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Abstract. Synchronous wind-induced pressures, measured in wind-tunnel tests on model buildings
instrumented with hundreds of pressure taps, are an invaluable resource for designing safe buildings
efficiently. They enable a much more detailed, accurate representation of the forces and moments that
drive engineering design than conventional tables and graphs do. However, the very large volumes of data
that such tests typically generate pose a challenge to their widespread use in practice. This paper explains
how a wavelet representation for the time series of pressure measurements acquired at each tap can be
used to compress the data drastically while preserving those features that are most influential for design,
and also how it enables incremental data transmission, adaptable to the accuracy needs of each particular
application. The loss incurred in such compression is tunable and known. Compression rates as high as
90% induce distortions that are statistically indistinguishable from the intrinsic variability of wind-tunnel
testing, which we gauge based on an unusually large collection of replicated tests done under the same
wind-tunnel conditions. 

Keywords: wind tunnel testing; data compression; pressure taps; wind loads; bending moments; wavelet
representation; wavelet thresholding; extreme values.

1. Introduction

To design buildings capable of withstanding specified wind effects, while minimizing construction

costs and materials consumption, requires measuring aerodynamic pressures in specialized wind

tunnels that simulate atmospheric flows, and then deriving the corresponding forces and bending
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moments that are induced in the building’s structure. 

Since those pressures are highly variable in time and space, not only do the model buildings used

in these wind-tunnel tests typically have to be instrumented with hundreds of pressure taps, but the

periods of wind-on also have to be sufficiently long to capture all the characteristics of the airflow

likely to impact building performance. 

These wind-tunnel tests typically generate datasets so large that their storage and transmission is

challenging for many potential users. However, enabling use of digital wind-tunnel data, as opposed

to the conventional pressure tables and plots included in engineering standards and codes, which in

many cases have been developed from measured data merely based on informed judgment rather

than on rigorous analysis, is key to designing safe buildings efficiently. 

Recent calculations (Coffman, et al. 2009, Ho, et al. 2005, St. Pierre, et al. 2005) have shown that

differences between bending moments induced in knees of portal frames by pressures specified for

low-rise buildings in the ASCE 7 Standard on the one hand, and by pressures measured at the

University of Western Ontario on the other, can be as high as ±50%. These differences arise in large

part because code values summarize vast numbers of quantitative measurements into just a few

values, which inevitably distorts the representation of the aerodynamic pressures, and can result in

significant over-or underestimation of the effects that the actual pressures induce. 

Therefore, to avoid the induced distortion of reality, one should strive to use the measured

pressures directly in the process of building design, instead of relying on overly reductive surrogates

thereof. Data storage and computational capacities have now advanced to a degree that makes this

approach practical. This was recognized by the ASCE 7 Standard committee, which already allows

the direct use of measured aerodynamic data in design and is expanding access by designers to large

aerodynamic pressure databases. 

The National Institute of Standards and Technology (NIST) has commissioned a database of

aerodynamic pressures, covering low-rise industrial buildings of various dimensions, from the

University of Western Ontario, which is available at http://www.nist.gov/wind. NIST is also developing

plans for the massive extension of this database. And software has been developed (Main 2007) that

facilitates use of the database to design a wide class of structures, and that includes an automated

procedure for interpolation between existing datasets so that the existing information can also be used

to design buildings whose dimensions are intermediate between those documented in the database.

Wind-tunnel testing of a single model building can easily produce upwards of a billion individual

measurements. Their sheer size may create substantial challenges to their transmission and analysis.

Therefore, it is worthwhile to seek methods that (i) facilitate the storage and transmission of such data,

(ii) enable the detection and selective use of those portions of the data that are most relevant to building

design, and (iii) allow assessing and explicitly controlling the errors inherent in the calculations.

The purpose of this paper is to report on the development of data reductions based on wavelet

theory. While wavelets have been used in thousands of applications in numerous fields, including

civil engineering and wind engineering, their application in support of aerodynamic database-

assisted design is new. The paper explains how the compression scheme it proposes facilitates

incremental data transmission tailored to the accuracy requirements of engineering design. 

Some background is provided on wind-tunnel testing, the calculation of internal forces from the

aerodynamic database, and a characterization of the uncertainties inherent in the calculation of the

internal forces. A description of a proposed approach to data compression is then presented, and

errors inherent in that approach are discussed within the context of the overall errors in the

calculation of the engineering quantities of interest. 
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2. Wind-tunnel testing 

Fig. 1 shows a typical wind tunnel model instrumented with pressure taps. For each wind

direction (or, equivalently, the model being placed on a rotating table, for each orientation of the

model with respect to the mean flow velocity), records are taken of the simultaneous time histories

of the pressures at each tap. The data obtained from a rigid model with one specific geometry can

be used for different structural systems: for example, hinged support, fixed support, or 3-pin-jointed

frame. Furthermore, the ratio of the stiffness of rafter and column may be varied. 

