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Abstract. Researchers have recently begun using high spatial resolution remote-sensing data, which are
automatically captured and georeferenced, to assess damage following natural and man-made disasters, in
addition to, or instead of employing the older methods of walking house-to-house for surveys, or
photographing individual buildings from an airplane. This research establishes quantitative relationships
between the damage states observed at ground-level, and those observed from space using high spatial
resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences
(FR12). “Degrees of Damage” (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-
based damage states; damage states were also assigned for remote-sensing imagery, using a modified
version of Womble’s Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used
to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen
the time and expense required to assess the damage following a windstorm.

Keywords: damage; remote-sensing; Enhanced Fujita Scale; tornadoes; hurricanes; Katrina; satellite;
Super Tuesday

1. Introduction

1.1 Ground-based damage surveys

Ground-based studies of windstorm damage have been completed for numerous events spanning

more than four decades and became common practice in the 1970’s when engineering and

atmospheric science researchers at Texas Tech University surveyed the damage caused by the F-5

(Fujita 1971) Lubbock tornado in May 1970 (Thomson et al. 1970, Mehta et al. 1971). Following a

major tornado, damage documentation teams are often deployed to the damaged area within a few

days following the event to collect perishable damage data to allow for an understanding of the

structural failure mechanisms and with the hopes that the information gleaned can assist in making

future buildings stronger and better able to survive a similar disaster (Minor 2005). Ground surveys
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collect data by photographs, maps, and written or oral notations, and are generally focused on

mapping the overall path of the tornado(es), delineating the gradation of damage and associated

wind speeds across the path, and assessing the performance of particular building systems, and have

been completed for numerous historic events including the Palm Sunday tornadoes in 1965 (Fujita

et al. 1970), the “Super Outbreak” in April, 1974 (Mehta et al. 1976), and the Central Oklahoma

tornadoes of May 3, 1999 (Marshall 2002, Speheger et al. 2002), among others. Ground surveys are

time-consuming and labor intensive and resources are often limited following a major tornado

outbreak (Speheger et al. 2002, Yuan et al. 2002). In addition, obtaining access to the damaged

areas is often difficult immediately after the event. However, detailed inspection of select individual

structures and components can be afforded, making ground surveys quite valuable.

1.2 Remote-sensing damage surveys

Researchers have long used airplanes to survey large areas of tornado damage, primarily to

determine the path-length, width, severity, gradation of damage, and wind flow patterns (Fujita et al.

1970, Fujita and Smith 1993). In many cases, a combination of ground surveys and aerial surveys

have been used to assess damage (Marshall and McDonald 1982, Wurman and Alexander 2005). In

addition to aerial photography, newer remote-sensing technologies allow for satellite and LIDAR

imagery to be used to capture damage data following a tornado or other natural disaster. Satellites

are automated and are able to collect perishable data rapidly which is a significant advantage over

ground-based surveys, as clean-up after a disaster usually begins as soon as possible, resulting in the

loss of valuable information (Visser and Dawood 2004). The imagery can cover a large area with

little restraint on access. The main limitation of remote-sensing technology is that frequently only

roofs or small sections of the walls of buildings are imaged, making the conditions of other key

components such as windows, doors, and connections unknown. High-resolution oblique aerial

imagery is rapidly becoming widespread, allowing for the viewing of walls. In addition, cloud cover

can occasionally obscure the view, especially in the case of hurricanes, where cloud cover may

remain for several days following an event. Furthermore, the effort required for extracting useful

information from images manually can grow exponentially as the coverage area becomes larger.

Automated damage detection techniques are being explored and developed (Yuan et al. 2002,

Womble 2005) and rely heavily on change detection (Singh 1989), where changes in the pixels of

the imagery before and after the event are determined.

1.3 Advances in data collection

While traditional ground surveys remain valuable for understanding windstorm damage, new

methods of surveying are being developed and utilized with each new windstorm event. The

traditional method of walking surveys is being replaced by technology such as ImageCat’s

VIEWSTM (Visualizing Impacts of Earthquakes with Satellites) system which allows for rapid

collection of ground-based damage states via high-definition video (Adams et al. 2004, McMillan et

al. 2008), or the use of handheld computers to systematically capture prescribed data and compile it

into a database (He et al. 2005). In addition to advances in ground survey methods, the technology

of remote-sensing is growing rapidly, with new platforms and better spatial resolution available,

increasing its value as a tool for collecting and analyzing damage data (Yuan et al. 2002, Womble et

al. 2005). The technology has advanced significantly since the beginning of the Landsat program in
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the 1970’s, when the image spatial resolution was 80 m (Adams 2005). Current high-resolution

satellite imagery includes the WorldView 2 satellite with 46 cm panchromatic and 1.84 m multispectral

images, IKONOS imagery with 82 cm panchromatic and 4 m multispectral images, QuickBird

imagery with 61 cm panchromatic and 2.44 m multispectral bands, and the GeoEye-1 satellite with

a spatial resolution of 41 cm for panchromatic and 1.65 m for multispectral imagery.

