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Stabilized finite element technique and its application 
for turbulent flow with high Reynolds number
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Abstract. In this paper, a stabilized large eddy simulation technique is developed to predict turbulent
flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and
three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid
scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term
treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible
condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One
is lid driven flow at Re = 105 in a triangular cavity, the other is turbulent flow past a square cylinder at
Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent
flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh. 

Keywords: large eddy simulation; finite element method; high Reynolds number; Streamline Upwind
Petrov-Galerkin; subgrid-scale model.

1. Introduction

Among a number of existing numerical techniques for predicting turbulent flow, large eddy

simulation (LES) appears to be one of the most promising approaches (Itoh and Tamura 2008,

Jimenez et al. 2008, Uchida and Ohya 2003). In LES, the fluctuating motions of turbulence can be

computed exactly except for the eddy smaller than the grid size. Early LES computations were

based on the Smagorinsky model (SM) for the sub-grid scales (SGS) (Smagorinsky 1963). Potential

of this scheme has been clearly demonstrated by Deardorff (1970). And some other SGS models

have been proposed such as the scale similarity model (Bardina et al. 1980) and the dynamic sub-

grid scale model (Germano et al. 1991).

For the advantages of dealing with complex geometry and boundary conditions, finite element

method (FEM) has been widely used for the predictions of various fluid dynamic problems.

However, classic Galerkin FEM meets great problem when applied to solve fluid flow with high

Reynolds number as it is mentioned by Collis and Heinkenschloss (2002). In order to overcome this

drawback, some stabilized finite element formulations have been developed by many researchers for

decades. Among them, Streamline Upwind Petrov-Galerkin (SUPG) method is famous which was

proposed by Brooks and Hughes (1982) and further developed by Hughes et al. (1986) and
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Tezduyar (2007).

Besides, there are some other stabilized methods such as Galerkin least Square techniques

(Hughes et al. 1989, Franca and Frey 1992), characteristic Galerkin method (Zienkiewicz and

Codina 1995, Bao et al. 2010a, b) and finite calculus method (Oñate 1998). Based on the Taylor-

Galerkin method developed by Donea et al. (1984) and Selmin et al. (1985), the three-step finite

element method developed by Jiang and Kawahara (1993) has been proved to be effective, stable

and accurate for turbulent flow with high Reynolds number. 

Recently, a 2-D Streamline Upwind Petrov/Galerkin (SUPG) finite element model was developed

for coupled convection-diffusion equation in the feed channel (Ma et al. 2004). Pain and Eaton

(2006) present a space-time Streamline Upwind Petrov-Galerkin formulation for the time-dependent

Boltzmann transport equation. Ramakrishnan and Collis (2006) obtain good numerical results with

variational multiscale method for large-eddy simulation. Buchan et al. (2008) present a new

multiscale radiation transport method of the Boltzmann transport equation. Becker and Vexler

(2007) present a stabilization scheme on coarse mesh in the convection dominated case. And

Heinkenschloss and Leykekhman (2008) derive local error estimates for the discretization of

optimal control problems using the Streamline Upwind Petrov/Galerkin (SUPG) stabilized finite

element method.

In this paper, turbulent flow with high Reynolds number is concerned. Because the weak form of

the finite element formulations added with the SUPG stabilized term has better stability properties

with strongly consistent stabilization (Collis and Heinkenschloss 2002), the formulation of

Smagorinsky SGS model with SUPG stabilized method is applied. The theory and efficiency of the

SUPG stabilized term in the weak form are introduced and discussed by Brooks and Hughes (1982).

The same order interpolation for the velocity and pressure is employed for the spatial discretization,

and the three-step technique is applied for the temporal discretization where viscous term is treated

implicitly. The Poisson equation is derived from the incompressible condition. 

For the verification of present method, the numerical examples of lid driven flow in a triangular

cavity at Re = 105 and flow past a square cylinder at Re = 22000 are operated. Results show that

present method is stable and efficient for the simulation of fluid flow with high Reynolds number. 

2. Governing equations

2.1 LES governing equations

The governing equations of Smagorinsky SGS model for incompressible flow are as follows

(Smagorinsky 1963)

 

(1)

(2)

where vt = (CSh)2(2Sij
2)0.5, Sij = (ui,j + uj,i)/2, h = (h1h2h3)

1/3 for 3D and (h1h2)
1/2 for 2D, and k = (vt /(Ckh))2.

u and p are the velocity and pressure respectively, t is the time, v is 1/Re as kinematic viscosity, Re

is Reynolds number, vt is the turbulent eddy viscosity, Sij is the strain rate tensor, k is the SGS

turbulent kinetic energy, h1,h2,h3 are the element volume sizes in three directions, ρ is the density of

ui i, 0=

ui t, ujui j,+ p ρ⁄ 2k 3⁄+( ) i,– v vt+( ) ui j, uj i,+( )[ ] j,+=
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fluid. Constants used here, CS = 0.15, Ck = 0.094 are suggested by Murakami and Mochida (1995).

