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Abstract. This paper presents a framework of nonlinear dynamic analysis of a low-speed moving
maglev (magnetically levitated) vehicle subjected to cross winds and controlled using a clipped-LQR
actuator with time delay compensation. A four degrees-of-freedom (4-DOFs) maglev-vehicle equipped
with an onboard PID (Proportional-Integral-Derivative) controller traveling over guideway girders was
developed to regulate the electric current and control voltage. With this maglev-vehicle/guideway model,
dynamic interaction analysis of a low-speed maglev vehicle with guideway girders was conducted using
an iterative approach. Considering the time-delay issue of unsynchronized tuning forces in control process,
a clipped-LQR actuator with time-delay compensation is developed to improve control effectiveness of
lateral vibration of the running maglev vehicle in cross winds. Numerical simulations demonstrate that
although the lateral response of the maglev vehicle moving in cross winds would be amplified
significantly, the present clipped-LQR controller exhibits its control performance in suppressing the lateral
vibration of the vehicle.
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1. Introduction

Because of no physical contact for a maglev vehicle levitating on guide-rail, maglev transport

system provides several advantages over conventional wheel/rail transportation for urban

environment, such as low noise, less energy consumption, and low waste gas discharge. Thus, low-

speed maglev transport system features its environmental-friendly nature to reduce traffic congestion

and pollution in an urban travel. For these socioeconomic benefits, maglev technologies have been

deployed in China, Japan, and Korea, for example, Shanghai Maglev Demonstration Line in China

(Shi et al. 2007), Japanese Aichi low-speed Maglev transport system (Tobukyu Demonstration Line)

for the “Aichi Expo. 2005” in Japan (Samavedam et al. 2002) and the urban maglev transport

system (UTM-02) at Daejeon in Korea (Kwon et al. 2008). 

Thanks to the advance of maglev technologies and application to transport system, two kinds of

commercial maglev transportation have been developed: (1) the electrodynamic suspension (EDS)

with repulsive mode (Bitta and Sales 1998); (2) the electromagnetic suspension (EMS) with

attractive mode (Bohn and Steinmetz 1984). The EDS system suspends a train above its guide-rail
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using magnetic repulsive forces to take the train off the U-shaped guideway. One feature of EDS-

type maglev trains is that its magnetic levitation is workable only at high speeds. But the EMS

system can lift a train up using attractive forces by the magnets between vehicle’s levitation frame

and guide-rail at any speed, which is the major difference from the EDS system.

In the past two decades, numerous researchers have focused on the dynamic problem of maglev

vehicle-guideway interactions. Concerning the vehicle model of a maglev train running on a

guideway, Cai et al. (1996) pointed out that a concentrated-load vehicle model might gives rise to

larger response on both guideway deflections and vehicle accelerations than a distributed-load

vehicle model. In addition, Cai and Chen (1997) provided a literature review for various aspects of

the dynamic characteristics, magnetic suspension systems, vehicle stability, suspension control laws

of maglev/guideway coupling systems. Zheng et al. (2000, 2005) developed two kinds of maglev

vehicle/guideway coupling models to investigate the dynamic problems of divergence, flutter, and

collision on the dynamic stability of a maglev-vehicle traveling on a flexible guideway. Song and

Fujino (2008) modeled the levitation and guidance forces between the super-conducting magnet and

guideway using an equivalent spring to investigate the dynamic responses of ultra high-speed

Maglev train-guideway interactions. Yau (2009a, 2009b, 2010a,b,c) and Yang and Yau (2011)

carried out a series of dynamic investigations of maglev vehicles traveling over flexible guideways.

Their research topics on interaction dynamics of maglev transport system included vibration control

of moving vehicle, vehicle-guideway/soil-foundation interactions, influence of ground settlement on

moving maglev vehicles, earthquakes induced vibrations vehicle/guideway system, and vibrations of

a high speed maglev vehicle under oncoming wind flows. 

On the other hand, a great deal of attention has been focused on the aerodynamics of conventional

trains in the past one decade, such as train-induced aerodynamic vibrations (Li et al. 2005), cross

wind effects on vehicle-bridge interaction (Suzuki et al. 2003, Xu et al. 2004, Bocciolone, et al.

2008, Xia et al. 2008, Guo et al. 2010), and impulse side forces occurring at trains passing by each

other (Fujii and Ogawa 1995). Recently, Kwon et al. (2008) investigated the vibration behaviors of

a maglev vehicle running over a suspended guideway under wind loadings. Considering oncoming

aerodynamic forces applying to a maglev vehicle moving at high speeds, Yau (2010c) presented a

PID+LQR controller to reduce the vehicle’s acceleration response for ride comfort of passengers.

Their numerical simulations demonstrated that aerodynamic forces play a dominant issue in

affecting the response of a maglev vehicle running over (suspended) guideways at high speeds.

However, to the author's knowledge, relatively little research attention so far seems to conduct

lateral vibration of a low-speed maglev vehicle in cross winds, especially for the lateral vibration

control problem. 

As shown in Fig. 1, a low speed maglev vehicle is traveling over a series of guideway girders in

cross wind environment. In this study, the maglev vehicle is simulated as a rigid car body supported

and guided by four concentrated magnetic levitation forces and the guideway girder is modeled as a

Fig. 1 Schematic diagram of a maglev vehicle moving over guideway girders in cross winds.



