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Abstract. Researches on the Reynolds number effect on bridge decks have made slow progress due to
the complicated nature of the subject. Heretofore, few studies on this topic have been made. In this paper,
aerostatic coefficients, Strouhal number (St), pressure distribution and Reynolds number (Re) of Great Belt
East Bridge and Sutong Bridge were investigated based on deterministic vortex method (DVM). In this
method, Particle Strength Exchange (PSE) was chosen to implement the simulation of the flow around
bluff body and to analyze the micro-mechanism of the aerostatic loading and Reynolds number effect.
Compared with the results obtained from wind tunnel tests, reliability of numerical simulation can be
proved. Numerical results also showed that the Reynolds number effect on aerostatic coefficients and
Strouhal number of the two bridges can not be neglected. In the range of the Reynolds number from 105

to 106, it has great effect on the Strouhal number of Sutong Bridge, while the St is difficult to obtain from
wind tunnel tests in this range.

Keywords: bridge sections, Reynolds number effect, particle strength exchange method, aerostatic coeffi-
cients, Strouhal number.

1. Introduction

As more streamlined decks and longer bridges are being built, the traditional practice of
neglecting the Reynolds number effect on bridge decks produces more and more engineering
problems. The Reynolds number effects on wind resistant design and analysis of large bridges are
complex issues. In conventional wind resistant design of bridges, wind tunnel tests are highly relied
upon, in which the similarity of the Reynolds number were often neglected. All parameters obtained
from wind tunnel tests can be affected by the Reynolds number. According to the study proposed by
Scanlan (Scanlan 1975), if the scale ratio is less than 1:300, more attention should be paid to the
Reynolds number effect. However, the scale ratios of full bridge models were greater than this value
even at that time. Before his death, he pointed out again that the Reynolds number effect should be
adequately addressed.
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Schewe is the first person who paid attention to the Reynolds number on bridge sections. In
1980s, Schewe (1983) made many researches of the Reynolds number effect on cylinder, as well as
H-type sections and bridge decks in pressure wind tunnel. He found the existence of the Reynolds
number effect on these kinds of sections. However, his research had attracted few attentions at that
time. Recently, Schewe did many studies on the Reynolds number effect on the shape of wake flow
around airfoil, cylinder and bridge deck (Great Belt East Bridge) (Schewe 2001). He found that the
Reynolds number effect affected aerostatic coefficients by its influence on the shape of wake flow.
Barré found the aerostatic coefficients of three section models of Normandy Bridge, whose scale
ratios are 1:10, 1:50 and 1:20 respectively, did not coincide to each other, especially for the curves
of lift coefficient vs. attack angle (Barré and Barnaud 1995). His conclusion was that those
differences were due to the Reynolds number effect. When Great Belt East Bridge was under
construction with 193 m deck completed, vortex excited vibration were observed. The difference
between the shape of deck under construction and that of section model was firstly suspected.
Afterwards, Larsen proved the existence of the Reynolds number effect in pressure wind tunnel tests
(Schewe and Larsen 1998). Great difference of vortex excited vibration amplitude of section model
tests with scale ratio of 1:20 and 1:80 was found in wind tunnel tests for Stonecutter Bridge in
Hong Kong, which were thought as Reynolds number effect too.

Enlightened by Roshko, Larsen carried out flow visualization experiments under different
Reynolds numbers (Schewe and Larsen 1998), when he was doing research on the Reynolds
number effect of Great Belt East Bridge. The height of wake flow after flow separation at different
Reynolds numbers was schematically plotted in Fig. 1. He found that, when the Reynolds number
was less than 4×105, the separation point was located before the transition point. The separated flow
will never re-attach, and the height of wake flow decreases with the increasing of the Reynolds
number, as well as the drag force coefficient. When the Reynolds number is greater than 4 × 105,
the separation point was located after the transition point. The separated flow will re-attach to the
bottom of deck, but will never secondary re-attach. The height of wake flow varies a little with
increasing of the Reynolds number, while the drag force coefficient decreases.