While significant improvements in the spatial resolution of remote-sensing imagery have been

made, full automation of damage detection has not yet been achieved. Damage analysis requires at

least some human interpretation of imagery. Overhead remote-sensing imagery cannot fully facilitate

damage detection at this time, as it displays only a portion of the true damage state. Oblique

imagery, such as Pictometry imagery can give a view of the roof of a structure, as well as portions

of the wall sections, which aids in damage assessment, but does not give a full view of the damage.

Ground surveys still provide the highest level of detail. Using remote-sensing imagery to predict the

extent of damage at ground-level would significantly lessen the time and expense required to assess

the damage, and could be especially valuable in outbreak events when resources are limited.

Verification of the true ground-level damage state and a comparison with the remotely-sensed

damage state is needed to achieve automated damage detection.

2. Objective and scope

This study seeks to develop statistical relationships between remote-sensing damage states and

ground-level damage states for windstorm events. The relationships were developed by assessing the

damage observed in both data sources for each FR12 structure. The developed regression models

were fitted using datasets which include ground-based digital images from the “Super Tuesday”

tornado outbreak in February 2008, as well as high-resolution imagery from two satellite platforms

obtained a few days after the outbreak. Only site-built homes (FR12) from the Enhanced Fujita (EF)

Scale (WISE 2006), were used to parameterize the models; the dataset could later be expanded to

include other types of structures. The developed regression models were validated using ground-

based digital images and high-resolution imagery from two aerial platforms following Hurricane

Katrina. Ideally, this study will pilot the initiative to process remote-sensing imagery following a

windstorm, and use it with developed regression models to determine ground-level damage states.

3. Damage assessment methodology

To parameterize the regression models, a ground-based damage state and remotely-sensed damage

state were both required for a given set of structures from the “Super Tuesday” dataset. To

determine the damage state at ground level, a “Degree of Damage” (DOD) from the EF Scale was

assigned for each structure in the ground survey, and recorded in a database. There are ten DODs

for FR12 structures which are provided in Table 1, along with an expected (Exp), lower bound

(LB), and upper bound (UB) of wind speeds that would likely cause that level of damage (WISE,

2006). The pictures and descriptions of the various DODs in the EF Scale were used to assess the

most severe damage to each structure.

To determine the damage state from remote-sensing imagery, each structure which was rated from

the ground survey was also assigned a remote-sensing damage state according to Womble’s RS
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Scale, which utilizes letters ranging from A-D (2005), and is provided in Table 2. Like the EF

Scale, a structure was rated according to the most severe damage observed. While Womble applied

his scale to each individual facet of a roof to aid in automated damage assessments, this research

assigned a RS Scale rating to the structure’s roof as a whole. In addition, a new parameter was

included in the remote-sensing rating, indicating the percentage area of a certain damage state.

Categories of percent damage are as follows: 0%, 1-25%, 26-50%, 51-75%, and >75%. For

example, a home with a RS Scale rating of B 26-50% means that 26-50% of the roof’s shingles or

tiles were removed leaving the decking exposed. This additional parameter was included to allow

for a finer categorization of damage levels.

4. Tornado damage datasets

The 2008 “Super Tuesday” tornado outbreak began the afternoon of February 5, 2008 and

continued until early the next morning. The outbreak left widespread damage in Arkansas,

Mississippi, Alabama, Tennessee, and Kentucky. Two weeks after the outbreak, researchers from

Table 1 Degree of Damage (DOD) states and wind speed parameters for FR12 structures from the Enhanced
Fujita (EF) Scale (WISE 2006)

DOD Damage description Exp* LB* UB*

1 Threshold of visible damage 65 53 80

2
Loss of roof covering material (<20%), gutters and/or awning; loss of
vinyl or metal siding

79 63 97

3 Broken glass in windows and doors 96 79 114

4
Uplift of roof deck and loss of significant roof covering material (>20%);
collapse of chimney; garage doors collapse inward or outward; failure of
porch or carport

97 81 116

5 Entire house shifts of foundation 121 103 141

6 Large sections of roof structure removed; most walls remain standing 122 104 142

7 Exterior walls collapse 132 113 153

8 Most walls collapsed in bottom floor, except small interior rooms 152 127 178

9 All walls collapsed 170 142 198

10
Destruction of engineered and/or well-constructed residence; slab swept
clean

200 165 220

*3-sec gust wind speed values in mph

Table 2 Womble’s Remote Sensing (RS) Damage Scale for Residential Construction (2005)

Damage rating Most severe physical damage

RS-A No apparent damage.