Lateral vibration control of a low-speed maglev vehicle in cross winds 265

simply supported beam. To explore the influence of cross winds on interaction response of the

maglev-vehicle/guideway system, this study adopts an optimal PID controller with constant tuning

gains based on Z-N tuning rule associated with clipped-LQR controller with time delay

compensation (Ni et al. 2002, Lee and Kawashima 2007) to regulate the lateral levitation forces

exerting on the moving maglev vehicle. Then the two sets of differential equations associated with

the equations of control electromagnetic forces for the maglev vehicle/guideway system are solved

by Galerkin’s method and computed using an iterative approach (Yau 2009a,b,c) associated with the

Newmark method (1959). Numerical studies indicate that although cross wind loadings may result

in a significant amplification of the lateral response of the running maglev vehicle, the present

clipped-LQR control algorithm exhibits its superiority in reducing lateral response of the vehicle.

2. Governing equations of motion

From the research presented by Cai et al. (1996), they pointed out that a distributed-load vehicle

model behaves better than a concentrated-load model in both responses of guideway and vehicles.

For this reason, the maglev vehicle supported by multiple magnetic wheels is employed to conduct

the dynamic behavior of a low-speed maglev vehicle/guideway transport system in this study. Since

this paper is focused on the lateral vibration control of a moving maglev vehicle under cross winds,

for the problem simplifications, wide magnets below the levitation frame (see Fig. 1) would be

designated to increase the lateral stability of the car body against aerodynamic rolling moments.

Thus, the aerodynamic rolling moments exerting to the moving maglev vehicle would be assumed

relatively small and negligible. The following are the assumptions adopted for the present maglev

vehicle/guideway model: (1) The guideway system is modeled as a series of simply supported

beams with identical properties and the beam is idealized as a linear elastic Bernoulli-Euler beam

with uniform section; (2) The maglev vehicle is simulated as a rigid beam supported and guided by

four magnetic forces; (3) Allowable levitation gap (h) at the magnetic wheel should not contact with

the guide rail, i.e., h > 0; (4) The magnets below the levitation frame (see Fig. 1) are regarded as a

series of equal-distant concentrated masses attached to the rigid beam; (5) The influence of shape of

guideway girders on aerodynamic coefficients of a moving vehicle is negligible because only short-

span girder is considered.

As shown in Fig. 2, a maglev vehicle supported by four magnet wheels with equal-intervals (d) is

passing through a series of simple beams at constant speed v. Here, we shall use the following

symbols to denote the properties depicted in the schematic diagram of Fig. 2: m = distributed mass

of the beam, c = damping coefficient, EIy = flexural rigidity in the y direction, EIz = flexural rigidity

in the z direction, l = car length, mw = lumped mass of magnetic wheel, mv = distributed mass of

the rigid car body, and n = midpoint rotation components of the rigid car body. Then, one

can formulate the equations of motion for the jth guideway girder carrying a moving maglev vehicle

suspended by multiple magnetic forces as follows

(1)

and

θi i y z,=

mu··y j, cyu
·

y j, EIzuy j,

″″
+ + Σk 1=

K Gy k, ϕj x t,( )[ ]–=

mu··z j, czu
·

z j, EIzuy j,

″″
+ + po Σk 1=

K Gz k, ϕj x t,( )[ ]–=
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(2)

together with the following boundary conditions

uy,j (0, t ) = uz,j ( 0, t ) = 0

uy,j ( L, t ) = uz,j ( L, t ) = 0

(3)

where  vertical deflection of the jth span, uy,j(x,t) =

lateral deflection of the jth span, L = span length, K = number of magnetic wheel-sets attached to

the rigid levitation frame,  = Dirac’s delta function, H(t) = unit step function, k = 1, 2, 3, …,

Kth moving magnetic wheel on the beam, tk = (k−1)d/v = arrival time of the kth magnetic wheel

into the beam, xk = position of the K-th magnetic wheel on the guide-way, and (Gy,k, Gz,k) = lateral

guidance and uplift levitation forces of the kth lumped magnet in the vertical and lateral directions. 

As a maglev vehicle moves over a guideway in cross winds, wind-induced lateral movement

would result in considerable influence on riding comfort and maneuverability of the levitated

vehicle. For this reason, guidance forces induced by the maglev system need to control the lateral

motion of the moving maglev vehicle. For the kth lumped magnetic wheel of the moving maglve

vehicle, this study adopts the uplift levitation force (Gz,k) and lateral guidance force (Gy,k) proposed

by Aldo and Alfred (1999) to keep and guide the maglev vehicle moving on the guideway girders.

They are expressed as

(4a)

(4b)

where , W = pole width, = coupling factor,  = vacuum

permeability, N0 = number of turns of the magnet windings, A0 = pole face area, 

= control current,  = deviation of control current, and (i0, hy0, hz0) = desired control current and

ϕj x t,( ) δ x xk–( ) H t tk–
j 1–( )L

ν
-------------------–⎝ ⎠

⎛ ⎞ H t tk–
jL

ν
-----–⎝ ⎠

⎛ ⎞–=

EIzuy j,

″
0 t,( ) EIzuy j,

″
 0 t,( ) 0= =

EIzuy j,

″
 L t,( ) EIyuz j,

″
 L t,( ) 0= =

( )• ' ∂ ( )• ∂x ( )•·,⁄, ∂( )• /∂t uz j, x t,( ),= =

δ( )•
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ik
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Fig. 2 Mathematical model of a maglev vehicle running on a series of simple beams.
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levitation gaps around a specified nominal operating point of the maglev wheels at static

equilibrium. The corresponding levitation gaps in lateral and vertical directions are respectively

given by

   