2.2 Finite element formulations for LES

The weak form of the momentum equation can be actualized via Eq.(2) multiplying the velocity

test function and added with SUPG stabilized term as follows (Brooks and Hughes 1982)

 

(3)

where nel is the number of elements, δui is the velocity test function, nj is the normal unit vector of

the computational boundary Γ, Ω is the computational domain, Ω e is the element domain and σij is

the stress tensor given by

(4)

and the stabilized parameter τSUPG is defined as follow from Dettmer and Peric (2006)

       (5)

where he, ue and Ree represent the characteristic element size, convective velocity and the Reynolds

number of an element respectively. And β1 defines the limits of z as Ree near to infinite and β2

define the derivative dz/dRee at Ree = 0. In this work, β1 = 1 and β2 = 1/3 have been obtained, and

the characteristic element size is defined as the diameter of a circle which area is equal to the

element area.

3. Numerical schemes

3.1 Spatial discretization

The spatial discretization of Eq.(3) is performed with the velocity and pressure both employing

the same order interpolation. Thus the trial function and the test function for velocity and pressure

are both expressed as ΦI, and the velocity and pressure of an element are described as

(6)

where uiI is the i directional velocity of node I, pI is the pressure of node I.

Substituting Eq.(6) into Eq.(3), the finite element formulation for momentum equation is

expressed as

(7)
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where the basis matrices of elements are obtained as

 

(8)

(9)

(10)

(11)

(12)

(13)

3.2 Temporal discretization

Three-step technique is applied here for the temporal discretization with viscous term treated

implicitly and the formulation of the momentum equation at each step is expressed as below (Jiang

and Kawahara 1993) 

(14)

(15)

(16)

where t represents the length of time increment, the superscripts of n,  and  denote

steps of time increment respectively.

3.3 Finite element formulation for pressure equation

Before calculating the velocity ui
n+1 from Eq.(16), the pressure pn+1 has to be confirmed. By

taking the divergence of both sides of Eq.(2) and considering the incompressible condition of

, the Poisson equation is obtained as

 (17)
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where 
 

Using the trial function and the test function of Eq.(6), and considering k and ít evaluated at the

center of element, the finite element formulation for pressure is shown as

(18)

where the basis matrices of element are obtained as

(19)

(20)

(21)

(22)

4. Numerical examples

4.1 Lid driven flow in a triangular cavity at Re = 105 

In this section, a lid driven flow of Re = 105 in a triangular cavity is considered. A horizontal

velocity (U = 1.0) is prescribed on the top side which length H = 1.0, while the no-slip boundary

condition is imposed on the other two sides. Biconjugate gradient solver is employed to solve this

system.

The mesh system and boundary conditions of computational domain are shown in Fig. 1, where

1310 unstructured elements are used to discretize the triangular cavity and the time increment is
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Fig. 1 Finite element mesh and boundary conditions
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0.01 for this prediction. 

Figs. 2(a) and (b) show the velocity vector and the streamline distribution in the triangular cavity

by present computation at t = 100 respectively. There is one main vortex in the middle due to the

boundary conditions of this problem. And in the left and down corners there are small and

disordered vortices showing the flow characteristics by LES. 

Figs. 3, 4 and 5 show the horizontal velocity (u) field, vertical velocity (v) field and pressure (p)

field at t = 100 predicted by present method and predicted without SUPG respectively. It can be

seen that the velocities and pressure fields by present method are very fluent, but those without

SUPG exist obvious numerical oscillations, showing that present method has good stabilization for

velocities and pressure fields than the normal method without stabilization strategy. 

4.2 Turbulent flow past a square cylinder at Re = 22000

Two dimensional (2D) turbulent flow past a square cylinder under Re = 22000 is simulated. The

Fig. 2 Velocity vector and streamline of fluid flow at t =100 for Re = 105

Fig. 3 Horizontal velocity (u) field at t = 100 for Re = 105
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same 2D and 3D numerical simulations are also predicted by Hasebe and Nomura (2009), as well

as Tutar and Celik (2007). The computational domain, boundary conditions and mesh system of

present study are shown in Fig. 6. The characteristic velocity (U) in streamwise direction from left

inlet and the characteristic length (H) of the square cylinder are both unit value. The distances

upstream and downstream of the square cylinder are 5H and 10H respectively while the width of

the region is 7H. Uniform mesh system with 5027 rectangle elements, which grid size is about

0.143, are used to discretize the computational domain. The uniform and coarse meshes applied

here are for the verification of the stabilization and the capability of yielding accurate prediction by

present method. And the time increment of 0.01 and total time of 500 are applied for the

computation. 