RS-B Shingles/tiles removed, leaving decking exposed.

RS-C Decking removed, leaving roof structure exposed.

RS-D
Roof structure collapsed or removed.  Walls may have collapsed. (Oblique imagery
may be needed to determine wall condition.)
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Texas Tech University’s Wind Science and Engineering (WISE) Research Center partnered with

ImageCat Inc., to deploy the VIEWSTM system to capture high-definition ground-based photographs

of the damaged areas (McMillan et al. 2008). The VIEWSTM system for this deployment was

comprised of two high-definition video cameras mounted on either side of a moving vehicle, which

could capture imagery and GPS data as the vehicle drove by damaged structures, enabling

georeferencing of each frame of video captured. From this ground survey, 32 hours of high-

definition video were obtained and segments were processed to extract individual still digital

images. The extracted images included photographs from Macon and Madison Counties in

Tennessee. Examples are shown in Fig. 1; the clarity and level of detail in these high-definition

images is remarkable, and damage to components, such as window breakage can be readily

evaluated. Shortly after these images were obtained, WISE researchers rated the DOD for FR12

structures in the more than 4,000 photographs using the EF Scale.

In addition to ground-based data, WISE and ImageCat purchased DigitalGlobe satellite imagery

for an area covering the center of Madison County. Imagery was obtained on February 8, 2008 from

the QuickBird satellite; this imagery features both panchromatic and multi-spectral bands and has

been pan sharpened to a spatial resolution of 61 cm. Imagery was also obtained on February 10,

Fig. 1 Examples of still images extracted from the VIEWSTM survey in Madison County, Tennessee

Fig. 2 (a) QuickBird panchromatic imagery from February 8th, 2008 in Madison County, TN. and (b) same image,
but pan sharpened. Spatial resolution is 61 cm for both. The yellow circles provide a point of reference by
indicating the same structures in both images. Credit: DigitalGlobe, Inc. <www.digitalglobe.com>



374 Tanya M. Brown, Daan Liang and J. Arn Womble

2008 from the WorldView 1 satellite; this imagery is panchromatic and offers a 50 cm spatial

resolution. Samples of the imagery are provided in Figs 2(a), (b) and 3. For reference, the home

circled in yellow in these figs is the same structure in Fig. 1(b). It can be noted that the WorldView

1 image in Fig. 3 is sharper and clearer than the QuickBird images in Fig. 2. For the purposes of

parameterizing the regression models, 271 structures in Madison County were selected for damage

evaluations, which represented all of the FR12 structures which were visible in both the ground-

based and remote-sensing surveys. Each of these structures was assigned a RS Scale rating

according to Womble (2005).

5. Hurricane KATRINA datasets

Hurricane Katrina made its second U.S. landfall near the Louisiana-Mississippi state line on

August 29, 2005 as a Category 3 hurricane. Just one day before landfall, Katrina was a Category 5

storm and still carried the size and surge levels common to a Category 5 storm when it made

landfall, despite the weakened winds. Katrina wreaked havoc along the coasts of Louisiana,

Mississippi, and Alabama, with storm surge estimates of 24-28 ft above sea level and became the

most deadly natural disaster in the United States since the 1920’s (Knabb et al. 2006). Following

Katrina’s landfall, researchers from ImageCat Inc. partnered with researchers from Louisiana State

University (LSU) Hurricane Center and TTU WISE to deploy VIEWSTM to collect perishable

damage data in numerous communities in coastal Mississippi. The VIEWSTM system for this

deployment was comprised of a single high-definition camera with GPS data. The imagery is

similar to that collected for the “Super Tuesday” tornado reconnaissance, shown in Fig. 1 above.

VIEWSTM imagery utilized in this study was obtained from the cities of Waveland, Bay St. Louis,

Gulfport, Biloxi, Ocean Springs, Gautier, and Pascagoula.

Two sets of aerial images were obtained for use in evaluating damage states with the

parameterized regression models. Vertical aerial images were obtained by Pictometry in September

Fig. 3 WorldView 1 panchromatic imagery from February 10th, 2008 in Madison County, TN, shows the
same location as depicted in Fig. 2. Spatial resolution is 50 cm. The yellow circles indicate the same
structures highlighted in Fig. 2. Credit: DigitalGlobe, Inc. <www.digitalglobe.com>



Predicting ground-based damage states from windstorms using remote-sensing imagery 375

and October, 2005, in all of the ground survey cities, with the exception of Pascagoula. These images

have a spatial resolution of 15 cm. NOAA aerial photos were also obtained in August and September,

2005, in all of the ground survey cities. These images have a spatial resolution of 37 cm. Samples of

both types of imagery are provided in Figs 5(a) and (b). Both figs depict the same location within a

neighborhood. The color, brightness, and level of detail provided by the Pictometry vertical images

are highly desirable, and are among the best aerial imagery currently available on a wide-spread

basis. Although Pictometry also has oblique imagery available, these images are not easily

orthorectified and georeferenced and were therefore not used in this study.

