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Abstract.    This paper presents a new analysis framework for predicting the internal buffeting forces in 
bridge components under skew wind. A linear regressive model between the internal buffeting force and 
deformation under normal wind is derived based on mathematical statistical theory. Applying this regression 
model under normal wind and the time history of buffeting displacement under skew wind with different 
yaw angles in wind tunnel tests, internal buffeting forces in bridge components can be obtained directly, 
without using the complex theory of buffeting analysis under skew wind. A self-anchored suspension bridge 
with a main span of 260 m and a steel arch bridge with a main span of 450 m are selected as case studies to 
illustrate the application of this linear regressive framework. The results show that the regressive model 
between internal buffeting force and displacement may be of high significance and can also be applied in the 
skew wind case with proper regressands, and the most unfavorable internal buffeting forces often occur 
under yaw wind. 
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1. Introduction 
 

Buffeting is a phenomenon of stochastic forced vibration caused by turbulence existing 
inherently in natural wind in conjunction with structural-induced signature turbulence. With 
increasing lengths of main spans, buffeting responses may rapidly increase, resulting in substantial 
increases in stresses and serious fatigue damage to bridge components and connections. Therefore, 
it is becoming increasingly important to predict wind-induced internal buffeting forces in 
components of long-span bridges.  

Wind tunnel tests on full bridge aero-elastic models will continue to be indispensable for 
evaluating wind induced vibrations of long-span bridges (Zhu et al. 2007). As full bridge 
aero-elastic models usually use core beams to simulate the stiffness systems of real bridges, the 
similarity relations of displacement may be explicit, but there are no similarity relations for 
internal forces in bridge components. Therefore, internal buffeting forces in real bridges cannot be 
obtained from wind tunnel tests directly according to similarity law. Fortunately, numerical 
analysis based on the finite element method and the semi-empirical model of wind forces can 
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predict these forces. However, most existing buffeting analysis methods are based on the 
assumption that the incident mean wind is perpendicular to the longitudinal axis of the bridge 
(Davenport 1962, Lin 1979, Scanlan 1978). This may not always be the case when the bridge is 
located in a complex heterogeneous topography and is attacked by a typhoon (Zhu and Xu 2005). 
In order to consider skew wind effects in buffeting analysis, most researches dispose the mean yaw 
wind into one component normal and one parallel to the longitudinal axis of the bridge (Kimura 
and Tanaka 1992, Scanlan 1993a, Xie et al. 1991). This method of considering mean yaw wind 
may meet some intractable issues, such as how to decompose velocity fluctuations of turbulent 
wind, how to determinate the span-wise coherence function of the decomposed turbulent wind and 
how to compose the calculated response components induced by the two decomposed turbulent 
wind components. Zhu has presented a finite-element-based framework for buffeting analysis of 
long-span bridges under skew winds in the frequency domain (Zhu et al. 2002, Zhu et al. 2002, 
Zhu and Xu 2005). However, it is necessary to identify aerostatic and aerodynamic parameters, 
such as mean static coefficients, aerodynamic derivatives and aerodynamic admittance functions. 
As these aerostatic and aerodynamic parameters are all functions of geometric configuration, wind 
attack angle and yaw angle of bridge sections, massive sectional model wind tunnel tests need to 
be carried out for different wind attack angles and yaw angles. In addition, complicated coordinate 
transformation is necessary.  

We applied mathematical statistics to illustrate a framework of a linear regression analysis of 
internal buffeting forces under skew wind by combining numerical buffeting analysis under 
normal wind and full bridge aero-elastic model wind tunnel testing under skew wind. To illustrate 
the effectiveness of this regression method, we applied it to a self-anchored suspension bridge with 
a main span of 260m and a steel arch bridge with a main span of 450 m as case studies. 

 
 

2. Framework of linear regression analysis of buffeting internal force 
 
For linearly elastic structures, the relationship between internal force and deformation induced 

by buffeting vibration can be considered statistically as a linear transformation. The theory of 
buffeting analysis under normal wind is quite reliable: numerical analysis results fit well with wind 
tunnel testing results (Zhao et al. 2008). As the theory of buffeting numerical analysis under skew 
wind is relatively complicated and fuzzy, it is not appropriate to predict internal buffeting forces in 
bridge components under yaw wind. The regression analysis framework for internal buffeting 
forces under skew wind is implemented as follows: 

(1) The stochastic velocity fluctuations of turbulent wind, the finite element model and the 
aerodynamic parameters used in numerical analysis are first checked by comparing the buffeting 
displacement obtained in wind tunnel tests with numerical results under normal wind. 