(5)

where (ul,k, uv,k) = displacements of the kth magnetic wheel in the y and z directions, (ulc, uvc) =

midpoint displacements of the rigid car,  = midpoint rotations of the rigid car, r(x) =

irregularity of guideway, and dk = location of the kth magnetic wheel to the midpoint of the rigid

beam. Observing the expression of Eq. (4), the increase of lateral air gaps would increase the lateral

force but decrease the uplift levitation force of the maglev system. From the electromagnetic forces

expressed in Eq. (4), the motion-dependent nature of magnetic force plays a key role to resolve the

dynamic problem of maglev vehicle-guideway interaction tuned by a maglev system. On the other

hand, the equations of motion of a 4-DOFs (see Fig. 2) maglev vehicle with rigid car body are

given by

(6)

in which M0 = mvl + Kmw = lumped mass of the vehicle, g(t) denotes the feedback gain to control

the lateral response of the maglev vehicle, IT = mass moment of inertia of the rigid car body, p0 =

M0g = lumped weight of the maglev vehicle, (FS, FL) = aerodynamic side and lift forces, and (MP ,

MY) = aerodynamic pitching and yawing moments.

3. Lateral vibration control of a maglev vehicle using LQR actuator

In vibration control theory, LQR algorithm has been widely used in optimal control for its

simplicity, reliability, robustness, and stability in a closed-loop system (Soong 1990). This paper is

aimed at investigating the lateral vibration control of a moving maglev vehicle under cross winds.

Thus, the equation of lateral component for the maglev vehicle in Eq. (6) can be rewritten as

(7)

Introducing the state space of  into Eq. (7) yields the following matrix equation

(8)
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f t( ) FS Σk 1=

K Gy k,[ ]+=

y〈 〉 ulc    u
·
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0
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, = g t( ) G[ ] y{ }=
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where  and [G] represents the control gain matrix. In this control algorithm, the control

gain g(t) is determined by minimizing the following quadratic cost index (Soong 1990)

  

(9)

Here, [Q] is a symmetric positive semi-definite weighting matrix for the performance of a structural

system and R the weighting parameter for the input control force. To minimize the performance

index J in Eq. (9), the Riccati equation (Soong 1990) is usually used to obtain the Riccati matrix

[P] and the control gain matrix [G], i.e.

(10)

(11)

In this study, the weighting matrix [Q] is represented by

(12)

where kw is weighting parameter. The solution of the Riccati matrix [P] and the corresponding

control gain g(t) in Eq. (8) are derived from (Yau 2010c), they are expressed as

  (13)

 

g(t) = [G] (14)

Let R = kw/Ψ2, the coefficient Ψ represents the relative importance of control performance in

response suppression (Soong 1990). Introducing the derived control force g(t) shown in Eq. (14)

into Eq. (7) yields

   (15)

3.1 Determination of coupling factor

From the condition of static equilibrium for the suspended maglev vehicle with initial gaps of hy0 and

hz0, one can obtain the following static electromagnetic force at the k-th magnetic wheel from Eq. (4)

(16)

Here,  and . To keep the maglev vehicle in static equilibrium at initial

lateral air gap of hy0, the control force required for the LQR actuator can be represented by
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=
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2
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M0u
··

lc 2M0Ψ u· lc× Ψulc+ + FS Σk 1=

K Gy k,[ ]+=

Gy0 κ0γz0
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(17)

where Ψ0 means the initial stiffness parameter tuned by the LQR actuator. Solving Eqs. (16) and

(17) yields the following initial parameters

(18)

For the special case of hy0 = 0, the coupling factor becomes , which is reduced to the case

of a maglev vehicle at vertical static equilibrium without initial lateral movement (Yau 2009a,b). 

As a maglev vehicle moves over guideway in cross winds, the control actuator needs to provide

additional gain for tuning the controller, let Ψ = Ψ0 + ψ and consider the initial lateral air gap of

hy0, thus, the equation of lateral motion for the moving maglev vehicle becomes

(19)

Here, ψ represents additional tuning stiffness gain as the maglev vehicle runs on the guideway

under cross wind environments. In this paper, ψ is set Ψ0/10.

3.2 Clipped LQR control

If the control force g(t) of the LQR controller is bounded by a maximum value fmax, the controller

with saturated tuning gain can be simulated by a variable damper (Ni et al. 2004, Lee and

Kawashima 2007). Thus the equation of lateral motion of the maglev vehicle in Eq. (19) is

rewritten as

(20)

where cd = variable damping coefficient and  = saturated control gain. Based on the clipping

control strategy (Ni et al. 2004, Lee and Kawashima 2007), the saturated control gain  in Eq.

(20) is expressed as 

(21)

Here, sgn[g(t)] means the sign function of the control gain g(t) . It is

emphasized that the variable damping coefficient cd (t) not only behaves like a semi-active controller

to tune its control gain from the lateral feedback responses of  of the running maglev

vehicle but also functions as a conventional LQR controller to control the lateral vibration

of the running maglev vehicle. In this paper, the maximum saturated control gain of fmax =

Ψ0hy0 Σk 1=

K= Gy0[ ]

κ0

p0γz0
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------------ 1
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 is selected as the upper bound of control forces. Here,  represents the

absolute maximum control force computed from the running maglev vehicle without clipping control.