Experimental methods were found to be the best way to investigate the Reynolds number effect.
Nowadays, numerical methods are being utilized to discover the micro mechanism of the Reynolds
number effect. Vortex methods have been shown to be an attractive and successful approach for the
numerical simulation of incompressible fluid flow at high Reynolds number (Leonard 1980,
Sarpkaya 1989, Taylor and Vezza 1999, Walther and Larsen 1997, Zhou et al. 2003, Zhou and Chen
2006a, b). The basic idea of the vortex method for the simulation of viscous fluid flow is the
fractional method (viscous splitting algorithms). In actual numerical calculation, the Euler equations
are solved by using a vortex blob method and the viscous effect is simulated by a random walk or a
deterministic method. In 1973, Chorin (1973) overcame the problem of the singularity of point
vortex method by replacing the exact vorticity with the convolution of the vorticity with a cutoff

Fig. 1 Schematic diagram for the height of wake flow after flow separation vs. Re
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function, which approximates the delta function. Chorin also introduced the technique of random
walk to simulate viscosity. The random walk method is popular and has been successfully applied
to a number of situations. However, this method has large statistical errors occurred in the solution
of vorticity and the rate of convergence for this method is low, although the statistical error for
velocity is much smaller.

In recent years, several types of deterministic vortex methods have been proposed by Fishelov
(1990), Cottet (1990), Shankar and Van Dommelen (1996). Cottet proposed an alternative approach of
the core spreading algorithm, based on the analysis given by Degond and Mas-Gallic (1989): The
weights of vortex particles are changed at each time step without changing their positions such that
the conservation property of vorticity is satisfied. Unlike most vortex methods, Fishelov (1990) also
proposed a deterministic method in which the diffusion of vorticity is also approximated by changing
the particle weight rather than their positions and the vorticity field is approximated by using the
second-order derivatives of the Laplacian operator by explicit differentiation of the cut-off function.
In this way, Fishelov obtains much smaller numerical errors than for the random walk method.

Particle Strength Exchange (PSE) was developed from a different approach. Earlier work by
Choquin and Huberson (1989) and Cottet and Mas-Gallic (Cottet 1990) involved a viscous
splitting of the Navier-Stokes equations, with the diffusive component solved by means of a
convolution with the heat kernel. Degond and Mas-Gallic (1989) developed the method in greater
detail and presented a treatment for general convection–diffusion problems. They first approximate
the Laplacian by an integral operator and then discretize the integral by a quadrature over the
particles. Their techniques is now commonly known as PSE because of the conservation properties
that are inherent when two particles “exchange strength” with one another. Particle strength
exchange has been used extensively in vortex methods. The accuracy of the approach was
explored by Choquin and Lucquin-Desreux (1988) on model problems and compared with that of
the random walk method. Winckelmans and Leonard (1993) used the technique to account for
viscous diffusion in three-dimensional simulations of vortex rings. Koumoutsakos et al. (1994)
used it in conjunction with a wall flux treatment in their development of boundary conditions for
viscous vortex methods. Ploumhans and Winckelmans (2000) adopted the method to account for
particles of different core sizes and developed an image treatment near walls to remove spurious
vorticity flux.

In this paper, deck sections of Great Belt East Bridge and Sutong Bridge, seen in Fig. 2, were
investigated based on deterministic vortex method (DVM). The Reynolds number effect on aerostatic
coefficients and Strouhal number was studied. In DVM, particle strength exchange method was
chosen to treat viscosity diffusion. The reason for choosing these two bridge sections is that both of
them have wind tunnel test data under different Reynolds number (Schewe and Larsen 1998, Chen
2004). 

Fig. 2 Two box girder sections discussed in this paper (unit: cm)
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2. Mathematical format of particle strength redistribution method

2.1 Governing equations of vortex method and discretization of vorticity field

The kinematic relationship between the velocity field and the vorticity field is obtained by solving
the following Poisson equation

(1)

When the flow around solid configuration in motion, Eq. (1) may be formulated as an integral
equation, the generalized Biot-Savart integral

dS (2)

with,

where  is the free stream velocity, ns is the outward normal vector of the solid boundary, ƒ is
the fluid region and S is the solid boundary and uS(xS, t) is the solid velocity on the surface(S) at xS.

At the solid boundary, the fluid velocity u(xb, t) must be equal to the solid velocity (u(xS, t))

;   on S (3)

With,

where uh(xb, t) is the vertical velocity of the solid, Ω (t) is the rotational angular velocity and xc is
the center of mass.

