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Abstract.   Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible 
structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach 
involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an 
approximation. In the past, an algorithm was developed to directly extract these Rational Functions from 
wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction 
of these Rational Functions from section model tests in forced vibration. The motivation for using 
forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic 
loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical 
tests were performed to verify the robustness and performance of the algorithm under different noise levels 
that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced 
vibration were performed on a streamlined bridge deck section model whose Rational Functions were 
compared with those obtained by free vibration for the same model. 
 

Keywords:  flutter analysis; time-domain method; rational function approximation; forced vibration; 
long-span bridges 
 
 
1. Introduction 
 

Analysis to predict wind-induced flutter instability of flexible structures is usually conducted in 
frequency domain, since the self-excited aerodynamic forces induced by motion of structures are 
expressed by the well-known flutter derivatives (Scanlan and Tomko 1971) that are functions of 
reduced frequency. Flutter derivatives can be identified at discrete reduced frequencies (or reduced 
velocities) through either free vibration (Chowdhury and Sarkar 2003, Chen et al. 2008, Chen and 
Kareem 2008, Bartoli et al. 2009, Ding et al. 2010) or forced vibration (Matsumoto 1996, Haan 
2000) method using section models in wind tunnels. However, when dealing with wind interacting 
with nonlinear structures or structures excited by non-stationary winds, the time-domain method 
(Lin and Ariaratnam 1980, Scanlan 1993, Chen and Kareem 2002, Caracoglia and Jones 2003, 
Zhang et al. 2011) is more suitable and preferable. Roger (1977) developed a Rational Function 
Approximation (RFA) using least squares (LS) method for approximation of self-excited forces 
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with rational functions in Laplace domain that can be used in time-domain analysis. These 
functions can be indirectly extracted from experimentally obtained flutter derivatives using 
approximation techniques. Karpel (1982) developed another RFA formulation using minimum 
state method known as MS-RFA that involves lesser computational work while maintaining higher 
accuracy of approximation compared to LS-RFA by Roger. RFA formulation has been applied to 
bridge aerodynamics by several researchers including Chen et al. (2000). To accelerate the process 
of extraction of Rational Functions, Chowdhury and Sarkar (2005) developed a method through 
which Rational Functions can be extracted directly from free vibration experiments in a wind 
tunnel at fewer wind velocities compared to those used for extracting flutter derivatives. It is 
known that the free vibration method has some limitations compared to the forced vibration 
method, particularly, at higher wind velocities and for turbulent flow. This provides the motivation 
of developing a forced vibration method to extract the Rational Functions from wind tunnel tests. 

In this paper, a new algorithm for forced vibration experimental method that was developed for 
direct extraction of Rational Functions is presented.  Results from both numerical simulation and 
wind tunnel tests are presented to validate the algorithm. A streamlined bridge deck section model 
with a chord-to-thickness ratio of about 15:1 was used as an example. 

 
 

2. Formulation and algorithm 
 

In two degree-of-freedom (DOF), self-excited forces acting on the structure can be calculated 
from flutter derivative formulation as given below 
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where Lse = self-excited lift, Mse = self-excited torsional moment, ρ = air density, U = mean wind 
speed, B = width of bridge deck model, K = Bω/U = reduced frequency, where ω = 2πf = circular 
frequency of the vibration, h(t, x) = vertical displacement, α(t, x) = torsional displacement, ( · ) = 
d( )/dt,  Hi

*, Ai
* (i=1,…,4) = flutter derivatives which are aeroelastic coefficients changing with 

reduced frequency.  
    Applying Laplace transformation on Eqs. (1) and (2) 
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where p = iK = non-dimensional Laplace domain variable, and ‘^’ denotes the Laplace 
transformation of the corresponding time domain function. By Karpel (1982)’s minimum state 
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RFA formulation with neglect of second order term, the matrix Q~ can be approximated by Q  , 
which is a matrix of rational functions in Laplace domain, as given below 
 

( ) 1
0 1( )Q p A A p D pI R Ep−= + + +                              (4) 

 
where 10  , AA are stiffness matrix and damping matrix, respectively, D and E  are lag matrices, 

R  is a diagonal matrix with diagonal elements of lag coefficients, and the dimension of the matrix 
R  is the number of lag terms. Since Chowdhury and Sarkar (2005) showed that the formulation 
with even one lag term works well for streamlined and bluff bridge decks, only formulation with 
one lag term is used here. With only one lag term, Eq. (4) can be written as given below 
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where FAA ,, 10  and λ are referred here as Rational Function Coefficients. 