4.2.1 Flow patterns analysis

Flow past square cylinder at Re = 22000 is visualized by velocity vector, streamline distribution,

and vorticity distribution. Then streamwise (x-directional) velocity (u) fields, lateral (y-directional)

Fig. 4 Vertical velocity (v) field at t = 100 for Re = 105

Fig. 5 Pressure (p) field at t = 100 for Re = 105
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velocity (v) fields and pressure fields (p) based on the present prediction and the prediction without

SUPG are compared to verify the stability effect. 
Figs. 7(a), (b) and (c) show the velocity vector near the cylinder, the streamline distribution and vorticity

distribution of flow by present computation at t = 100 respectively. And Figs. 8, 9 and 10 show the
comparison of streamwise velocity (u) field, lateral velocity (v) field and pressure (p) field computed
by present method and by the method without SUPG at t = 100 respectively.

It can be seen that the separation of flow happens at the upwind corners where the strong

vorticities are produced, spread downstream and form vortex street behind the square cylinder with

clockwise and anticlockwise vorticity alternately. And the positive pressure exists on the front face

of the square cylinder, and the minus pressure (suction) exists on the side and rear faces of the

square cylinder. 

From Figs. 8, 9 and 10, it can be observed that the present method gains stable flow fields, while

the results without SUPG have obvious numerical oscillations, showing that the present method has

good stabilization for simulation of fluid fields even with coarse elements. 

4.2.2 Aerodynamic forces analysis

The periodic vortex shedding phenomena by separated flow past bluff body will cause fluctuation

of forces. Some of the parameters are used to characterize the flow behavior, such as the drag

coefficient Cd, lift coefficient Cl and the Strouhal number St defined as

(23)

(24)

Cd Fd 0.5ρU
2
H( )⁄=

C1 F1 0.5ρU
2
H( )⁄=

Fig. 6 Geometry, boundary conditions and mesh



Stabilized finite element technique and its application for turbulent flow with high Reynolds number 473

Fig. 7 Velocity vector and streamline of fluid flow at  t =100 for Re = 22000

Fig. 8 Streamwise velocity (u) field at t = 100 for Re = 22000

Fig. 9 Lateral velocity (v) field at t = 100 for Re = 22000
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(25)

where Fd and Fl are the drag and lift forces, T is the vortex shedding period.

Fig. 11(a) and (b) show the time history and the power spectrum of drag coefficient (Cd). It can

be seen that the fluctuation of the drag coefficient (Cd) has an unalterable mean value unequal to

zero and there are more than one key frequency components in the power spectrum of drag

coefficient (Cd). Figs. 12(a) and (b) show the time history and the power spectrum of lift coefficient

(Cl). Obviously it can be seen that the fluctuation of the lift coefficient (Cl) has a mean value equal

St H( ) UT( )⁄=

Fig. 10 Pressure (p) field at t = 100 for Re = 22000

Fig. 11 Time history and power spectrum of drag coefficient (Cd) for Re = 22000

Fig. 12 Time history and power spectrum of lift coefficient (Cl) for Re = 22000
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to zero and there is one main frequency component in the power spectrum of lift coefficient (Cl). 

The time-averaged ( mean ) and RMS ( root mean square ) values of drag coefficient (Cd) and lift

coefficient (Cl), and the Strouhal number St predicted by present computation are compared with the

results from others in Table 1. For the verification of mesh independence, the results from other two

cases are also shown. They are Case A containing 2775 rectangle elements with mesh size of 0.2,

and Case B with 11000 rectangle elements, which mesh size is 0.1. It can be seen that the present

method gains acceptable results compared with results from other researchers, and present

predictions would become worse with the coarseness of the meshes. 

4.2.3 Velocity fields analysis

The mean and RMS values of velocities at some typical positions are compared with the results

from other researchers. The time-averaged (mean) value of the streamwise velocity (u) downstream

of the square cylinder, along the plane of symmetry is compared with the numerical and experiment

data from other researchers in Fig. 13. It can be seen that present results get a fairly close to the

experiment data from Durao et al. (1998), which means that present prediction gets a right vortex

shedding phenomena behind the square cylinder compared with experimental and numerical results. 