At infinity we have
  when  (4)

In the discrete vortex methods, the vorticity field is considered as a discrete sum of the individual
vorticity fields of the particles, having core radius σ, strength Γ (t) and an individual distribution of
vorticity determined by the function fσ so that

(5)

where NV is total number of the vortex particle, which is described as vortex blob.

2.2 Applying non-slip boundary condition by viscosity splitting technique

Viscosity splitting technique is often used to solve convection and diffusion of vortices field of
flow. In this technique, step-by-step algorithm is employed to solve the convection item and
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viscosity item in Navier-Stokes equation. Correspondingly, applying non-slip boundary condition is
based on viscosity splitting technique.

2.2.1 Solving region integral equation by panel method

The generalized Biot-Savart integral Eq. (2) is valid for both the fluid domain (ƒ) and the solid
domain (B). Owing to the generation of the fluid vorticity in the boundary region, we introduce a
fluid layer, S+ adjacent to the solid surface, S. When the thickness of the fluid layer ƒs extend to
infinitesimal, it is convenient to introduce the surface vortex sheet (SVS) . As a consequence, we
have the following vector equation.

dS (6)

According to Eq. (6), we have the following vector equation for each vortex sheet  in discrete
form

(7)

where  is the velocity on the boundary of the solids at . Ns is the number of the solids.
The normal and tangential components of the vector Eq. (7) are the first Fredholm integral

equations in unknown  and its solution is not unique according to the nature of Fredholm
integral equation. The solution may be made unique by imposing a constraint based on the principle
of the conservation of total vorticity. According to the principle, the total vorticity does not change
with time.

(8)

where Ωj, Aj are the rotational angular velocity and the area of the j-th solid, respectively.
Using Eq. (5) in Eq. (8), in discrete form, the following equations can be obtained

(9)

  with  

where  is the total number of vortex blob during the k-th time step,  is the circulation of i-th
vortex blob at k-th time step, li,j is the length of the i-th boundary element on the j-th solid surface,
Mj is the total number of boundary elements on the j-th solid and  is the total circulation of
vortex blobs that have entered bodies and have been removed from numerical calculation during the
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(k-1)-th time step.
The principle of the conservation of the total vorticity is applied to each body; as a consequence,

the following equations can be obtained

     j = 1,2,···,Ns (10)

where  is total circulation of the vortex blobs entered j-th solid during the (k-1)-th time step.
In this paper, the normal component of Eqs. (6), (9) and (10) are solved by applying the least

square method.

2.2.2 High accuracy format for diffusion of boundary vortices

In this paper, vortex flux is applied to diffuse the boundary vortices to existed vortex blob, that is
to say, non-slip boundary condition is satisfied by changing the strength of particle. When vortex
sheet disappears from the surface of solids at the time of [t,t+δt], the circulation (Γ) in the region of
flow should be modified correspondingly. 

(11)

According the Kelvin rules, if the vortex flux is considered to be constant in a small time interval
δt, the following equation can be obtained.

(12)

In this paper, the circulation of particles is determined by a high accuracy boundary vortices
diffusion method.

(13)

in which, erfc(u) = , ierfc(s) = . When 0 <

xi < hi, hi,l/2 = xi. In other cases, hi,l/2 = hi/2. The first-layer particles can be made near or more
greater than h/2, which guarantees the convergence of this method. The circulation can be obtained
by integrating Eq. (13) in time history.

3. Solution to Navier-Stokes equation

Viscosity splitting technique is applied in solving Navier-Stokes equation. Viscosity splitting
technique is a method, by which the convection item and viscosity item is solved step by step in
one time step.
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3.1 Calculation of convection in vorticity field

Convection calculation in vorticity field is similar to solution to non-viscosity Euler equation.
When the vorticity field is discrete as Eq. (7), the velocity of vortex element can be calculated by
Biot-Savart integrating. Based on the Lagrange theory, convection calculation can be equivalent to
solving the following ODE equation set.

(14)

in which, , ;  includes

the influence of movement of bluff body. Kσ(r) is the kernel function of smooth velocity.
When Eq. (14) is directly solved, the computing times for one step has the magnitude of O(N2).