 Substituting Eq. (5) into Eq. (3), self-excited aerodynamic forces in Laplace domain can be 
obtained 
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To obtain higher accuracy, formulation with two lag terms could be used, as derived in 

Chowdhury (2004).  
Applying inverse Laplace transformation on Eqs. (6) and (7), time domain formulations can be 

obtained as given below 
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where ( ) ( )0 01 11 12
A Aψ λ λ⎡ ⎤= ⎣ ⎦

 , ( ) ( ) ( ) ( )11 120 1 0 12 11 1211 12
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, 

( ) ( )1 13 11 12
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,  ( ) ( )0 04 21 22
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, 

( ) ( ) ( ) ( )21 220 1 0 15 21 2221 22
A A F A A Fψ λ λ⎡ ⎤= + + + +⎣ ⎦

, ( ) ( )1 16 21 22
A Aψ ⎡ ⎤= ⎣ ⎦

 

 
In a forced vibration method, the model is constrained to vibrate in one-DOF, vertical, torsional 

or horizontal motion, where the displacement is a sinusoidal motion at a prescribed amplitude and 
frequency. For the current study, experiments in vertical and torsional degrees of freedom were 
performed to validate the new method, respectively.  

In vertical motion experiment, the displacements h  and α  can be written as 
 

( )0 cos hh h tω= , 0=α                         (10) 
 

At a certain mean wind velocity, 1U , since there is a lag between self-excited aerodynamic 
loads (lift and moment) and the corresponding displacement, the self-excited loads can be written 
as 

 
( )1 1

0 cosse h h LhL L tω φ= −                            (11) 
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Substituting Eqs. (10) and (11) into Eq. (8) 
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By matching coefficients of )sin( thω  and )cos( thω  above, following equations can be 

obtained 
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Eq. (14(a)) can be re-written in matrix form 
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Since the above equations have four unknowns, ( )1 1
ψ  to ( )3 1

ψ  and λ, it cannot be solved. 

However, if similar equations are written for two more wind velocities, 2U  and 3U , and 
combined with Eq. (14(b)) , the following matrix of six equations in terms of the four unknowns 
can be obtained 

 
1 1 1h h hC X D=                            (15) 

 
where 1hC , 1hX , 1hD are defined in Appendix A (Eqns. A.1-A.3). 

By Least Squares method, the unknown vector 1hX  can be solved as 
 

1

1 1 1 1 14 4 4 1

T T
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−

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦                  (16a) 

 
Similarly, by substituting Eqs. (10) and (12) into Eq. (9), the unknown vector 2hX  can be 

solved as 
1

2 2 2 2 24 4 4 1

T T
h h h h hX C C C D

−

× ×
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦                   

 (16b) 

 
where 2hC , 2hX , 2hD are defined in Appendix A (Eqns. A.4-A.6). 

In this algorithm, data from experiments at only three wind speeds (U1 to U3) are needed which 
is the minimum requirement for the least squares method. However, to increase the accuracy of the 
algorithm, data collected at more number of wind speeds could be included.  This will add more 
number of rows in the matrix hiC and vector hiD .  

Finally, from vectors 1hX  and 2hX , 2111211111210110 )(, )(, )(, )(, )(, )( FFAAAA  and λ  can 
be obtained, and 11Q  and 21Q  can be obtained from Eq. (5). Following a similar procedure, 
using data from forced vibration experiments under torsional motion of the model 

2212221121220120 )(, )(, )(, )(, )(, )( FFAAAA and λ，as well as 12Q and 22Q , can be obtained. It is 

noted that  for the vertical motion case and torsional motion case may not be the same. 
Thus, this algorithm will require simultaneous measurements of the displacements (h or α) 

along with the surface pressures on the model that will help compute the self-excited forces, lift 
(Lse) and moment (Mse). Amplitudes of the self-excited forces (Lse and Mse) that are computed from 
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pressures and their phase lags (φ ’s) with respect to displacement (h or α) along with amplitude 
and frequency of the displacement and the mean wind speeds are used as input to the algorithm. 