3.3 Compensation of time-delayed system

As shown in Eq. (14), it is a control force of an ideal control actuator without time delay. In

reality, time delay is an important issue degrading control effectiveness of a controlled structure and

exists between the response measurement and the control action, which may result in

unsynchronized control forces exerting to the controlled structure. Thus time delay issue cannot be

avoided in an entire control process. To alleviate the degradation of control performance due to time

delays, this study employs the phase-shift compensation method (Symans and Constantinou 1997)

to improve the control effectiveness of the present LQR actuator with time delay. Let us denote τ as

the time delay between response measurement and control action. Then the actual control force g(t)

without compensation exerting to the vehicle in lateral direction is

(22)

Based on the phase-shift compensation method (Symans and Constantinou 1997, Agrawal and

Yang 2000), the feedback parameters of the time-delayed controller can be appropriately modified

from the real control gain g(t) such that the time-delayed system have the same tuning stiffness (Ψ)

and damping ( ) parameters as the ones of the ideal controller, that is

(23)

where the modified feedback parameters (gv, gd) were given by the following transformation

(Symans and Constantinou 1997)

(24)

where  is the lateral natural frequency of the controlled maglev vehicle at static

equilibrium.

4. Control equation of the maglev suspension system

By the theory of electromagnetic circuits, the electromagnetic equation of magnet current and

control voltage for the kth electric magnets in the maglev suspension system is given by

(25)

where = initial inductance of the coil winding the suspension magnet, R0 = coil

resistance of electronic circuit, and Vk = control voltage. To control the levitation forces between the

mgalev vehicle and guideway, an onboard PID control algorithm (Astrom and Hagglund 1988) is

0.8 g t( ) max× g t( ) max

g t( ) Ψ ulc× t τ–( )– 2M0Ψ u· lc× t τ–( )–=

2M0Ψ

g t( ) gv u· lc× t τ–( )– gd ulc× t τ–( )–=

gd

gv⎩ ⎭
⎨ ⎬
⎧ ⎫  cos ωτ( ) ω sin ωτ( )( )

  sin ωτ( )/ω– cos ωτ( )    

Ψ

2M0Ψ⎩ ⎭
⎨ ⎬
⎧ ⎫

=

ω Ψ0 M0⁄=( )

Γ0

d ik hz k,⁄( )
dt

------------------------ R0ik Vk–+

Γ0 2κ0=
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employed to regulate control voltage of the maglev system. Let us adopt the variable transformation

as , the control voltage Vk can be expressed in terms of error function of

 in the control process by using PID tuning algorithm as (Ogata

1997)

(26)

where Kp = proportional gain, Ki = integral gain, and Kd = derivate gain. Then substituting Eq. (26)

into Eq. (25) and differentiating this equation with respect to time, one can achieve the following

differential equation for control error function

(27)

With the aid of control error function ek and the parameter  at static equilibrium, the

equations of motion in Eq. (6) for the controlled maglev vehicle can be rewritten as

(28)

where

(29)

Then the combination of Eqs. (27) and (28) yields the following equations of motion for the

maglev vehicle equipped with an onboard controller

(30)

in which {uv} = displacement vector, {fv} = force vector, and ([kv], [cv], [mv]) means structural

matrices of the maglev vehicle.

5. Simulation of turbulent wind velocity

In general, the simulation of turbulent wind loads acting on a moving maglev vehicle is usually
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obtained from the numerical interpolation of the turbulent wind loads of the guideway girder at the

two adjacent monitoring nodes (Xu et al. 2004, Xia et al. 2008). To perform the interaction analysis

of a maglev vehicle traveling over guideway under cross winds in the time domain, the following

simplified spectral representation of turbulent wind (Cao et al. 2000) is employed to generate the

time history of horizontal turbulent airflow velocity w,j(t) in mean wind flow direction at the jth

point on the guideway system as 

(31)

where Nf is the total number of frequency intervals represented by a sufficiently large number; Ns is

the total number of points along the guideway to simulate; S(ω) is the horizontal spectral density of

turbulent wind; υni is a random variable uniformly distributed between 0 and 2π; ∆ω = ωup/Nf the

frequency increment; ωup is the upper cutoff frequency with the condition that the value of wind

spectrum is less than a preset small number ε when ω >ωup. The spectrum formula shown in Eq.

(31) for horizontal turbulent wind velocity is defined by

(32)

(33)

where  stands for the shear velocity of airflow; U is the mean wind speed at height z; λ is an

exponential decay factor taken between 7 and 10; ljn is the distance between the simulated points j

and n; and  is the coherence function between points j and n (Cao et al. 2000, Xia et al.

2008).

5.1 Simulation of quasi-steady aerodynamic forces on the moving vehicle

Fig. 3 shows the wind load model acting on the running vehicle with a mean velocity U and

turbulent velocity w. The aerodynamic forces and moments acting at the mass center of the moving

vehicle are expressed as

(34)

wj t( ) 2 ω∆( ) S ωni( )
i 1=

Nf

∑ Gjn ωni( ) cos× ωnit υni+( )×
n 1=

j

∑ , j 1 2 … Ns, , ,= =

S ω( ) 200 U
2

×

1 50f z( )+[ ]5/3
-----------------------------------

z

U
----⎝ ⎠

⎛ ⎞ , f z( ) ω

2π
------  

z

U
----= =

Gjn ω( )