Here, N is the number of vortex element. In this paper, fast multipole method (Carrier et al. 1988)
is applied for convection calculation of vortex elements.

3.2 Vorticity diffusion calculation simulated by particle strength exchange method

The most fundamental rule for particle strength exchange method is replacing Laplace operator by
integral operator. If it is assumed that smooth function ζ meets a certain moment characteristics, and 

let Γi = ωiSi, convection function  can be written as

(15)

In actual practice, because of rapid decreasing of ζ, only particles near particle i will have obvious
influence on dΓi/dt. In order to reduce computing amount, only particles near particle i are
considered. The particle sets which have obvious influence on dΓi/dt are named as Di. If Gaussian
smoothing is applied, Di includes all particles with the distance of  less than 5σ.

(16)

4. Redistribution of particle strength

In order to simulate the diffusion correctly, every particle should be surrounded by other particles,
which can make easy exchange of their circulation by particle strength method. Except the initial
inhomogeneous distribution of particles, the internal features of Lagrange method are losing
overlapping and generating too many overlapping in flow with the growth of time. The main reason
for this phenomenon is that the deformation of flow makes particles in flow to gather in one
direction, and diffuse in the other direction, which leads to inhomogeneous distribution of particles.

dxi t( )
dt

-------------- ui x t,( ) U∞ t( ) uf xi t,( ) u0 xi t,( )+ + U∞ xi t,( ) uσ xi t,( ) u0 xi t,( )+ += = =
.

uf xi t,( ) 1
2π
------–

ω ' x ' xi–( )×
x ' xi– 2

-------------------------------- f 'd∫
f
∫= uσ xi t,( ) 1

2π
------– ΓjKσ xi xj–( )

j 1=
j i≠

N

∑= u0 x t,( )

∂ω
∂t
------- ν∇2ω=

Γi
n Γi

n 1– 2ν
σ2
------ ζσ

j 1=

N

∑ xi xj–( ) Γj
n 1– Si Γi

n 1– Sj–( )+=

xi

Γi
n Γi

n 1– 2ν
σ2
------ ζσ

j Di∈
∑ xi xj–( ) Γj

n 1– Si Γi
n 1– Sj–( )+≅



354 Zhiyong Zhou and Rujin Ma

In particle strength method, redistribution is an absolutely necessary step. 
In this paper, old particles are covered by newly mesh. What to do next is how to interpolate

locations of old vortex regions and deformed particles to new particles and new vortex regions.

(17)

If  and Γ represent new and old particle strengths, correct interpolating kernel can be determined as

(18)

Fourier transformation can be used to determine interpolating kernel. In this paper, interpolating
kernel Λ3 is applied, which keep the conservation of first moment, second moment and third
moment of vorticity. For the case of one dimension, Λ3 can be shown as Fig. 3.

(19)

5. Calculation of aerodynamic forces

When applying equation of moment of momentum at the boundary of bluff body, the form for
fixed coordinate is

(20)

According to assumption of simplification of boundary layer, the diffusion effect of vorticity in the

tangent direction of boundary can be neglected. Considering  and , in the
meaning of discretization, Eq. (20) can be rewritten as 
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In which,  is the strength of vortex sheet generated at the time of n∆t,  is
equivalent strength of the vortex sheet entering bluff body from time (n − 1)∆t to n∆t,  is the
acceleration in the tangent direction of i-th control point at the time of n∆t.

According to the discretization form of Eq. (21), the drag force, lift force and pitching moment
can be obtained by integrating the distribution of pressure along the surface of boundary. 

6. Reynolds number effect analysis

6.1 Parameters for PSE calculations

The parameters in different Reynolds number are listed in Table 1, and the reference dimension
for aerostatic force coefficients is the height of deck sections.

6.2 Reynolds number effect on force coefficients and Strouhal number

6.2.1 Great Belt East Bridge

Table 2 gives comparisons of drag coefficients and Strouhal number by PSE in this paper with
RVM (Zhou et al. 2003, Zhou and Chen 2006), RVM (Schewe and Larsen 1998), 2D FEM method
(Selvam 2000), 3D FEM method and experimental results. The curves of drag coefficient lift force
coefficient and pitching moment coefficient of Great Belt East Bridge varying with Reynolds
number is shown in Fig. 4. Fig. 5 gives contour plot of vorticity in flow. Fig. 6 gives the
comparison of contour plot of vorticity in flow between PSE and RVM.