(2) The objective internal forces in bridge components are determined firstly, and the 
displacements used in the regression analysis are selected according to these forces and the 
dominant modes inducing buffeting response under normal wind. 

(3) The regression equations between buffeting displacement and internal force are established 
based on the time history of numerical results under normal wind. 

(4) The significance of the regression equations and regression coefficients are analyzed to 
ensure they are of high significance. 

(5) The similarity of dominant modes participating in buffeting response and the corresponding 
mode participation coefficients under normal wind and skew wind are investigated to determine 
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the applicability of the regression equations for normal wind to prediction of internal forces in 
bridge components under skew wind. 

(6) The objective internal buffeting forces under skew wind with different yaw angles are 
predicted using the buffeting displacements under skew wind obtained from wind tunnel testing 
and the regression equations. 

This framework is described concisely in Fig. 1. 
 
 

 

Fig. 1 Regression analysis framework for determining internal buffeting force under skew wind 

 

 

3. Formulation of regression analysis of buffeting response 
 
In this analysis, the internal buffeting forces in bridge components are denoted as F. They are 

also called regressors and are mainly influenced by displacements Δ. Considering the random 
variation of F, normal random variables ε with zero mean are also added to the equations. 
Therefore, the linear regression equations between internal buffeting force and displacement of 
bridge take the following form 
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indicates the number of displacements in the regressive model and n indicates the length of 

sampling. 
Using the least-square estimation method, the point estimation of the regression coefficients β 

can be given as 
 

 1ˆ ( )T T−=β Δ Δ Δ F                             (2) 
 
The statistical variables, F̃ and R, which can be used to check out the significance of regression 

equation, are defined as 
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where F (m,n-m-1) indicates the statistical variable F̃ obeys F-distribution, and R indicates the 

correlation coefficient of linear regression. 
If all the absolute values of regression coefficients β are close to zero, the regression relation 

between objective internal force and displacement is not significant. Therefore, the null hypotheses 
can be expressed as 

 
 H0: βj=0 (j=1···m)                             (5) 

 
If F>F1-α(m, n-m-1), the null hypotheses can be rejected. Besides, the greater the variable R is, 

the more significant the regression equation. If R>0.8, the regressive model is linearly correlated to 
a high confidence level. 

The significant regression equation does not represent that all the absolute values of regression 
coefficients in the regression equations are much greater than zero. If the absolute value of βj 
approaches zero, the relation between displacement δj and objective internal force F is not linearly 
significant. Therefore, the null hypotheses can be expressed as 

 
 H(j) 

0 : βj=0                               (6) 
 
The statistical variables, tj, which can be used to check out the significance of the regression 

coefficients, are defined as 
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where t(n-m-1) indicates that the statistical variable tj obeys the student distribution. If 
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|tj|>tα(n-m-1), the null hypotheses can be rejected. 
After the significance of the regressive model and regression coefficients have been tested, 

given the displacement Δ0 determined from Eq. (2) and β ̂ is substituted in Eq. (8), the value of F̂ 
can be estimated as 

 ˆˆ =F Δβ                                   (8) 
 

 
4. Buffeting analysis in time domain under normal wind 

 
The governing equations of motion of a bridge subjected to winds are given in matrix form as 
 

 + + = G st b seMX CX KX F + F + F + F&& &                   (9) 
 
where M, C, and K=mass, damping, stiffness matrices, respectively; X=nodal displacement 

vector, and the head dot denotes partial differentiation with respect to time t; F indicates the nodal 
force vector, and subscripts G, st, b, and se denote gravity force, time-averaged aerostatic force, 
time-varying buffeting force and self-excited force, respectively. 

Buffeting response can be analyzed in the time or frequency domain. In the present paper, the 
Newmark-β integration method is utilized. Firstly, the wind forces acting on the bridge 
components should be simulated and discretized. The time-averaged aerostatic forces acting on per 
unit length of a bridge’s components can be defined by static coefficients, and time-varying 
buffeting forces and self-excited forces can be simulated using the semi-empirical models 
suggested by Davenport and Scanlan (Davenport 1962, Scanlan 2000). To convert these uniformly 
distributed forces into element-end forces, a simple lumping procedure is adopted whereby one 
half of the element load is acting upon each element node. 