To test and refine the developed regression models, the RS Scale ratings were determined from

both remote-sensing platforms for the Hurricane Katrina datasets. The developed regression models

were then used to estimate the ground-level damage states for those structures, and these data were

then compared to the actual DOD ratings completed by a trained professional utilizing a ground-

based damage dataset.

Table 3 Numerical representation scheme for DOD used in the regression models

DOD Category Representative numerical value

<1 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

Fig. 4 (a) Pictometry imagery from September 10th,  2005 in Waveland, MS. Spatial resolution is 15 cm. Credit:
Pictometry Internation Corp. <www.pictometry.com> and (b) NOAA aerial imagery from September 2nd,
2005 in Waveland, MS. Spatial resolution is 37 cm. Credit: NOAA
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6. Development of the regression models

Before beginning the regression modeling, a representation scheme was developed to define a

numerical value for each DOD and for each alphanumeric RS Scale category, for ease in plotting

and developing the regression models, as the statistical analysis requires numeric values. The

representation schemes are presented in Tables 3 and 4, for DOD and the RS Scale, respectively.

The scheme developed for DOD is simple, where the numerical value used in the regression analyses

is equal to the DOD rating. The representation scheme for the RS Scale essentially assigned a value

of 0 to 3 for the RS Scale ratings of A to D respectively.  Because the RS Scale was modified by the

addition of a percent damage level to delineate a finer gradation of damage states, the representation

scheme used for the regression models features a decimal value, which is equivalent to the center

point of the percentage rating. For example, a structure rated with a RS Scale rating of B 26-50%

would be assigned a representative value of 1.375, where the value “1” indicates that it is a “B”

rating, while the decimal value “0.375” indicates that the percentage of that damage state that was

observed was in the range of 26-50% (where 37.5% is the center point of that percentage range). As

technology improves and spatial resolutions become finer, it may soon be possible to assign an exact

percentage of RS Scale damage to a structure, rather than an estimated range.

Six linear, six exponential, and six quadratic regression models were parameterized (described

later in this section) using these data. The regression models developed using these data resulted in

R
2 values ranging from 0.47 to 0.62, depending upon the dataset and regression technique utilized.

After these 18 models were parameterized, concerns were raised regarding the spread of data at the

lower end of the DOD damage ratings. Homes that were rated with the no-damage state from the

remote-sensing survey were rated with DOD values as high as 4 from the ground-based survey.

Further examination of the data led to the conclusion that there was a source of bias introduced into

the fitted models that resulted from the categorization of damage in the EF Scale. In the EF Scale,

the description for FR12 structures suffering DOD 2 damage is “loss of roof covering material

Table 4 Numerical representation scheme for the RS Scale used in the regression models

RS Category Representative numerical value

A 0% 0

B 1-25% 1.125

B 26-50% 1.375

B 51-75% 1.625

B >75% 1.875

C 1-25% 2.125

C 26-50% 2.375

C 51-75% 2.625

C >75% 2.875

D 1-25% 3.125

D 26-50% 3.375

D 51-75% 3.625

D >75% 3.875



Predicting ground-based damage states from windstorms using remote-sensing imagery 377

(<20%), gutters and/or awning; loss of vinyl or metal siding,” while the description for DOD 4

damage is “uplift of roof deck and loss of significant roof covering material (>20%); collapse of

chimney; garage doors collapse inward or outward; failure of porch or carport.” Each of these

categorizations was common in the “Super Tuesday” tornado dataset and each addressed roof covering

loss. Many structures exhibited roof covering loss greater than 20% and were therefore rated DOD 4

to match the highest damage level, but did not experience the required decking loss, collapse of

chimney, garage doors, or porches and carports. It was hypothesized that these structures were likely

overrated, and that the true DOD for these structures was somewhere between DOD 2 and DOD 4.

Dr. Kishor Mehta, one of the developers of the EF Scale, was consulted on this problem.  He

stated that it takes a great deal more force to cause decking uplift or collapse of chimney, garage

doors, or porches and carport, as opposed to just roof covering loss. He agreed that the language

provided in the descriptions of DOD 2 and DOD 4 damage states were unclear as to how to rate

homes with more than 20% roof covering loss, but meeting none of the other criteria of DOD 4.