The Fig. 14(a) and (b) show the RMS values of streamwise velocity (u) and lateral velocity (v)

along centerline, downstream of cylinder. The RMS value of streamwise velocity (u) by the present

method gets rough agreement with data from Lyn et al. (1995), but having a higher prediction in

the field of 2H < x < 4H downstream of cylinder, which means that present method has exorbitant

streamwise oscillation prediction in that field. The RMS value of lateral velocity (v) does not agree

well with Lyn et al. (1995) in the area far from the cylinder, which means that present method gets

exorbitant lateral oscillation prediction in the field of x > 4H. 

Fig.15(a) and (b) compare the mean and RMS values of streamwise velocity(u) distribution from

present results with data from others at the location 0.5H downstream of the leeward face of the cylinder.

It can be seen that both the mean value and the RMS value of the streamwise velocity (u) from the

present data agree well with the experimental data from Lyn et al. (1995) and Durao et al. (1998). 

Fig. 16(a) and (b) compare the mean and RMS values of lateral velocity(v) distribution from

Table 1 Comparison of vortex shedding parameters with results of other references

Computational
cases

Re St

Cd Cl

Mean RMS RMS

Present 2D LES FEM 22000 0.142 2.44 0.20 1.03

Case A 2D LES FEM 22000 0.147 2.02 0.11 0.87

Case B 2D LES FEM 22000 0.137 2.31 0.26 1.15

Jeong and Koh (2002) RNG k-ε FEM 22000 0.144 2.39 - -

Murakami and Mochida (1995) 2D LES FEM 22000 0.132 2.09 - -

Lee and Bienkiewicz (1998) 3D LES FEM 22000 0.134 2.06 0.33 1.214

Lyn and Rodi (1989) Exp. - 22000 0.135 2.14 - -

Durao et al. (1998) Exp. - 22000 0.139 - - -

Franke and Rodi (1993) 2D RSE FVM 22000 0.136 2.15 - -

Yu and Kareem (1997) 3D LES FDM 100000 0.135 2.14 0.25 1.15
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Fig. 13 Time-averaged streamwise velocity (u) along centerline, downstream of cylinder

Fig. 14 RMS values of streamwise velocity (u) and lateral velocity (v) along centerline, downstream of
cylinder

Fig. 15 Time-averaged and RMS values of streamwise velocity (u) profile



Stabilized finite element technique and its application for turbulent flow with high Reynolds number 477

present results with data from others at the location 0.5H downstream of the leeward face of the

cylinder. We can see that the mean value of the lateral velocity (v) from the present data doesn’t

agree well with the experimental data near the cylinder but with right trend. Present prediction gets

overestimate for mean lateral velocity in the field of y < 1.0H. And the present RMS value of

lateral velocity (v) profile agrees reasonably with the experimental results but with a little

discrepancy, which is acceptable compared with results form Lee et al. (1995).

Though there are differences between the experimental data and the results by present method, it

is obvious that present results get acceptable prediction and right trend with the experimental data

even with coarse mesh. And the present results could be closer to experimental data if finer mesh is

applied. Thus the stabilization of present method and the capability of yielding to accurate

prediction are testified. 

5. Conclusions

This paper presents a stabilized finite element formulation for large eddy simulation to predict

turbulent flow with high Reynolds number. In order to overcome the numerical oscillation caused

by traditional FEM for solving turbulent flow, the SUPG stabilized form is implemented with the

Smagorinsky sub-grid scale model to build the FEM weak equations of turbulent flow. And three-

step technique is applied for temporal discretization. Then lid driven flow at Re = 105 in a triangular

cavity and flow past square cylinder at Re = 22000 with coarse mesh are applied as numerical

examples. Results show that present method can effectively suppress the computational instabilities

of velocities and pressure fields, and yield to accurate prediction with coarse mesh for solving

turbulent flow with high Reynolds number. 
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CC

List of symbols

ui i directional velocity

p pressure

t time

v kinematic viscosity

vt turbulent eddy viscosity

Re Reynolds number

ρ density of fluid

k SGS turbulent kinetic energy

Sij strain rate tensor

h element volume size
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CS, Ck parameters of LES

δui velocity test function

nj normal unit vector 

σij stress tensor 

Γ computational boundary

Ω computational domain 

Ω e element domain

nel number of elements

τSUPG stabilized parameter of SUPG

he characteristic size of an element

ue characteristic convective velocity of an element

Ree Reynolds number of an element

β1, β2, z process parameters of SUPG

uiI i directional velocity of node I

pI pressure of node I

ΦI trial and test function of FEM

M, N, G, H, D, B basis matrices of element for momentum equation

S, Q, R, T basis matrices of element for pressure equation

U characteristic velocity

H characteristic length

u horizontal velocity

v vertical velocity 

Fd drag force

Fl lift force

Cd drag coefficient

Cl lift coefficient

St Strouhal number

T vortex shedding period