Specifically, the aerostatic force components applied to one node of a discrete element with the 
length of Le can be expressed in wind axes as 

 

 ( )21
4st e LL U BL Cρ α=                         (10a) 

 

( )21
4
ρ α=st e DD U BL C                        (10b) 

 

 ( )2 21
4st e MM U B L Cρ α=                      (10c) 

 
where Lst, Dst, Mst=lift, drag, and pitching moment force component of mean static force, 

respectively; ρ=air density; U=mean wind velocity; B=bridge deck width; CL, CD and CM=mean 
lift, drag and pitching moment coefficients, respectively; and α= attack angle of wind. 

In addition, the time-varying self-excited force acting per unit length of bridge deck can be 
expressed as (Scanlan 2000) 
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where K=ωB/U; ω=circular frequency; h, p, α=vertical, lateral and pitching displacement; and 

H* 
i , A* 

i , P* 
i (i=1,2,…6)=frequency dependent flutter derivative. 

As the flutter derivatives are frequency dependent, it is more reasonable to use the unsteady 
self-excited force model expressed in the time domain, which are conventionally expressed in 
terms of convolution integrals of the impulse response functions (Lin and Li 1983, Scanlan 1993b) 
or indicial response functions (Borri et al. 2002, Salvatori and Borri 2007), while additional 
nonlinear convolution integral terms may be introduced in order to consider the unsteady fluid 
memory effect of self-exited force. In this study, however, the self-exited forces are considered in 
Scanlan’s form, and the flutter derivatives are determined accordding to the fundamental vertical, 
lateral and pitching frequencies of bridge and the design reference wind speed at the bridge deck 
level. 

The effects of self-exited force can be considered in the manner of aerodynamic stiffness and 
aerodynamic damping. In finite element analysis, additional aerodynamic elements (Ge and 
Tanaka 2000), as shown in Fig. 2, are appended in the structural elements to consider the effects of 
self-exited force. 

 
 

 

Fig. 2 the aerodynamic element of self-excited force 
 
 

The matrix of aerodynamic stiffness element and aerodynamic damping element are given as 
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where 
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The buffeting forces acting on one node of a discrete element of length Le can be expressed as 
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where Lb, Db, Mb=lift, drag, and pitching moment force component of buffeting force, 

respectively; u(t), w(t)= longitudinal and vertical turbulent wind fluctuations at the center of the 
element, respectively; C′L, C′D and C′D = partial differentiation of CL, CD and CM with respect to 
wind attack angle, respectively; χLu, χLw, χDu, χDw, χMu, χMw= aerodynamic transfer functions between 
fluctuating oncoming wind velocities and buffeting force, and the absolute magnitude of the 
functions are so-called aerodynamic admittance. 

The multidimensional multivariate velocity fluctuation time histories of turbulent wind with 
prescribed power spectra can be generated using the weighted amplitude wave superposition 
method (WAWS) (Deodatis 1996, Shinozuka and Jan 1972). In order to consider the frequency 
dependent admittance functions, the time histories of wind fluctuations have been generated based 
on the equivalent power spectrum of turbulent wind fluctuations, which are the product of 
admittance functions and the wind fluctuating spectrum. 

Assuming that the spatial correlations of buffeting forces are the same as those of wind 
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fluctuations, and wind fluctuation components u and w are mutually independent, the equivalent 
power spectrum matrix of turbulent wind fluctuations can be defined as 
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Sk=power spectrum of wind fluctuation component k (k= u, w); Rpi pj= spatial coherence 

function of wind fluctuation between points pi and pj; λj=decay factor, and rj= distance between pi 
and pj. 

Applying WAWS and the equivalent power spectrum of turbulent wind fluctuations, the time 
history of turbulent wind fluctuation components, modified by aerodynamic admittance, can be 
obtained. 

 
 

5. Case Studies 
 

5.1 Jiangdong suspension bridge 
 
Jiangdong Bridge is a three-span suspension bridge with a main span of 260 m and two 

identical end spans of 83 m each. The heights of its two bridge towers are 97.765 m and 99.915 m. 
The prestressed concrete bridge deck has a twin-box cross section 47 m wide by 3.5 m high and a 
central slotting width of 6 m. The bridge deck is supported by inclined hangers at intervals of 9 m. 
According to observation data, the basic wind speed at the bridge site, namely the 
yearly-maximum 10-min averaged mean wind speed at 10m height corresponding to a 100-year 
return period, is 30.6 m/s. According to literature (Xiang 2004), the exponent (α) of mean wind 
profile at the bridge site is 0.16, and the longitudinal turbulent intensity at deck level is 15%. Thus, 
the design reference wind speed at deck level (40m above normal water level) for the service state 
is 38.2 m/s. 