The intermediate value of DOD 3 was not appropriate, as it already had a definition pertaining to

glass breakage, and its expected wind speed was only 1 mph less than that of DOD 4. After much

examination, it was decided that homes with more than 20% roof covering loss, but that did not

meet any of the other criteria in DOD 3 or DOD 4 should be rated as DOD 2.5, to acknowledge

that the damage was more severe than DOD 2, but less severe than DOD 3 or DOD 4 (Mehta

2009). This deficiency was conveyed to a group of meteorologists and engineers at the inaugural EF

Scale Stakeholders Forum in Norman, OK in March 2010, and it is believed that future versions of

the EF Scale will be modified to account for this issue, among others (Brown et al. 2010). Similar

issues were also discovered for other “Damage Indicators” (DIs).

The “Super Tuesday” tornado damage database was queried, resulting in 40 homes with a rating

of DOD 4. Each of these 40 homes was reevaluated from the ground-based survey and re-rated

according to Mehta’s recommendations. Of these 40 homes, only four still qualified for a DOD 4

rating, while 19 were changed to the new DOD 2.5 category, and the remaining 17 were rated DOD

3 because glass breakage was evident. The dataset including these re-rated DOD values was used to

re-parameterize the original 18 regression models, along with many others.

The first model developed was a simple linear regression relating the ground-based damage state

incurred from the “Super Tuesday” tornadoes to the remotely-sensed damage state observed with

the QuickBird imagery. The second model utilized the same ground-based damage states and related

them to ratings obtained from the WorldView 1 imagery. The third model employed a linear

regression to relate the ground-based damage state to an “average” remote-sensing damage state,

obtained by numerically averaging the values obtained from the QuickBird and WorldView 1

surveys. For each simple linear regression model developed, there were two corresponding non-

linear regression models developed from the same datasets—an exponential model and a quadratic

model. For each dataset (QuickBird, WorldView 1, and averaged) and each regression type (linear,

exponential, and quadratic), statistical transformations were also completed and models were fitted

to the transformed data as well. Logarithmic, exponential, square root, and squared transformations

of the input variable, the output variable, and both input and output variables were performed,

resulting in a total of 144 fitted regression models. The correlation coefficient, R
2, indicates the

strength of the regression models, where a value of 1 indicated a perfect correlation. The R2 values

for these models ranged from 0.3374 to 0.8496; however, those models with R2 values greater than

0.7 did not have random, normally distributed residuals, and were therefore not considered. The

models parameterized with the re-rated DOD value per Mehta’s recommendation had R
2 values
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Table 5 Results from the top five performing regression fitted to the “Super Tuesday” tornado dataset.

Model
Satellite 
platform

Regression 
type

Statistical 
transformation

Regression equation R2 value
Sample

size

1 averaged quadratic
square root 

(input)
DOD = 2.256 * RS – 1.143 * RS +0.3565 0.6863 271

2 averaged quadratic
logarithmic 

(input)
DOD = 2.737 * (ln(RS + 1))2 – 0.2846 *
ln(RS + 1) +0.3465

0.6859 271

3 averaged quadratic none
DOD = 0.1656 * RS2 + 1.070 * RS
+ 0.2654

0.6795 271

4 averaged exponential
logarithmic 

(input)
DOD = 0.4224 * exp(1.772 * ln(RS + 1)) 0.6767 271

5 averaged quadratic
squared
(input)

DOD = −0.03206 * RS4 + 0.8830 * RS2 +
0.4650

0.6740 271

Fig.  5 Regression models selected for validation. All models utilized the averaged satellite damage state and
the re-rated DOD values. Model specifics are provided in Table 5. (a) Model 1, (b) Model 2, (c)
Model 3, (d) Model 4 and (e) Model 5
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improved by as much as 17%.

Several general statements can be made about the fitted models and the datasets utilized to

parameterize them. First, the models fitted with the averaged QuickBird and WorldView 1 damage

rating data were superior to either platform used alone. The use of an averaged damage state helps

to eliminate the effects of any erroneous ratings that may be present in each individual dataset.

Second, the quadratic regression models nearly always outperformed their linear and exponential

regression model counterparts. Last, statistical transformations of the input variable often resulted in

better model fits than the untransformed datasets, or the transformations of the output variable, and

both the input and output variables. The five best models with the highest R2 values, which also had

random, normally distributed residuals, were selected for validation with the Hurricane Katrina

dataset. The results of the selected models are provided in Table 5, and in Figs 4(a)-(e). As the

figure indicates, with each model, there are a range of RS Scale ratings that would result in

rounding to a particular DOD value.