  0                   1 j n Ns≤<≤

      C
 j n–

                     n 1 n j Ns≤ ≤,= ,

C
j n–

1 C
2

– 2 n j Ns≤ ≤ ≤⎩
⎪
⎨
⎪
⎧

= C exp(
λω ljn×–

2πU
----------------------⎠

⎞=

U

C
j n–

Fs

ρASUr

2

2
----------------CS ϕ( ) MY,

ρASdeUr

2

2
---------------------CY ϕ( )= =

FL

ρATUr

2

2
----------------CL ϕ( ) MP,

ρAThvUr

2

2
---------------------CM ϕ( )= =

Ur v Ucosφ+[ ]2 U w+( )sinφ[ ]2+=

tanϕ
U w+( )sinφ

v U φcos+
------------------------------=



Lateral vibration control of a low-speed maglev vehicle in cross winds 273

where ρ is the air density (= 1.2kg/m3); AS is the side surface area of the vehicle; AT is the top

surface area of the vehicle; de is the reference eccentricity of aerodynamic yawing moment about

the mass center; hv is the reference height of vehicle’s mass center; CS is aerodynamic coefficient of

vehicle’s side; CL is aerodynamic lift coefficient; CP is aerodynamic pitching moment coefficient;

 is yaw angle (see Fig. 2); Ur is the relative wind velocity around the vehicle

moving at speed v; and w represent the turbulent wind speed component defined in Eq. (31). 

6. Method of solution

As the beam equation shown in Eqs. (1) and (3), it is a differential equation associated with non-

homogeneous boundary conditions. The deflection response uj(x,t) can be expressed as

(35)

Here, qjn(t) means the generalized coordinate associated with the nth vibration mode of the jth span.

By Galerkin’s method (Yau 2009a,b,c), the generalized equation of motion for the nth modal system

of the jth beam becomes

(36)

where (cy,n, cz,n) = the nth modal damping coefficient, and (ωy,n, ωz,n) = the nth natural frequency,

and thegeneralized magnetic forces are given by

(37)
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Fig. 3 Relative wind velocity and natural wind velocity to a moving vehicle.
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7. Applications of the incremental-iterative approach

Because of the motion-dependent and non-contact nature of electromagnetic forces, the nonlinear

dynamic analysis of the maglev vehicle/guideway system needs to be solved by iterative method.

The numerical procedure of incremental-iterative dynamic analysis conventionally involves three

phases: predictor, corrector, and equilibrium checking (Yang and Kuo 1994). Detailed information

about the incremental-iterative procedure for nonlinear dynamic analysis of vehicle-bridge

interaction is available in references (Yau 2009a,b, 2010a,b,c). Fig. 4 shows the analysis flow chat

to carry out the nonlinear dynamic analysis for the vibration control and interaction responses of

maglev vehicle/guideway system in cross winds. It is noted that (1) The structure matrices in Eq.

(30) for the dynamic interactions of maglev vehicle/guideway system should be updated at each

iteration; (2) The root mean square βtol of the sum of unbalanced forces for the maglev vehicle/

guideway interaction system, that is

(38)

is larger than a preset tolerance, say 10−3, iteration for removing the unbalanced forces involving the

two phases of predictor and corrector should be repeated. Here,  = the unbalanced force

between the external force  and the effective internal forces  for the n-th generalized

system at the i-th iteration of time , and  = the unbalanced force for the k-th maglev

wheels to lift up the maglev vehicle.
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Fig. 4 Flow chat of incremental-iterative procedure
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8. Numerical investigations

Fig. 2 shows a maglev vehicle suspended by four magnets is traveling over a series of identical

guideway girders with constant speed v. The properties of the guideway girder and maglev vehicle

are listed in Tables 1 and 2, respectively. To account for the random nature and characteristics of

guide-rail irregularity in practice (Shi et al. 2007), the following power spectrum density (PSD)

function used by the Federal Railroad Administration (FRA) (Yang et al. 2004) is given to simulate

the vertical profile of track geometry variations

(39)

where Ω = spatial frequency, and Av, (= 1.5 × 10−7 m), Ω r (= 2.06 × 10−6 rad/m), and Ωc (= 0.825

rad/m) are relevant parameters. Fig. 5 shows the vertical profile of track irregularity for the

simulation of rail geometry variations in this study.

Because of lack of aerodynamic simulation data (from wind tunnel tests or CFD simulation) for a

moving maglev vehicle, this study refers to the aerodynamic parameters measured from references

(Baker 1997a,b) for a running train. The aerodynamic coefficients of side and lift forces, and

moments of the maglev vehicle are linearized and approximately taken as:  and

S Ω( )
AvΩc

2

Ω2 Ωr

2
+( ) Ω2 Ωc

2
+( )

-------------------------------------------------=

CS CL 0.25ϕ= =

Table 1. Properties and natural frequencies of the guideway

L (m) EIy (kN m2) EIz (kN m2) m (t/m) c (kN-s/m/m) fv1 (Hz) fL1 (Hz)

25 5.94 × 106 1.24 × 108 1.5 15.4 5.0 22.8

fv1 = the first natural frequency in vertical direction,  fL1 = the first natural frequency in lateral direction

Table 2. Properties of the maglev vehicle

l
(m)

hz0

(m)
hy0

(mm)
K

mv

(kg/m)
IT

(kg-m2)
mw

(kg)
AS

(m2)
AT

(m2)
de

(m)
hv

(m)
i0 

(Ω)
R0

(A)
Ψ0

(Nm)

15 0.01 1 4 1200 3.8 × 105 750 52.5 52.5 0.9 1.75 25 1.0 3 × 106

Fig. 5 Rail irregularity (vertical profile)
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, respectively. To simulate the turbulent cross wind velocities given in Eq. (31),

the following aerodynamic parameters are used: (1) the shear velocity  of the airflow is selected

as 0.8 m/s; (2) the sampling number of frequency (Nf) is 1024 and the frequency increment ∆ω is

0.006 Hz; (3) the height of the running vehicle is 6 m; (4) the time interval of the generated wind

velocity is 0.1s; (5) the decay factor λ is set 10, (6) the distance ljn between any two successive

points is 5 m; and (7) the wind velocity field is recorded from 101 ( = Ns) different points uniformly

distributed along the guideway with the total length of 500 m. Figs. 6(a) and (b) show the generated

time-histories of turbulent velocity components of cross wind with a mean velocity of U = 20 m/s at

the positions of 100 m and 200 m from the right reference point of the guideway, respectively. As

shown in Fig. 6, the fluctuating amplitudes of simulated wind speed components (U = 20 m/s) with

time are comparable with the ones presented by Guo et al. (2010).