The buffeting performance of the bridge is investigated via a full bridge aeroelastic model test 
at a geometric scale of 1:118 in simulated boundary-layer wind fields with various combinations of 
wind yaw angle and attack angle in the TJ-3 Boundary Layer Wind Tunnel with a working section 
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15 m wide, 2 m high and 14 m long. The atmospheric boundary layer is simulated in the TJ-3 
wind tunnel using roughness blocks and spirelets, as shown in Fig. 3. The simulated profiles of 
mean wind and longitudinal turbulent intensities are shown in Figs. 4 and 5, where the gradient 
height (zg) is taken as 350 m for terrain type II (α= 0.16). 
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Fig. 3 Passive devices for simulation of 
turbulent wind field of boundary layer 

Fig. 4 Profile of mean 
wind speed 

Fig. 5 Profile of longitu- 
dinal turbulent intensity 

 
 
Based on the aerostatic and aerodynamic parameters acquired from a sectional model test as 

shown in Table 1, numerical buffeting analysis has also been conducted to evaluate the internal 
buffeting force of the bridge components under normal wind.  

 
 

Table 1 Parameters used in FEM buffeting analysis of Jiangdong suspension bridge 

Aerostatic coefficients Aerodynamic derivatives 

Lift Drag Pitching 

moment 

Lift Pitching 

moment 

C 
L C′ 

L CD C′ 
D CM C′ 

M H* 
1  H* 

4  A* 
2  A* 

3  

-0.08

8 

1.45

7 

0.07

72 

-0.04

94 

0.01

3 

0.60

1 

-0.57

1 

-0.11

6 

-0.01

8 

0.01

7 

 
 
For simulating the numerical equivalent wind field, the spectrum of longitudinal turbulence 

component u(t) and the vertical turbulence component w(t) are chosen as Simiu and Panofsky 
functions (Xiang 2004), respectively; the spatial correlation coefficient (λ) is defined as 7.0; and 
the aerodynamic admittance is defined as the Sears function and 1.0. A time series of simulated 
equivalent wind fluctuations at the center of the bridge deck at the design wind speed of 38.2 m/s 
are given in Fig. 6. 
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In the finite element modeling, the bridge deck, bridge tower and spandrel column are modeled 
by a 3D-beam element and the main cable and hangers are modeled by a 3D-truss element. The 
time-averaged aerostatic force, time-varying buffeting force and self-excited force are applied to 
the bridge components as described above. The corresponding buffeting responses are calculated 
and compared with the wind tunnel testing results. Fig. 7 shows the wind tunnel tests and the 
numerical simulation results for the vertical RMS displacements of the bridge deck for 0 attack 
angle and 0 yaw angle. It is discovered that the numerical results coincide with the wind tunnel test 
results when the aerodynamic admittance equals the Sears function. 
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Fig. 6 Time series of wind fluctuations (U=38.2 m/s): 
(a) longitudinal component and (b) vertical component

Fig. 7 Wind tunnel and numerical results for 
displacements of bridge deck at different 

span-wise locations 
 
 
5.1.1 Selection of regressands 
The internal structural forces in a linearly elastic structure are decided only by its deformation. 

The deformation of a structure may be described more precisely with more elements or 
higher-order elements in finite element analysis, so the computational results may be more precise. 
In the same way, the significance level of the regressive model may be improved with an 
increasing number of regressands. However, if the number of regressands is increased, it is 
necessary to set more sensors to monitor the displacement of different positions on the aero-elastic 
model in the wind tunnel test. Consequently, it is necessary to choose the minimum number of 
characteristic displacements without reducing the significance of the regressive model. 