7. Model performances

For the purposes of validating the developed regression models, 505 homes which were visible in

both the Pictometry and NOAA aerial surveys following Hurricane Katrina were rated using the

alphanumeric RS Scale, and the damage states were then averaged. These averaged damage states

were used with Models 1-5 in Table 5 to “predict” the ground level damage state. The predicted

values were then compared to the actual ground level damage state, as determined by a trained

professional who assigned a DOD to the structures based on the VIEWSTM data collected. The

comparison is provided in Fig. 6. In each figure, the line indicated a perfect correlation between the

actual DOD determined from the ground-based survey and the predicted DOD from the regression

Fig. 6 Model predicted damage states vs. actual damage states obtained from the ground survey
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Table 6. Frequency analysis comparing the actual DOD values to those predicted by Models 1-5. Value
indicates the frequency (percentage of time) that the damage state predicted by the model matches a
particular actual ground-based damage state.

Actual DOD

<1 1 2 2.5 3 4 5 6 7

P
re

d
ic

te
d
 D

O
D

 U
si

n
g

 M
o
d
el

 1

<1 .21 .12 .08 .01 .00 .04 .00 .00 .00

1 .37 .30 .26 .03 .05 .00 .00 .00 .00

2 .37 .52 .52 .75 .79 .26 .00 .00 .00

2.5 .02 .04 .02 .14 .05 .33 .00 .10 .00

3 .03 .01 .08 .06 .05 .26 .00 .30 1.0

4 .01 .00 .05 .01 .05 .04 .00 .40 .00

5 .00 .00 .00 .00 .00 .07 .00 .10 .00

6 .00 .01 .00 .00 .00 .00 .00 .10 .00

7 .00 .00 .00 .00 .00 .00 .00 .00 .00

P
re

d
ic

te
d
 D

O
D

 U
si

n
g

 M
o
d
el

 2

<1 .21 .12 .08 .01 .00 .04 .00 .00 .00

1 .37 .30 .26 .03 .05 .00 .00 .00 .00

2 .37 .52 .52 .75 .79 .26 .00 .00 .00

2.5 .02 .04 .02 .14 .05 .33 .00 .10 .00

3 .02 .00 .03 .06 .05 .23 .00 .20 1.0

4 .02 .01 .09 .00 .00 .07 .00 .50 .00

5 .00 .00 .01 .01 .05 .07 .00 .10 .00

6 .00 .01 .00 .00 .00 .00 .00 .10 .00

7 .00 .00 .00 .00 .00 .00 .00 .00 .00

P
re

d
ic

te
d
 D

O
D

 U
si

n
g

 M
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el

 3

<1 .21 .12 .08 .01 .00 .04 .00 .00 .00

1 .37 .30 .26 .03 .05 .00 .00 .00 .00

2 .38 .53 .52 .77 .79 .33 .00 .00 .00

2.5 .02 .03 .05 .13 .11 .33 .00 .10 .00

3 .01 .01 .05 .06 .00 .19 .00 .30 1.0

4 .01 .00 .05 .01 .05 .04 .00 .50 .00

5 .00 .00 .00 .00 .00 .07 .00 .00 .00

6 .00 .01 .00 .00 .00 .00 .00 .10 .00

7 .00 .00 .00 .00 .00 .00 .00 .00 .00

P
re

d
ic

te
d
 D

O
D

 U
si

n
g
 

M
o
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 4

<1 .21 .12 .08 .01 .00 .04 .00 .00 .00

1 .37 .30 .26 .03 .05 .00 .00 .00 .00

2 .38 .52 .52 .77 .79 .33 .00 .00 .00

2.5 .02 .03 .05 .14 .11 .37 .00 .10 1.0

3 .01 .01 .07 .03 .00 .15 .00 .40 .00

4 .01 .00 .03 .01 .05 .04 .00 .40 .00

5 .00 .00 .00 .00 .00 .07 .00 .00 .00

6 .00 .01 .00 .00 .00 .00 .00 .10 .00

7 .00 .00 .00 .00 .00 .00 .00 .00 .00

P
re

d
ic

te
d
 D

O
D

 U
si

n
g
 

M
o
d
el

 5

<1 .21 .12 .08 .01 .00 .04 .00 .00 .00

1 .37 .30 .26 .03 .11 .00 .00 .00 .00

2 .37 .52 .52 .75 .74 .26 .00 .00 .00

2.5 .02 .04 .02 .14 .05 .33 .00 .10 .00

3 .02 .00 .03 .06 .05 .23 .00 .20 1.0

4 .02 .01 .08 .00 .00 .04 .00 .30 .00

5 .00 .00 .02 .01 .05 .04 .00 .30 .00

6 .00 .01 .00 .00 .00 .07 .00 .00 .00

7 .00 .00 .00 .00 .00 .00 .00 .10 .00
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models. The circles indicate the density or frequency of each comparison of ratings, where larger

circles indicate a high density/frequency, and smaller circles indicate a low density/frequency.