It was well known that if the acceleration response, rather than the displacement response, of a

structure is of concern, the contribution of higher modes has to be included in the computation (Yau

and Yang 2006). From the convergent verification of computed results of a simple beam under

moving train loads presented in reference (Yau and Yang 2006), the first 20 modes of shape

functions in Eq. (20) are sufficient to compute the acceleration response of a simple beam. In

addition, the maximum accelerations of the maglev vehicle are defined as

(32)

In the following examples, the time step of 0.001s and the ending time of tend = (NL+l)/v are

employed to compute the dynamic response of the traveling maglev vehicle. Here, N is the span

number of the guideway girders considered.

CP CY 0.4ϕ= =

U

av max, max u··vc dkθ
··

y+ k 1 2 … K, , ,=( )=

av max, max u··lc dkθ
··

z+ k 1 2 … K, , ,=( )=

Fig. 6 Simulation of turbulent wind velocity at positions of guideway: (a) 100 m and (b) 250 m
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8.1. Application of the Z-N tuning rule

The purpose of this example is to determine the PID tuning parameters for the maglev vehicles

running over guideway girders, thus, the aerodynamic forces acting on the moving vehicle would be

excluded. As shown in Eq. (26), the linear combination of (Kp, Ki, Kd) in the PID control algorithm

can provide a set of tuning gains designed for specific control process even by trial and error

method. In general, if the mathematical model of a control process is not available, the Z-N tuning

rule offers a useful approach to determine the optimal parameters of a PID controller, from which

the PID parameters have been defined as (Astrom and Hagglund 1988): Kp = 0.6Kcr , Ki = 1.2Kcr/Tcr,

and Kd = KcrTcr/8 (Ogata 1997). Here, Kcr means the critical proportional gain of the PID controller

by increasing only the proportional control action (i.e., Ki = Kd = 0) Kp from 0 to a critical value Kcr

so that the output first exhibits an oscillation behavior with a critical period Tcr (Ogata 1997). 

Let the maglev vehicle cross the multi-span guideway with constant speed of 100 km/h. By trials

for different values of the proportional gain Kp subject to hzk > 0, the time history response of the

average control error  to oscillate for the maglev vehicle has been plotted in Fig. 7. 
000

In addition, the time history responses of acceleration of midpoint of the maglev vehicle and the

guideway girder have been plotted in Figs. 8 and 9, respectively. As shown in Fig. 9, the increase of

Σk 1=

K ek/ Kγz0( )

Fig. 7 Transient oscillation with a critical period Tcr

Fig. 8 Vertical acceleration of midpoint of the rigid car body



278 J.D. Yau

magnetic bogies of the maglev vehicle running into the guideway girder may lead to the response of

the vibrating girder being amplified gradually. Thus, Fig. 8 indicates that the vertical acceleration of

midpoint of the rigid car body increases with time. According to the Z-N rule described above,

Table 3 has listed the corresponding optimal PID parameters. In the following examples, the optimal

PID tuning parameters listed in Table 3 are used to regular the control voltage in the maglev system

of the running maglev vehicle.

8.2. Maximum response analysis of maglev vehicle/guideway under cross winds

For a ground transportation system, the acceleration response of running vehicles is usually used

to evaluate the ride comfort of passenger cabins and running safety of the system. For illustration,

the traveling speeds of the low-speed maglev vehicle are ranged from 40 km/h to 100 km/h. With

the optimal PID parameters listed in Table 3, Fig. 10 depicts the maximum acceleration (ac,max) of

the moving vehicle against various speeds (v). Such a relationship is denoted as ac,max–v plot in the

following. Fig. 11 shows the maximum acceleration (amax) at midspan of the guideway girders

against the moving speed (v) and this relationship will be called as amax–v plot. As can be seen in

Figs. 9 and 10, increasing running speeds results in the increase of acceleration amplitudes. On the

other hand, let us observe the coupling effect between the lateral guidance force and the vertical

levitation force (see Eq. (4)). Once the deviation of guidance gap hy,k increases noticeable then the

levitation force (see Eq.(4(b))) would be reduced significantly. Thus the vertical response of vehicles

in cross winds would become much larger than that without cross wind.

8.3 Lateral vibration control of the moving maglev vehicle

For a low speed maglev transport system, both the lateral and vertical acceleration responses of

maglev vehicles are concerned with ride quality and operating safety of transportation performance.

Fig. 9 Response of mid-span acceleration of the guide-way.