The displacements used in the regressive model can be chosen according to the objective 
internal force, namely the regressor, and the dominant modes that participate in the buffeting 
response. If there is only one mode participating in the buffeting response and the dominant mode 
can be fitted with linear functions to a high degree, the internal buffeting force can be fitted with 
one characteristic displacement to a high confidence level. However, if the only dominant mode in 
the buffeting response cannot be fitted with linear functions, or the participant modes in buffeting 
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response are multiple, it is necessary to choose more than one characteristic displacement in the 
regressive model to make sure the regressive model is of high significance. 
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Fig. 8 Fundamental mode of Jiangdong bridge
Fig. 9 PSD of vertical displacement 

at different spanwise point of bridge deck 
 
 
 The peak energy band of the power spectrum density of turbulent wind concentrates in the 

low-frequency band. Consequently, the participating modes in buffeting response are mainly some 
lower order modes. The fundamental vertical, lateral and pitching modes of the bridge deck of 
Jiangdong Bridge are presented in Fig. 8. In this case study, the objective forces are chosen as the 
axial forces in the hangers, which are mainly determined by the vertical displacements of the 
bridge deck and main cable. The power spectrum density of vertical displacements at different 
spanwise points show that the dominant mode participating in the buffeting response is only the 
fundamental vertical bending mode, which can be approximately fitted to a linear function, as 
shown in Fig. 9. Therefore, the vertical buffeting displacement at the center span can be chosen as 
the regresand. 

 The regression analysis is conducted based on the time history of buffeting response obtained 
from numerical analysis. It can be seen that the correlation coefficients between the axial forces in 
the hangers and the vertical displacements of the center span are all larger than 0.9, as shown in 
Fig. 10, which indicates that the axial forces in the hangers and the vertical displacements of the 
center span are linearly correlated to a high confidence level. 

 
5.1.2 Establishment of regressive model 
Setting the axial force in the 13th hanger (F13) divided by the horizontal force in the main cable 

(H), and the buffeting vertical displacement at the center span of bridge deck vti 1/2 at time ti, 
divided by the length of the main span L, the dimensionless regression equation can be expressed 
as 

 

Vertical bending mode(0.554Hz) 

Lateral bending mode(0.663Hz) 

 Pitching mode(1.402Hz) 
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Fig. 10 Correlation coefficient of mid-span vertical displacement and hanger axial force 

 
Based on the time histories of the buffeting axial force of the 13th hanger and the displacement 

at the center span acquired from numerical analysis, using the least square method, the coefficients 
βi in Eq. (15) can be obtained. 
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                               (16) 

 
5.1.3 Prediction of internal buffeting force under yaw wind 
The buffeting displacements in the regressive model for normal wind are selected according to 

the dominant modes participating in the buffeting response and the objective internal force. If the 
dominant modes participating in buffeting response under skew wind with different yaw angles are 
similar to those for normal wind, and the modal participation ratios, defined in Eq. (17), are almost 
the same, the regressive model for normal wind can be applied for skew wind.  
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where r=modal participation ratio; SΔ(f)= power spectrum density of buffeting displacement 

obtained in wind tunnel test; ft= upper limit of model frequency simulated in the full bridge 
aeroelastic model test; fm = frequency of specific mode corresponding to the modal participation 
ratio; Δfm = maximum allowable deviation of fm in wind tunnel test. 
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Table 2 shows that the fundamental vertical bending mode contributes about 90% to the vertical 
buffeting displacement for both normal wind and skew wind with different yaw angles. Therefore, 
for engineering application, the error in adopting the regression equation under normal wind to 
predict the internal forces in bridge components under skew wind case is acceptable. 

 
Table 2 Modal participation ratio of fundamental vertical bending mode 

Displacement at different span wise point 
Modal participation ratio (%) 

0deg 22.5deg 45deg 

1/2 of middle span 92.7 89.7 91.0 

1/4 of middle span 90.4 90.4 92.7 

 
 
Using the regression equation for normal wind and the buffeting displacement for skew wind 

obtained from wind tunnel tests, the axial force in the 13th hanger can be easily deduced. The mean 
and RMS axial stresses in the 13th hanger for skew wind are shown in Table 3. As shown, the 
buffeting RMS axial stress in the 13th hanger for yaw wind for a 22.5deg yaw angle is larger than 
that under normal wind. 