A frequency analysis of the model regressions was also generated to evaluate the models’

performances. This frequency analysis is provided in Table 6. Within the table, those entries

highlighted in light gray indicate the frequency at which the model predicted the exact observed

damage state. Those entries highlighted in medium gray indicate the frequency at which the model

predicted the damage state to be within one DOD category of the actual damage state. Those entries

highlighted in dark gray indicate the frequency at which the model predicted the damage state to be

within two DOD categories of the actual damage state. The regressions from Model 1-5 were within

two DOD categories of the actual damage rating at the lower end of the damage scale (DOD <1

through DOD 3) at least 90% of the time; for an actual rating of DOD 4, the models’ regressions

were correct at least 60% of the time; for DOD 6 and DOD 7, the models’ regression was not as

accurate. It is important to note that there were no actual damage ratings of DOD 5, nor were there

any ratings greater than DOD 7. It is also important to note that the majority of the damage samples

were of lower damage ratings; less than 8% of the entire Hurricane Katrina dataset had a true

ground level damage state higher than DOD 3.

After reviewing the frequency analysis, it can be seen that each of the five models selected for

validation produce nearly the same prediction accuracy. The data in Table 5 indicate that the R
2

values for the five models are also nearly identical. Based on this, the author recommends utilizing

model 3, which is a quadratic regression, because it requires the least manipulation of the input or

output data since it does not call for a statistical transformation. Its ease of use comes without

sacrificing regression accuracy, and the R2 value is less than 1% lower than model 1.

8. Conclusions

A series of 144 statistical regression models relating ground-based damage states to remotely-

sensed damage states were parameterized utilizing damage ratings from 271 FR12 structures

obtained from imagery following the “Super Tuesday” tornado outbreak of February 2008. The five

best-performing models were selected for validation with the Hurricane Katrina dataset, which

included 505 FR12 structures, whose damage ratings were determined from remote-sensing imagery.

The selected regression models were used to “predict” the ground level damage states based upon

the remotely-sensed damage states. The model regressions were compared to actual damage ratings

obtained from a ground-based survey of the Katrina damage area. Frequency analysis showed that

the developed regression models were accurate to within two DOD categories at least 90% of the

time for damage ratings of DOD <1 through DOD 3. The models were accurate to within two DOD

categories at least 60% of the time for a damage rating of DOD 4. The models’ performances were

less accurate for damage ratings of DOD 6 and DOD 7. However, less than 8% of the data used for

calibrating and validating the models included damage rated in the higher damage range to

recalibrate and improve the developed models. With more data and recalibrated models, it is hoped

that the model regressions will be accurate for all levels of damage with 90% accuracy. Until

ground-based and remotely-sensed damage states for higher levels of damage can be incorporated

into the database and the models are recalibrated, the author recommends utilizing model 3, as it

requires the least manipulation of the datasets without sacrificing accuracy, with the caveat that the

results are reasonably accurate up to a ground-based damage state of DOD 4.



382 Tanya M. Brown, Daan Liang and J. Arn Womble

Acknowledgements

The authors would like to thank ImageCat for their participation in the “Super Tuesday” data

collection and processing. The authors also wish to thank the ImageCat/LSU Hurricane Center/TTU

Wise team for collecting the Hurricane Katrina ground-based imagery. The assistance of Byungtae

Seo and Zhangxi Lin in selecting appropriate statistical models and methodologies is gratefully

acknowledged. Thanks to Kishor Mehta for providing valuable insight into the EF Scale. Thanks to

Amber Reynolds, Richard Krupar, and Terri Branham for their assistance in analyses. This material

is based upon work partially supported by the National Science Foundation under grants IGERT

DGE-0220168 and 0800487. Any opinions, findings, and conclusions or recommendations expressed

in this paper are those of the authors and do not necessarily reflect the views of the National Science

Foundation. Thanks for MCEER for providing travel and funds for this research. Thanks to Doug

Smith, Arn Womble, and NSS & Associates for providing Pictometry data.

References

Adams, B.J., Womble, J.A., Mio, M.Z. and Mehta, K.C. (2004), Collection of satellite referenced building
damage information in the aftermath of Hurricane Charley, MCEER Response Report Series MCEER-04-
SP04, Buffalo, NY.

Adams, B.J. (2005), Remote sensing technology-a coming of age, Natural Hazards Observer, University of
Colorado, 29(4), 1-3.