 
 

3. Experimental set-up 
 

3.1 Wind tunnel used 
The experiments were performed in the Bill James Open-Return Wind Tunnel, which is located 

in the Wind Simulation and Testing Laboratory (WiST Lab) in the Department of Aerospace 
Engineering at Iowa State University. This wind tunnel has a test section of 0.915 m (3.0ft) width 
by 0.762 m (2.5ft) height and its maximum wind velocity is 75 m/s (246 ft/s).   

 
3.2 Model, suspension system and forced vibration mechanism 
 
A streamlined bridge deck section model was used in the experiment as shown in Figs. 1 and 2.  
The model is composed of a shallow box girder section and two semi-circular fairings at the 

edges. The length, chord length and thickness of the model are about 0.533 m, 0.3 m, and 0.02 m, 
respectively. The three-DOF model suspension system and two Plexiglas end plates that were used 
to reduce the edge defects on the model are shown in Fig. 2. This system was developed by Sarkar 
et al. (2004). The suspension system enables vertical, horizontal and torsional motions of the 
model. In the current experiments, sinusoidal vertical and torsional motions of the model with 
constant amplitudes and frequencies are realized by the driving mechanism connected to the model 
suspension system with four aluminum rods as shown in Fig. 2. The entire mechanism is driven by 
two motors which are placed above the test section, as seen in Fig. 3. By changing the rotating 
speed of two motors using two separate controllers, the two frequencies of model vibration in two 
degrees of freedom can be changed independently.  

 
 

Fig.1 Cross section of the streamlined bridge deck model used in the experiment 
 
 
3.3 Displacement measurement 
 
The vertical displacement of the model was measured by measuring the spring force in each of 

two springs which is connected to the model at one end and a strain gage force transducer at the 
other end. The torsional displacement was measured by measuring the torque at one end of the 
model shaft using a torque transducer which is mounted on the suspension system. LabView was 
used for data acquisition, where the sampling rate was set at 625 Hz.  
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Fig. 2 Bridge deck model and suspension system 
 
 

Fig. 3 Driving mechanism 
 

 
3.4 Aerodynamic force measurement 
 
The algorithm stated in this paper, in addition to the displacement time histories, requires the 

time histories of aerodynamic forces acting on the model while it is vibrating. The aerodynamic 
forces were obtained from the measured surface pressures on the vibrating model through 
numerical integration (trapezoidal law). Surface pressures were measured on the model including 
the fairings through a row of pressure taps located on the upper and lower surfaces of the model 
along the mid-plane. In total, forty-two pressure taps were used in this test, equally distributed on 
both the surfaces. The pressure taps are denser on the upstream side than the downstream side of 
the model. Two 64-channel pressure modules (Scanivalve ZOC33/64 Px) were used to measure 
the pressure. The sampling rate for pressure measurement was 312.5 Hz (half of displacement 
sampling rate) in the experiment. To synchronize the pressure data with the displacement data, the 

Motors

Driving Rods 

End Plates
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pressure transducers were set to work in external-trigger mode. The LabView program that was 
used for displacement data acquisition was programmed to output a digital signal when the 
displacement data acquisition started, so that the pressure data acquisition system would receive 
this external signal and get triggered to start the acquisition of pressure. A separate program RAD 
(Scanivalve) was used to collect the pressure data. The sampling rate (1000000/64/n) for the RAD 
software is calculated based on the specified time-lag (n) in micro seconds between each of the 64 
channels of the ZOC33/64 transducer and its maximum sampling frequency need not exceed 500 
Hz. Thus, the sampling rate for pressure measurement can be any real number whereas the 
sampling rate for the displacement measurement has to be an integer because it is measured using 
the LabView program. To synchronize the times at which both pressure and displacement data are 
sampled, it was decided to use 625 Hz sampling frequency for displacement and 312.5 Hz or half 
of 625 Hz as sampling frequency for pressures. 

 
 

4. Results and discussions 
 

4.1 Numerical tests and results 
 
To validate the algorithm as presented here, numerical tests were done before using it with 

wind tunnel data. Firstly, the displacement time history of the model was generated as a sinusoidal 
function with the same amplitude and frequency as those of the wind tunnel tests. Secondly, the 
first derivative of the displacement history was generated through central difference method. Using 
the flutter derivatives for the cross section mentioned here (Chowdhury and Sarkar 2003, 2004), 
the aerodynamic lift and moment time histories (Lse and Mse) were generated. Using the lift, 
moment and displacement time histories as input, rational function coefficients were extracted 
using the algorithm developed here. The relationship between rational function coefficients and 
flutter derivatives, as given below, were used to calculate the flutter derivatives for comparison 
with those used 

 
* 2
1 11( ) /H imag Q= Κ , * 2

4 11( ) /H real Q= Κ ,  * 2
1 21( ) /A imag Q= Κ , * 2

4 21( ) /A real Q= Κ     
2

12
*
2 /)( KQimagH = , 2

12
*
3 /)( KQrealH = , 2

22
*
2 /)( KQimagA = , 2

22
*
3 /)( KQrealA =        

(17) 
 

An excellent agreement between the two sets of flutter derivatives proved the feasibility of the 
algorithm for extraction of rational function coefficients.  