 
 

Table 3 Mean and RMS stress of 13th hanger under skew wind 

Yaw angle (deg) Mean Stress (108Pa) RMS Stress (Pa) 

0 3.70705 4160.3 

22.5 3.70705 4256.9 

45 3.70704 3032.2 

 
 
5.2 Zhaoqing arch bridge 

 
This steel arch bridge in Guangdong province of China is a half-through arch bridge with a 

main span of 450 m. Its two inclined arch ribs are 112.5 m from the bottom to the crown and have 
cross sections of a modified rectangular steel box 5.1 m wide, and 9 m to 15 m from rib base to 
crown (Fig. 11). The steel-concrete composite girder provides two railway lines supported on arch 
ribs and columns. According to the literature (Xiang 2004), the basic wind speed at the bridge site 
is 33.38 m/s and the design reference wind speed at deck level (50.1 m above normal water level) 
for the service state is 43.2 m/s; the exponent (α) of mean wind profile at the bridge site is 0.16; 
and the longitudinal and vertical turbulent intensities at deck level are 15% and 13.2%, 
respectively. 

A full bridge aero-elastic model test at a geometric scale of 1:70 is also carried out in the TJ-3 
Wind Tunnel in Tongji University to investigate the buffeting performances of the bridge under 
yaw winds. The simulated profiles of mean wind and longitudinal and vertical turbulent intensities 
are shown in Figs. 12-14. 
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Zhao and Ge (2009) pointed out that the FE buffeting analysis results may be incorrect if the 

Sears function or 1.0 are applied as admittance functions, and the section of the arch ribs is so 
bluff that it is necessary to identify the aerodynamic admittance function of the modified 
rectangular section to improve the precision of buffeting analysis. In the present paper, equivalent 
aerodynamic admittance functions for this bluff box section are defined and used in the numerical 
analysis. 
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where |χ’ 

Lu|2, |χ’ 
Lw|2, |χ’ 

Du|2, |χ’ 
Dw|2, |χ’ 

Mu|2, |χ’ 
Mw|2 = equivalent aerodynamic admittance. 

The measured equivalent aerodynamic admittance functions of the modified rectangular section 
in turbulent wind with 11% turbulence intensity are shown in Fig. 15. 

For finite element modeling, the bridge deck, arch ribs, arch bracing and spandrel column are 
modeled by a 3D-beam element and the hangers are modeled by a 3D-truss element. For 
simulation of a numerical equivalent wind field, the spectrum of longitudinal turbulence 
component u(t) and the vertical turbulence component w(t) are chosen as Simiu and Panofsky 
functions (Xiang 2004), respectively, and the spatial correlation coefficient is defined as 7.0. The 
aerodynamic and structural parameters used in the FE buffeting analysis under normal wind are 
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presented in Table 4. 
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Fig. 15 Aerodynamic admittance function of modified rectangular section of arch ribs 
  
 

Table 4 Parameters used in stochastic FEM buffeting analysis of Zhaoqing arch bridge 

Structural 
components 

Aerostatic coefficients Aerodynamic derivatives 
Lift Drag Pitching moment Lift Pitching moment

 C 
L C′ 

L CD C′ 
D CM C′ 

M H* 
1  H* 

4  A* 
2  A* 

3  
Arch ribs 0.055 0.057 0.67 -0.088 0.136 -0.017 0.9312 0.1202 -0.0783 0.0738

Bridge deck -0.062 0.098 0.183 -0.066 -0.006 0.0175 -0.305 0.467 -0.0257 -0.0319
 
 
The corresponding buffeting responses are calculated and compared to the wind tunnel testing 

results. Fig. 16 shows that the numerical results are in very good agreement with the wind tunnel 
test results, which indicates that the numerical model and parameters used in the numerical 
simulation are reasonable and reliable. 

 
5.2.1 Selection of regressands 
In this case, the objective regression forces are the six internal force components at the center 

span of the arch ribs. The power spectrum density of lateral and vertical buffeting displacement of 
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the 1/2, 3/8, 1/4, and 1/8 spanwise points of the arch ribs indicate that the dominant modes 
participating in buffeting displacement are the first lateral bending mode and the first symmetric 
and asymmetric vertical modes, as shown in Fig. 17. 
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Fig. 16 Numerical analysis and wind tunnel test results of arch ribs 
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Fig. 17 PSD of arch ribs displacement at different spanwise points 
 
 

The first and second vertical and lateral modes are presented in Table 5. Obviously, the first two 
vertical and lateral bending mode shapes cannot be fitted with linear functions. Consequently, in 
the regressive model, it is necessary to include v1/2, v3/8, v1/4, h1/2, h3/8, h1/4, namely the vertical and 
lateral displacements of the 1/2, 3/8, 1/4 of arch ribs, which are characteristic points of the first 
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two vertical and lateral modes. 
 