Brown, T.M. Liang, D. and Womble, J.A. (2010), Development of a statistical relationship between ground-
 based and remotely-sensed damage in windstorms, EF Scale Stakeholders Forum, Norman, OK, March.

Bunting, W.F. and Smith, B.E. (1993), A guide for conducting damage surveys, NOAA Technical Memorandum,
NWS SR-146.

Fujita, T.T., Bradbury, D.A. and Van Thullenar, C.F. (1970), “Palm sunday tornadoes of April 11, 1965”, Mon.
Weather Rev., 98(1), 29-69.

Fujita, T.T. (1971), Proposed characterization of tornadoes and hurricanes by area and intensity, SMRP Paper
91, Department of Geophysical Science, University of Chicago, IL.

Fujita, T.T. and Smith, B.E. (1993), Aerial survey and photography of tornado and microburst damage, The
Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monog., AGU, 79, 479-493.

He, H., Yin, J., Mehta, K.C. and Chen, D. (2005), “Implementation of statistical documentation algorithm and
data Format to Hurricanes Charley and Ivan”, Proceedings of the 10th Americas Conference on Wind
Engineering, Baton Rouge, LA, June.

Knabb, R.D., Rhome, J.R. and Brown, D.P. (2006), Tropical cyclone report Hurricane Katrina, National
Hurricane Center, Miami, FL. <http://www.nhc.noaa.gov/ms-word/TCR-AL122005_Katrina.doc>.

Marshall, T.P. and McDonald, J.R. (1982), “An engineering analysis of the grand island, NE Tornadoes”,
Proceedings of the 12th Conference on Severe Local Storms, San Antonio, TX, January.

Marshall, T.P. (2002), “Tornado damage survey at Moore, Oklahoma”, Weather Forecast., 17(3), 582-598.
McMillan, A., Adams, B.J., Reynolds, A.E., Brown, T.M., Liang, D. and Womble, J.A. (2008), Advanced

technology for rapid tornado damage assessment following the ‘Super Tuesday’ Tornado Outbreak of
February 2008, MCEER Response Report Series MCEER-08-SP01, Buffalo, NY.

Mehta, K.C., Minor, J.E. and McDonald, J.R. (1976), “Windspeed analysis of April 3-4 1974 Tornadoes”, J.
Struct. Eng.- ASCE, 102(ST9), 1709-1724.

Mehta, K.C. (2009), Texas Tech University Wind Science and Engineering Research Center, Personal
Communication, November 11, 2009.

Minor, J.E. (2005), “Lessons learned from failures of the building envelope in windstorms”, J. Archit.Eng.-
ASCE, 11(1), 10-13.



Predicting ground-based damage states from windstorms using remote-sensing imagery 383

Singh, A. (1989), “Digital change detection techniques using remotely sensed data”, Int. J. Remote Sens., 10(6),
989-1004.

Speheger, D.A., Doswell III, C.A. and Stumpf, G.J. (2002), “The Tornadoes of 3 May 1999: event verification in
central oklahoma and related issues”, Weather Forecast., 17(3), 362-381.

Thompson, J.N., Kiesling, E.W., Goldman, J.L, Mehta, K.C., Wittman, J. and Johnson, F.B. (1970), The Lubbock
Storm of May 11, 1970, Report prepared for the Committee on Earthquake Inspection, National Academy of
Engineering, Published by the National Academy of Sciences, Washington, D.C.

Visser, S.J. and Dawood, A.S. (2004), “Real-time natural disasters detection and monitoring from smart earth
observation satellite”, J. Aerospace Eng.,17(1), 10-19.

WISE Research Center (2006), A recommendation for an enhanced fujita scale (EF-Scale), Revision 2 October
10, 2006, Texas Tech University, Lubbock, TX.

Womble, J.A. (2005), Remote-sensing applications to windstorm damage assessment, PhD Dissertation, Texas
Tech University, Lubbock, TX.

Womble, J.A., Adams, B.J. and Mehta, K.C. (2005), “Windstorm damage surveys using high-resolution satellite
images”, Proceedings of the 10th Americas Conference on Wind Engineering, Baton Rouge, LA.

Wurman, J. and Alexander, C.R. (2005), “The May 30 1998 Spencer, South Dakota, Storm. Part II: comparison
of damage and radar-derived winds in the Tornadoes”, Mon. Weather Rev., 133(1), 97-119.

Yuan, M., Dickens-Micozzi, M. and Magsig, M.A. (2002), “Analysis of tornado damage tracks from the 3 May
Tornado Outbreak using multispectral satellite imagery”, Weather Forecast.,17(3), 382-398.

CC