γi n∆t( ) γi
a n∆t( )
asi

n

Table 1 Parameters for PSE calculation of Great Belt East Bridge and Sutong Bridge

Re
Number 
of SVS*

Time 
step

Grid 
spacing

Integration 
scheme

for convection

Integration
 scheme

 for diffusion

Integration scheme
for convection of
 surface vorticity

G
re

at
 B

el
t 

E
as

t
B

ri
dg

e

1E4 154 0.005 0.008 Euler Euler 3 points Gaussian

1E5 445 0.005 0.006 Euler Euler 3 points Gaussian

2E5 445 0.005 0.006 Euler Euler 3 points Gaussian

5E5 445 0.005 0.006 Euler Euler 3 points Gaussian

1E6 445 0.005 0.005 Euler Euler 3 points Gaussian

Su
to

ng
 B

ri
dg

e

2E5 208 0.007 0.01 Euler Euler 4 points Gaussian

5E5 208 0.007 0.01 Euler Euler 4 points Gaussian

6E5 208 0.007 0.01 Euler Euler 4 points Gaussian

8E5 208 0.006 0.01 Euler Euler 4 points Gaussian

1E6 208 0.005 0.005 Euler Euler 4 points Gaussian

1.1E6 208 0.005 0.005 Euler Euler 4 points Gaussian

1.2E6 208 0.005 0.005 Euler Euler 4 points Gaussian

1.4E6 208 0.005 0.005 Euler Euler 4 points Gaussian
*SVS, surface vortex sheet
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From the comparison of drag force coefficient with those obtained by Schewe and Larsen (1998),
it can be seen that the tendency of the results obtained by PSE approximate well to the experimental
results. Both drag coefficients decreases with Re. But the results by PSE are slightly higher than the
experimental results. From Fig. 4(a), it can be found that the results by PSE are approximate well to
experimental results with the Re ranging from 2 × 105 to 5 × 105. But the results by PSE are slightly

Table 2 Comparison of drag force coefficients and Strouhal number

methods PSE RVM RVM
(Walther)

2DFEM
(Selvam)

3DFEM
(Selvam)

Experimental results
(Walther)

Cd 0.1994 0.1936 0.179 0.35 0.236 0.19

St 0.152 0.167 0.190 0.236 0.17 0.17

Fig. 4 Aerostatic coefficients at attack angle of 0 deg vs. Reynolds number (Great Belt East Bridge)

Fig. 5 Contour plot of vorticity in flow by PSE (Great Belt East Bridge)
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smaller than experimental results with the Re ranging from 1 × 104 to 1 × 106. Small absolute value,
large volatility and unstable data of lift coefficient may be the reasons for the inconsistency. The
influence of the Reynolds number on lift coefficients is more complicated than that on drag force
coefficient.

Strouhal number is a non-dimensional number related to vortex shedding phenomena. The
Strouhal number is directly correlated to vortex induced vibration (VIV) lock-in wind speed.
Therefore, investigation of the Reynolds number effect on Strouhal number has significant
meaning to VIV lock-in wind speed. Strouhal number can be obtained by FFT transformation of
time history of aerostatic forces. For the deck of Great Belt East Bridge, the Strouhal number are
given in Fig. 7 and compared with experimental results. It can be seen that the results obtained by
PSE fit well with experimental results. The Strouhal number of the section increases with
Reynolds number. It can be concluded that the Strouhal number is highly affected by the Reynolds
number.

6.2.2 Sutong Bridge

Fig. 8 gives the curves of drag coefficient, lift coefficient and pitching moment coefficient of
Sutong Bridge varying with the Reynolds number. Fig. 9 shows the contour plot of vorticity in flow.
Fig. 10 shows instant flow pattern around the deck section. As shown in Fig. 8, drag force
coefficient of Sutong Bridge by PSE fit well with experimental results. Both of them decrease with

Fig. 6 Contour plot of vorticity in flow by PSE and RVM (Great Belt East Bridge)

Fig. 7 Strouhal number at attack angle of 0o vs. the Reynolds number (Great Belt East Bridge)



358 Zhiyong Zhou and Rujin Ma

Reynolds number, which is the same as the conclusion for Great Belt East Bridge. Meanwhile, both
the calculated results and experimental results show that lift coefficients increase with the Reynolds
number firstly, and decrease after its maximum value is arrived. Also it can be found that the
pitching moment coefficient varies with the Reynolds number significantly. 

