vibration and water flow induced vibration. 
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Appendix A 
 

The expressions of the modal mass, modal stiffness and forcing matrices in Eq. (19) are given  
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