Table 5 First and second vertical and lateral modes of numerical example 
1st symmetric lateral 

bending (S-L-1) 0.3843Hz

1st asymmetric vertical 

bending (A-V-1) 0.4381Hz

2nd symmetric lateral 

bending (S-L-2) 0.4898Hz

1st symmetric vertical 

bending (S-V-1) 0.7810Hz

  
 
 
Fig. 18 shows the correlation coefficients between the internal forces at the center of the arch 

ribs and the displacements at different span-wise points of the arch ribs. When the regressive 
displacements are less than v1/2, v3/8, v1/4, h1/2, h3/8, h1/4, the coefficients decrease sharply. Some are 
less than 0.8, which indicates that the linear relation is not significant. However, when the 
regressive displacements are more than v1/2, v3/8, v1/4, h1/2, h3/8, h1/4, the correlation coefficients do 
not obviously increase. Therefore, v1/2, v3/8, v1/4, h1/2, h3/8, h1/4 may be a proper regressand group. 
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Fig. 18 Correlation coefficients vs. the regressands 
 
 
5.2.2 Establishment of regressive model 
With the vertical and lateral displacements at the 1/2, 3/8, and 1/4 span-wise points of the arch 

ribs as the regressive displacements, the internal forces at the center of the arch ribs as objective 
regression forces, determined from Eq. (1), the regression equations are 

 
      ( )0 1 1/ 2 2 1/ 2 3 3/8 4 3/8 5 1/ 4 6 1/ 4 1,2, 6i i i i i i i iF v h v h v h iβ β β β β β β= + + + + + + = L      (21) 

 
where Fi=jth internal force component at the center of the arch ribs; setting Fi divided by Fgi, 
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namely the ith internal force component at the center of the arch ribs induced by gravity, and v1/2, 
v3/8, v1/4, h1/2, h3/8, h1/4 divided by H, namely the height of the arch ribs at the mid-span section, Eq. 
(21) can be converted to dimensionless, as 

 
 =F Δβ                                 (22) 
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The internal forces at the center of the arch ribs induced by gravity are presented in Table 6. 
 
 

Table 6 Mid-span internal force of arch ribs induced by gravity 

Fg1 (N) Fg2(N) Fg3(N) Fg4(Nm) Fg5(Nm) Fg6(Nm) 

-7.36E+06 -7.87E+06 6.08E+05 -9.63E+05 -6.63E+05 -1.32E+07 
 
 
Based on the time history of the internal forces and displacements of the arch ribs obtained 

from the numerical analysis, the coefficients β in Eq. (22) can be obtained using the least square 
method. Subsequently, significance testing of the regressive model and regression coefficients is 
conducted for 99% confidence level and the results are presented in Table 7. Obviously, the 
statistical variable F̃ of the internal forces at the center of the arch ribs are all larger than F̃α, 
namely the critical value of the F-test in 99% confidence level. Therefore, the null hypothesis of 
the regressive model should be rejected and the linear correlation of the regressive model should 
be considered to be significant. As well, the statistical indictors |ti|(i=1,2,…6) of F1/Fg1, F3/Fg3, 
F4/Fg4, F5/Fg5, F6/Fg6 are larger than tα , namely the critical value of the t-test in 99% confidence 
level, so the null hypothesis can be rejected and the linear correlation relations between F1/Fg1, 
F3/Fg3, F4/Fg4, F5/Fg5, F6/Fg6 and v1/2/H, v3/8/H, v1/4/H, h1/2/H, h3/8/H, h1/4/H are significant. However, 
the statistical indictor |t6| of F2/Fg2 is smaller than tα, so the linear correlation relation between 
F2/Fg2 and h1/4/H is not significant. The exclusion of h1/4/H from the regression calculation of 
F2/Fg2 may not decrease the significance of the regressive model. 