Fig. 8 Contour plot of vorticity in flow by PSE and RVM (Sutong Bridge)

Fig. 9 Contour plot of vorticity in flow by PSE (Sutong Bridge)

Fig. 10 Instant flow patterns around the deck section (Sutong Bridge)
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For the deck of Sutong Bridge, the Strouhal number is give in Fig. 11. The same conclusion can
be made that the Strouhal number is also affected by the Reynolds number.

6.3 Reynolds number effect on pressure distribution

The pressure distribution of the deck cross section of Sutong Bridge at the attack angle of 0
degree is shown in Fig. 12. It can be found that the distribution of experimental values and the
calculated values of surface pressure is nearly the same. So we can make the conclusion that the
PSE can reproduce the wind tunnel test. 

Figs. 13 and 14 shows the distribution of pressure coefficient of the lower surface and upper
surface under different Reynolds numbers individually. For the lower surface, the pressure
coefficient gradually decreases to the minimum with the distance to the front edge increasing, where
it is called the first accelerated range. The position of the minimum remains almost unchanged, but
the minimum value varies with the Reynolds number. As the distance increase, the pressure
coefficient enters into the inverse-pressure gradient range, where the pressure increases and it is
called the first inverse-pressure gradient range. When the pressure coefficient reaches a certain
value, the pressure begins to decrease and the flow accelerates again. This section is called the
second accelerated range. But both the intensity and scope of this section are much smaller
compared to the first accelerated range. After the pressure coefficient passes the second minimum
value, the pressure coefficient will rise again until the end of the lower surface, where it is defined
as the second inverse-pressure gradient range.

The pressure coefficient distribution of lower surface and upper surface of the Great Belt East
Bridge is much similar to the one of Sutong Bridge, seen in Figs. 15 and 16. The pressure
coefficient distribution of lower surface of the Great Belt East Bridge can be divided into four

Fig. 11 Strouhal number at attack angle of 0o vs. Reynolds number (Sutong Bridge)

Fig. 12 The distribution of mean pressure coefficient (Sutong Bridge) (Re = 4 × 105, attack angle 0o, the experimental
values: solid line; the calculated values: circular points; both negative for the internal section)
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ranges as that of Sutong Bridge. But the pressure coefficient distribution of upper surface can be
divided into three ranges, which is different from Sutong Bridge. However, it is obvious to find that
the pressure distribution is highly affected by the Reynolds number, which leads to high dependency
of aerostatic coefficients and Strouhal number on the Reynolds number.

Fig. 13 The pressure distribution of lower surface of Sutong Bridge (the attack angle of 0o)

Fig. 14 The pressure distribution of upper surface of Sutong Bridge (the attack angle of 0o)

Fig. 15 The pressure distribution of lower surface of the Great Belt East Bridge (the attack angle of 0o)

Fig. 16 The pressure distribution of upper surface of the Great Belt East Bridge (the attack angle of 0o)
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7. Conclusions

In this paper, aerostatic force coefficients and Strouhal numbers of Sutong Bridge and the Great
Belt East Bridge at attack angle of 0o by PSE are investigated. Compared with experimental results
as well as results from some other literatures, it can be found that PSE is able to reproduce the
Reynolds number effect. From the varying rules of aerostatic force coefficients and the Strouhal
number of two deck sections vs. the Reynolds number, it can also be concluded that the Reynolds
number effect on aerostatic force coefficients and the Strouhal number should not be neglected.
Especially when Reynolds number is in the range from 105 to 106, the Strouhal numbers are
strongly influenced by Reynolds number. It can also be concluded that the pressure distribution is
highly affected by the Reynolds number, which leads to high dependency of aerostatic coefficients
and Strouhal number on the Reynolds number.
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