However, in a wind tunnel experiment, the test data can be contaminated with noise. Therefore, 
to test the robustness of the algorithm, white noise time histories with a normal probability 
distribution were scaled and added to the displacement and force time histories that were generated, 
and then rational function coefficients were extracted from these noisy data using the algorithm. 
The noise time histories were generated independently, and therefore they were not correlated to 
aerodynamic force and model displacement time histories. The standard deviation of the noise 
time histories was chosen as 10% and 20% of the respective signal amplitudes. The flutter 
derivatives extracted using Eq. (17) from these noisy data were compared with those extracted 
from the original numerical data, and the percentage errors (root mean square) were calculated as 
shown in Table 1. In Table 1, it is seen that H4*, A4*, H2* and A2* are more sensitive to the noise 
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in the data than the rest of the flutter derivatives. However, the errors in all eight flutter derivatives 
change marginally even with the doubling of noise amplitudes. 

 
 

Table 1 Percentage errors for derivatives drawn from noisy data 

Noise Amplitudes H1* H4* A1* A4* H2* H3* A2* A3* 
10% 0.3 5.0 0.2 1.8 0.9 0.2 1.1 1.0 

20% 0.4 6.2 0.3 3.6 2.1 0.3 1.8 1.0 

 
 

 
Fig. 4 Experimentally obtained rational functions 

 
 

4.2 Experimental results 
 
For vertical DOF forced vibration of the bridge deck model, wind tunnel tests were performed 

at wind speeds of 4 m/s, 6.7 m/s and 11.1 m/s, while for torsional DOF forced vibration, 
measurements were carried out at wind speeds of 3.6 m/s, 10.2 m/s and 15.2 m/s. The model was 
forced to vibrate at 2.44 Hz for vertical motion and 3.28 Hz for torsional motion. The rational 
functions 122111 , , QQQ  and 22Q  , as obtained by the algorithm and method mentioned here, are 
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shown in Fig. 4. For the purpose of validation of the rational functions obtained using the proposed 
algorithm, these were converted to corresponding flutter derivatives of the streamlined bridge 
section and compared with those obtained earlier by free vibration method (Chowdhury and Sarkar 
2003). However, error envelopes need to be assessed for each of these two data sets before the 
comparison. All eight flutter derivatives (H1* to H4*, A1* to A4*) were calculated using the 
obtained rational functions (Eq. (17)) and error envelopes of these flutter derivatives were obtained 
using perturbed rational functions that were extracted using modified phase lag angles, 

MaLaMhLh φφφφ  and  , , , with ±7% error added to their obtained values. Similarly, error envelopes for 
flutter derivative data sets that were obtained by free vibration method (Chowdhury and Sarkar 
2003) were calculated by adding ±7% errors to the original phase lag angles, MaLaMhLh φφφφ  and  , , , 
obtained from the numerically generated displacement and force time histories without noise as in 
Section 4.1. Both sets of flutter derivatives and their corresponding error envelopes are plotted for 
comparison in Fig. 5. 

 
 

 

 
 

Continued 
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Fig. 5 Comparison of experimentally obtained flutter derivatives and those from experimental Rational 
Functions 
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These plot show that H4*, A1*, H3* and A3* match very well with earlier flutter derivative data 