Table 3. Optimal PID parameters based on the Z-N tuning rule

Kcr Tcr (s) Kp (= 0.6Kcr) Ki (= 1.2Kcr/Tcr) Kd (= Tcr Kcr/8)

1.9 0.16 1.14 14.3 0.038
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According to the previous numerical investigations in Section 8.2, the maximum speed of 100km/h in

the ac,max–v plot of lateral motion of the rigid car body is over the limitation of 0.05g (= 0.49 m/s2) for

ride requirements of passengers (Yau 2010c). In this example, we try to mitigate the vehicle’s

response using a PID controller in conjunction with the ideal clipped-LQR actuator presented in

Section 3. Under the same cross wind environment described in Section 8.2, the corresponding

lateral ac,max–v plot for the maglev vehicle has been drawn in Fig. 12 as well. The results show that

the ideal clipped-LQR actuator produces a noticeable ability to reduce the lateral vehicle’s response.

8.4 Control effectiveness of clipped-LQR controller with time-delay compensation

In this example, the control effectiveness of time-delay compensation is examined for the lateral

vibration of the maglev vehicle under cross winds. Let us assume the time delay τ is equal to

200 ms (micro-second). Fig. 12 shows the comparison of cross wind-induced lateral acceleration

amplitudes of the moving vehicle equipped with various clipped-LQR controllers, including ideal

clipped-LQR control, clipped-LQR control with time delay, and clipped-LQR control with time

delay compensation. Obviously, the lipped-LQR control with time-delay degrades the control

performance of the controlled system. Fortunately, with the inclusion of phase-shift compensation

Fig. 10 ac,max-v plot of the maglev vehicle

Fig. 11 amax-v plot of the first span of the guideway
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method given in Section 3.2, the clipped-LQR control with time delay compensation has improved

the control effectiveness. For the purpose of illustration, Figs 13(a)-(c) show the time history

response of acceleration of the moving maglev vehicle installed with various clipped-LQR actuators.

Obviously, the use of time delay compensation for the clipped-LQR controller produced minor

improvements in suppressing the lateral response of the running maglev vehicle in cross winds.

Fig. 12 Comparisons of control effectiveness

Fig. 13 Time history response of lateral acceleration of the maglev vehicle: (a) ideal clipped-LQR control, (b)
clipped-LQR control with time delay and (c) clipped-LQR control with time delay compensation
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9. Conclusions

In this study, the framework for performing nonlinear dynamic analysis and vibration control of a

maglev vehicle moving over a series of guideway girders in cross winds has been conducted using

an iterative approach associated with the Newmark method. Then a clipped-LQR controller with

time-delay compensation is employed to control the lateral vibration of the moving maglev vehicle

in cross winds. From the numerical demonstrations, the following conclusions are addressed:

1. Based on the Z-N tuning algorithm, the proposed PID+LQR actuator has the ability to regulate

the uplift levitation and lateral guidance forces for the maglev vehicle to travel over flexible

guideway girder in cross winds.

2. The aerodynamic effects of cross winds play a dominant role in affecting the lateral vibration of

the maglev vehicle running over guideway.

3. With the concept of variable damping, the proposed ideal clipped-LQR controller exhibits its

tuning superiority in reducing the lateral vibrations for the low-speed maglev vehicle moving in

cross winds.

4. Time delay is an important issue in degrading the control performance of the present clipped-

LQR controller. 

5. The use of phase-shift compensation method produced minor improvements for the time-delayed

clipped-LQR controller in suppressing the lateral response of the running maglev vehicle in cross

winds.

Acknowledgments

The research reported herein is partly supported by grants No. NSC 99-2221-E-032-020-MY3 of

National Science Council, Taiwan. The financial supports are gratefully acknowledged.

References

Agrawal, A.K. and Yang, J.N. (2000), “Compensation of time-delay for control of civil engineering structures”,
Earthq. Eng. Struct. D., 29(1), 37-62.

Aldo, D. and Alfred, R. (1999), “Design of an integrated electromagnetic levitation and guidance system for
Swiss Metro”, Proceedings of the EPE'99, Lausanne, Swiss.

Astrom, K.J. and Hagglund, T. (1988), Automatic Tuning of PID Controllers, Instrument Society of America.
Baker, C.J. (1991a), “Ground vehicles in high cross winds. Part I: steady aerodynamic forces”, J. Fluid. Struct.,
5(1), 69-90.

Baker, C.J. (1991b), “Ground vehicles in high cross winds. Part II: unsteady aerodynamic forces”, J. Fluid.
Struct., 5(1), 91-111.

Bittar, A. and Sales, R.M. (1998), “H2 and  control for maglev vehicles”, IEEE Contr. Syst. Mag., 18(4), 18-25.
Bocciolone, M., Cheli, F., Corradi, R., Muggiasca, S. and Tomasini, G. (2008), “Crosswind action on rail

vehicles: Wind tunnel experimental analyses”, J. Wind Eng. Ind. Aerod., 96(5), 584-610.
Bohn, G. and Steinmetz, G. (1984), “The electromagnetic levitation and guidance technology of the transrapid

test facility Emsland”, IEEE T. Magn., 20(5), 1666-1671.
Cai, Y., Chen, S.S., Rote, D.M. and Coffey, H.T. (1996), “Vehicle/guideway dynamic interaction in maglev

systems”, J. Dyn. Sys. Meas. Cont., 118(3), 526-530.
Cai, Y. and Chen, S.S. (1997), “Dynamic characteristics of magnetically-levitated vehicle systems”, App. Mech.

H∞



282 J.D. Yau

Rev., 50(11), 647–670.
Cao, Y., Xiang, H. and Zhou, Y. (2000), “Simulation of stochastic wind velocity field on long-span bridges”, J.