The regressive model between internal buffeting force at the center of the arch ribs and the 
displacements at 1/2, 3/8 and 1/4 span-wise point of the arch ribs is 
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Table 7 Significance testing of regressive model and regression coefficients 

 F̃ F̃α R |t1| |t2| |t3| |t4| |t5| |t6| tα 

F1/Fg1 2986 2.8 0.9369 400 107 112 244 168 434 2.3 

F2/Gg2 869 2.8 0.8225 432 32 848 35 908 0.89 2.3 

F3/Fg3 622 2.8 0.7743 43 298 65 454 97 166 2.3 

F4/Fg4 2341 2.8 0.9216 39 708 99 1353 143 906 2.3 

F5/Fg5 1094 2.8 0.8513 42 338 65 894 96 828 2.3 

F6/Fg6 2245 2.8 0.9186 938 15 487 38 453 32 2.3 

 
 
By substituting the numerical buffeting displacements at 1/2, 3/8 and 1/4 span-wise points of 

the arch ribs in Eq. (23), the six internal force components at the center of the arch ribs can be 
obtained. Fig. 19 compares the regression and numerical analysis results for six internal force 
components at the center of the arch ribs. The regression results show very good agreement with 
those from the numerical analysis. 

 
5.2.3 Prediction of internal buffeting force under skew wind 
The modal participation coefficients of the first lateral bending mode, the first symmetric and 

asymmetric mode in the buffeting displacements under normal wind and skew wind case, are 
shown in Table 8. The contribution ratios of the first lateral bending mode, and the sum of the first 
symmetric and asymmetric mode in the buffeting displacement, all exceed 90%, which indicates 
that the dominant modes participating in the buffeting response are similar for normal wind and 
skew wind. The similarity of the dominant modes and their corresponding participation ratio verify 
that the regressive model deduced under normal wind can be applied to predict the internal force 
of bridge components under skew wind. 

The time history of buffeting internal force components at the center of arch ribs can be 
obtained by applying the regressive model and the time history of buffeting displacements at 
different span points of the arch ribs under yaw wind for different yaw angles from the full bridge 
aero-elastic wind tunnel test. The numerical RMS displacements at different span points of the 
arch ribs fit well with those from the wind tunnel test under normal wind, and the regressive model 
under normal wind can be applied to skew wind. Thus, the RMS of internal buffeting force based 
on the regressive model under normal wind and the time history of the buffeting displacements 
from the aero-elastic model wind tunnel test can be considered to be reliable. 
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Fig. 19 Comparison of the internal force components at center of arch ribs: (a) Fx, (b) Fy, (c) Fz, (d) Mx, (e) My and 
(f) Mz 

 
 

Table 8 Modal participation ratio of dominant modes 

Displacement at different 

span wise points 
Mode 

Modal participation ratio (%) 

0deg 15deg 30deg 45deg

1/2 

S-L-1 94.3 96.1 92.8 91.7 

A-V-1 13.0 30.0 22.1 28.7 

S-V-1 60.4 62.4 62.4 40.8 

1/4 

S-L-1 93.6 93.0 80.0 89.1 

A-V-1 91.5 93.4 94.0 94.2 

S-V-1 3.5 2.1 1.9 1.1 

3/8 

S-L-1 95.8 98.9 92.6 94.4 

A-V-1 94.5 94.0 95.1 95.5 

S-V-1 1.1 2.6 0.3 0.2 

 
 
Fig. 20 shows the RMS and extreme values of internal forces at the center of the arch ribs, 

assuming a peak factor of 4.0. As shown in Fig. 20, the RMS and extreme values of internal forces 
at the center of the arch ribs for the yaw wind case for 15deg and 30deg yaw angle are larger than 
those under normal wind. 
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Fig. 20 Prediction of mid-span internal buffeting force components in arch ribs 

 
 

6. Conclusions 
 
A new analysis framework used to predict the internal forces in bridge components under skew 

wind is presented in this paper. The regression analysis of the Jiangdong suspension bridge and the 
Zhaoqing arch bridge demonstrate the accuracy and effectiveness of the proposed framework. This 
framework combines full bridge aero-elastic wind tunnel testing and numerical buffeting 
simulation. Before the regression analysis, it is necessary to conduct a numerical analysis to check 
and modify the finite element model until the numerical results fit well with the wind tunnel test 
results. The displacements in the regressive model should be selected according to the objective 
regression forces and the shape of participant dominant modes to improve the significance of the 
regressive model. The dominant modes that participate in the buffeting response under yaw wind 
for different yaw angles and their corresponding participation ratios should be similar in order to 
guarantee that the regressive model for normal wind can be used for yaw wind. The internal 
buffeting forces in bridge components can be obtained based on the regressive model under 
normal wind and the time history of buffeting displacement from aero-elastic model wind tunnel 
tests. The internal buffeting forces of bridge components may reach the extreme value for yaw 
wind. 
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