obtained by free vibration method. H1*, H2* and A2* curves match well for low reduced velocities 
and there are some differences at higher reduced velocities. This could be because the free 
vibration method need not be very accurate at high wind speeds when aerodynamic damping is 
positive and large. This difference could be also attributed to the fact that the free-vibration 
experiments were of two-DOF (vertical and torsional) while the forced vibration experiments 
stated here were two separate one-DOF motion experiments (vertical and torsional, respectively) 
for extraction of all eight flutter derivatives. It could be a combination of both reasons. The worst 
comparison is the A4*curves. The A4* extracted from RFA method here is almost twice of that free 
vibration method. This could be because of the difference in degrees of freedom or it could be 
because A4* is more sensitive to the noise in the experimental data as concluded by numerical tests 
(Table 1). However, in Fig. 5, all the 7% error bands for flutter derives from RFA (rational function 
approximation) data overlap with corresponding 7% error bands for free vibration flutter 
derivative data. Moreover, from error bands plotted in Fig. 5, it is seen that H4*, A4* and H2* are 
more sensitive to the phase difference than other flutter derivatives. This is similar to the results 
presented in Table 1. Actually, it has been shown by Sarkar et al. (2009) that, in forced vibration 
technique to extract flutter derivatives, slight error in estimation of the phase difference between 
aerodynamic loads and displacements obtained from experiments could get amplified in some of 
the flutter derivatives (A2* and H2* in Sarkar et al. 2009), which is similar to what is observed here 
in H4*, A4*, H2* and A2* plots in Fig. 5. 

 
 

Table 2. Comparison of flutter speeds of the streamlined bridge deck section model obtained by different set 
of parameters 

 

 

Flutter Derivatives 
(Gan Chowdhury 
and Sarkar 2005) 

Free vibration 

Rational Functions 
(Gan Chowdhury 
and Sarkar 2005) 

Free vibration 

Rational Functions 
(Obtained in this 

paper) 
Forced vibration 

Rational Functions 
(Obtained by adding 
±2% error to flutter 

derivative data) 
Forced vibration 

Flutter Speed, 
Ucr (m/s) 32.4 31.8 34.5 32.9 (-2%), 32.8 (+2%) 

 
 
To further validate the method, the flutter speed of the streamlined bridge deck section model 

was predicted using time domain simulation and Rational Function Coefficients extracted here. 
For flutter speed prediction, the time domain equations of motion were solved, corresponding to a 
chosen wind speed, at each time step after substituting the Rational Function Coefficients that 
were extracted. This process is repeated for incremental wind speeds until a divergent response is 
obtained. The flutter speed obtained here was compared with that obtained by Gan Chowdhury and 
Sarkar (2005) for the same model using Rational Functions (free vibration) and flutter derivatives 
(free vibration) and shown in Table 2. In current research, the flutter speed of the model was not 
validated through free vibration wind tunnel experiment. To investigate the effect of error in phase 
difference on the prediction of flutter speed, the Rational Functions, obtained by adding ±2% 
errors to the exact value of MaLaMhLh φφφφ  and  , , , calculated from the numerically generated 
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displacement and aerodynamic load time histories using Gan Chowdhury and Sarkar’s (2005) 
flutter derivative data, were also used to predict flutter speed of the bridge deck, and the results are 
listed in Table 2. 

It can be seen from the table that the comparison of predicted flutter speed is good, though 
some of the flutter derivatives, especially A4*, do not match very well with those extracted earlier, 
as shown in Fig. 5. Moreover, by ±2% error test, it is shown that slight error in phase difference, 

MaLaMhLh φφφφ  and  , , , could lead to a change in predicted flutter speed. 
 Overall, this algorithm demonstrated the feasibility of direct extraction of rational functions 

by the forced vibration method. 
 
 

5. Conclusions 
 

In this paper, a new method has been introduced to directly extract rational function 
coefficients or rational functions from forced vibration experiment. Through numerical tests, it has 
been shown that the algorithm is feasible for extraction of rational function coefficients and it is 
quite robust. The validation results of the obtained rational functions show that flutter derivatives 
extracted from this RFA method are generally in good agreement with those from earlier free 
vibration experimental results, given their sensitivity to noise in the signals. Recently, all eight 
flutter derivatives were extracted simultaneously using a two-DOF forced-vibration system (Cao 
and Sarkar 2013) to eliminate the influence of single DOF (if any) on the final results. Moreover, 
to avoid the amplification of the error induced from phase difference identification in the 
algorithm as discussed previously, a new algorithm which is based on the system identification on 
the whole time histories rather than just the phase differences and amplitudes of time histories was 
developed and validated by wind tunnel tests (Cao and Sarkar 2013). 