Eng. Mech.- ASCE, 126(1), 1-6.
Fujii, K. and Ogawa, T. (1995), “Aerodynamics of high speed trains passing by each other”, Comput. Fluids,
24(8), 897-908.

Guo, W.W., Xia, H. and Xu, Y.L (2010), “Running safety analysis of a train on the Tsing Ma Bridge under
turbulent wind”, J. Earthq. Eng., 9(3), 307-318.

Kwon, S.D., Lee, J.S., Moon, J.W. and Kim, M.Y. (2008,) “Dynamic interaction analysis of urban transit maglev
vehicle and guideway suspension bridge subjected to gusty wind”, Eng. Struct., 30(12), 3445-3456.

Lee, T.Y. and Kawashima, K. (2007), "Semiactive control of nonlinear isolated bridges with time delay", J.
Struct. Eng. -ASCE, 133(2), 235-241.

Li, Y., Qiang, S., Liao, H. and Xu, Y.L. (2005), “Dynamics of wind–rail vehicle–bridge systems”, J. Wind Eng.
Ind. Aerod., 93(6), 483–507.

Newmark, N.M. (1959), “A method of computation for structural dynamics”, J. Eng. Mech. Div., 85(7), 67-94.
Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), “Neuro-control of cable vibration using semi-active

magnetorheological dampers”, Eng. Struct., 24(3), 295-307
Ogata, K. (1997), Modern control engineering, 3rd Ed., Prentice-Hall, Englewood Cliffs, NJ.
Samavedam, G., Kokkins, S., Raposa, F., Thompson, M. and Anagnostopoulos, G. (2002), Assessment of CHSST

Maglev for U.S. Urban Transportation, U.S. Department of Transportation, Federal Transit Administration,
Report Number FTA-MD-26-7029-2002.1.

Shi, J., Wei, Q. and Zhao, Y. (2007), “Analysis of dynamic response of the high-speed EMS maglev vehicle/
 guideway coupling system with random irregularity”, Vehicle. Syst. Dyn., 45(12), 1077-1095.

Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures, Wiley, NY.
Song, M.K. and Fujino, Y. (2008), "Dynamic analysis of guideway structures by considering ultra high-speed

maglev train-guideway interaction", Struct. Eng. Mech., 29(4), 355-380.
Soong, T.T. (1990), Active structural control: theory and practice, Longman Scientific & Technical, Essex,

England.
Suzuki, M., Tanemoto, K. and Maeda, T. (2003), “Aerodynamic characteristics of train/vehicles under cross

winds”, J. Wind Eng. Ind. Aerod., 91(1-2), 209–218.
Symans, M.D. and Constantinou, M.C. (1997), “Seismic testing of a building structure with a semi-active fluid

damper control system”, Earthq. Eng. Struct. D., 26, 759-777.
Xia, H., Guo, W.W., Zhang, N. and Sunb, G.J. (2008), “Dynamic analysis of a train–bridge system under wind

action”, Comput Struct., 86(19-20), 1845-1855.
Xu, Y.L., Zhang, N. and Xia, H. (2004), “Vibration of coupled train and cable-stayed bridge systems in cross

winds”, Eng. Struct., 26(10), 89–1406.
Yang, Y.B. and Kuo S.R. (1994), Theory and analysis of nonlinear framed structures, Singapore: Prentice Hall.
Yang, Y.B., Yau, J.D. and Wu, Y.S. (2004), Vehicle-Bridge Interaction Dynamics, World Scientific, Singapore.
Yang, Y.B. and Yau, J.D. (2011), “An iterative interacting method for dynamic analysis of the maglev train–

 guideway/foundation–soil system”, Eng. Struct., 33, 1013-1024.
Yau, J.D. (2009a), “Vibration control of maglev vehicles traveling over a flexible guideway”, J. Sound Vib.,
321(1-2), 184-200.

Yau, J.D. (2009b), “Response of a maglev vehicle moving on a series of guideways with differential settlement”,
J. Sound Vib., 324(3-5), 816-831.

Yau, J.D. (2009c), “Vehicle/bridge interactions of a rail suspension bridge considering support movements”, Inter.
Multisca. Mech., 2(3), 263-276.

Yau, J.D. (2010a), “Interaction response of maglev masses moving on a suspended beam shaken by horizontal
ground motion”, J. Sound Vib., 329(2), 171-188.

Yau, J.D. (2010b), “Response of a maglev vehicle moving on a two-span flexible guideway”, J. Mech., 26(1),
95-103.

Yau, J.D. (2010c), “Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming
wind actions”, J. Sound Vib., 329(10), 1743-1759.

Yau, J.D. and Yang, Y.B. (2006), “Vertical accelerations of simple beams due to successive loads traveling at



Lateral vibration control of a low-speed maglev vehicle in cross winds 283

resonant speeds”, J. Sound Vib., 289(1-2), 210-228.
Zhao, C.F. and Zhai, W.M. (2002), “Maglev vehicle/guideway vertical random response and ride quality”,

Vehicle. Syst. Dyn., 38(3), 185–210.
Zheng, X.J., Wu, J.J. and Zhou, Y.H. (2000), “Numerical analyses on dynamic control of five-degree-of-freedom

maglev vehicle moving on flexible guideways”, J. Sound Vib., 235(1), 43–61.
Zheng, X.J., Wu, J.J. and Zhou, Y.H. (2005), “Effect of spring non-linearity on dynamic stability of a controlled

maglev vehicle and its guideway system”, J. Sound Vib., 279(1-2), 201–215.

CC