 
 

References 
 
Bartoli, G., Contri, S., Mannini, C. and Righi, M. (2009), “Toward an improvement in the identification of 

bridge deck flutter derivatives”, J. Eng. Mech.- ASCE, 135(8), 771-785. 
Cao, B. and Sarkar, P.P. (2013), “Identification of rational functions using two-degree-of-freedom model by 

forced vibration method”, Eng. Struct., (in press). 
Caracoglia, L. and Jones, N.P. (2003), “Time domain vs. frequency domain characterization of aeroelastic 

forces for bridge deck sections”, J. Wind Eng. Ind. Aerod., 91, 371-402  
Chen, C., Wu, J. and Chen, J. (2008), “Prediction of flutter derivatives by artificial neural networks”, J. 

Wind Eng. Ind. Aerod., 96, 1925-1937. 
Chen, X., Matsumoto, M. and Kareem, A. (2000), “Time domain flutter and buffeting response analysis of 

bridges”, J. Eng. Mech. - ASCE, 126(1), 7-16. 
Chen, X. and Kareem, A. (2002), “Advances in modeling of aerodynamic forces on bridge decks”, J. Eng. 

Mech.- ASCE, 128(11), 1193-1205. 
Chen, X. and Kareem, A. (2008), “Identification of critical structural modes and flutter derivatives for 

predicting coupled bridge flutter”, J. Wind Eng. Ind. Aerod., 96, 1856-1870. 
Ding, Q., Zhou, Z., Zhu, L. and Xiang, H. (2010), “Identification of flutter drivatives of bridge decks with 

free vibration technique”, J. Wind Eng. Ind. Aerod., 98, 911-918.  
Gan Chowdhury, A. and Sarkar, P.P. (2003), “A new technique for identification of eighteen flutter 

derivatives using a three-degree-of-freedom section model”, Eng. Struct., 25(14), 1763-1772. 

574



 
 
 
 
 
 

Extraction of rational functions by forced vibration method for time-domain analysis … 

Gan Chowdhury, A. (2004), Identification of Frequency domain and time domain aeroelastic parameters for 
flutter analysis of flexible structures, PhD dissertation. Ames (IA), Iowa State University. 

Gan Chowdhury, A. and Sarkar, P.P. (2004), “Identification of eighteen flutter derivatives of an airfoil and a 
bridge deck”, Wind Struct., 7(3), 187-202. 

Gan Chowdhury, A. and Sarkar, P.P. (2005), “Experimental identification of rational function coefficients 
for time-domain flutter analysis”, Eng. Struct., 27(9), 1349-1364. 

Haan, F.L. (2000), The effects of turbulence on the aerodynamics of long-span bridges, Ph.D. dissertation. 
Notre Dame (IN, USA), University of Notre Dame. 

Karpel, M. (1982), “Design for active flutter suppression and gust alleviation using state-space aeroelastic 
modeling”, J. Aircraft, 19(3), 221-227. 

Lin, Y.K. and Ariaratnam, S.T. (1980), “Stability of bridge motion in turbulent winds”, J. Struct. Mech., 
8(1), 1-15. 

Matsumoto, M. (1996), “Aerodynamic damping of prisms”, J. Wind Eng. Ind. Aerod., 59(2-3),159-175.  
Roger, K. (1977), Airplane math modeling methods for active control design, AGARD-CP-228. 
Sarkar, P.P., Gan Chowdhury, A. and Gardner, T.B. (2004), “A novel elastic suspension system for wind 

tunnel section model studies”, J. Wind Eng. Ind. Aerod., 92, 23-40. 
Sarkar, P.P., Caracoglia, L., Haan Jr., F.L., Sato, H. and Murakoshi, J. (2009), “Comparative and sensitivity 

study of flutter derivatives of selected bridge deck sections, Part1: Analysis of inter-laboratory 
experimental data”, Eng. Struct., 31(1), 158-169. 

Scanlan, R.H. and Tomko, J.J. (1971), “Airfoil and bridge deckflutter derivatives”, J. Eng. Mech. Div., 
97(6),1717-1733. 

Scanlan, R.H. (1993), “Problematics in formulation of wind-force models for bridge decks”, J. Eng. Mech.- 
ASCE, 119(7), 1353-1375. 

Zhang, Z., Chen, Z., Cai, Y. and Ge, Y. (2011), “Indicial functions for bridge aeroelastic forces and 
time-domain flutter analysis”, J. Bridge Eng.- ASCE, 16(4), 546-557. 

 
 
CC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

575



 
 
 
 
 
 

Bochao Cao and Partha P. Sarkar 

 
Appendix A Definition of matrices and vectors used in the algorithm 
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