To achieve similarity between the wind tunnel modeling and the prototype situation it is desirable

that the ratio between the geometric scales in the wind tunnel and in the prototype be equal to the

geometric model scale. In our case the model scale was 1:275, and the integral length scale at

building height of 40 mm is 350 mm. Achieving such a ratio of integral turbulence scales is

difficult; however, a ratio that is two to three times smaller than the corresponding geometric scale

is commonly accepted. 

The data used in this study consists of measurements of pressures at 18 taps placed along the

center bay of a low-rise building model, made in the wind-tunnel of Ruhr-Universität Bochum

(Bochum, Germany) (Kasperski, et al. 1996), sampled at 1600 Hz, over 100 time periods, each

equivalent to 1 full-scale storm-hour, and all with the same wind-flow direction. The building had

height h to span d ratio h/d = 0.4, with full-scale size h = 11 m, and roof slope 5o (Fig. 2). 

The responses are bending moments at the knees of a steel portal frame with hinged supports. The

stiffness of the frame’s rafter was assumed to be equal to the stiffness of the two columns. All

pressures are normalized with respect to the mean velocity pressure at height h. The bending

moments are obtained as follows: M = ½ρν
2 CMh2d, where ρ, ν, CM, h and d denote the specific

mass of air, the design velocity, the non-dimensional moment coefficient, the eave height, and the

distance between frames, respectively. If ρ, ν, h, and d are expressed in kg/m3, m/s, m, and m,

respectively, then M is expressed in Nm. 

Each series of measurements made at each tap in the course of a single wind-tunnel run

(equivalent to 1 full-scale storm-hour approximately) comprises 49,152 Cp values: in each such run

the fan was started and adjusted to the appropriate velocity, pressures were measured, and then the

fan motor was stopped. Since there are 18 taps and 100 such runs, the whole dataset comprises

88,473,600 values, consuming about 675 megabytes of electronic storage space. 

Fig. 1 Wind tunnel model. Constructed of Plexiglas, instrumented with pressure taps, and showing the
corresponding tubing that connects them to differential pressure transducers.
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The time series have all been filtered digitally because, in the wind tunnel, the pressure sensors

will measure not only the pressure fluctuations which are induced by the velocity fluctuations, but

also the effects of any acoustic noise in the tunnel. For model tests on low-rise buildings, the noise

in this particular tunnel is fairly large relative to the signal. There are several sources of noise: a

standing wave in the wind tunnel, which gives an isolated peak in the frequency content; the motor

and mechanisms that drive the fan; and the fan itself. 

By and large, the noise contributions can be classified into two categories. The first comprises low

to mid-frequency components with amplitude that remains approximately constant over the tunnel’s

cross-section: their contributions are eliminated during data pre-processing by measuring the

pressure on the floor and subtracting this measured value from all the measurements made by the

pressure taps on the model building. Although this removes the low-frequency and most of the mid-

frequency noise, it exacerbates the high-frequency components of the noise. 

The noise from the fan dominates the second category. The corresponding pressure fluctuations

are synchronized with the fan’s rotation, and can be described by a combination of harmonic and

probably sub-harmonic waves. The amplitude of this noise component depends on the distance

between the taps and the fan’s axis, and on the fan’s upstream distance to the taps. 

The most efficient way of removing the fan noise is to have sound absorbers around the fan.

Since this tunnel does not have such insulation, a digital filter was applied instead. 

3. Internal forces & bending moments 

Internal (shear and axial) forces and bending moments result from internal stresses at various

cross-sections of structural members, and are produced by external loads applied on the building of

interest. This note considers only wind-induced loads. At each time t the wind induces at each

pressure tap a wind force approximately equal to the pressure at that tap multiplied by the tap’s

tributary area. 

Fig. 2 Test Frame. Schematic arrangement of 18 taps along the center bay of a low-rise building model with
h/d = 0.4, where h = 11 m in full scale, and roof slope 5o.
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If the structure is linearly elastic, for any specified cross-section of a structural member the

internal force at time t is approximately equal to the sum, over all taps affecting that member, of the

wind forces acting at the taps multiplied by the respective influence coefficients (an influence

coefficient is the internal force induced at the cross-section under consideration, by a unit force

acting at a tap in a direction normal to the building envelope). 

For design purposes, it is the peaks (up or down) of the time series of the internal forces that are

of primary interest. The probability distributions of the peaks can be obtained using the methods

discussed under item III-B at www.nist.gov/wind, for example. Rigato, et al. (2001), Simiu and

Miyata (2006), Main and Fritz (2006), and Duthinh, et al. (2008) describe methods to account for

the effects of wind directionality at a site. 

For our test conditions, as illustrated in Fig. 2, the ratio between (a) the bending moment at time t

during wind-tunnel run i=1,..., 100, and (b) the velocity pressure for each of the two knees of the

frame, is obtained as , where Cp(i, j, t) denotes the value of the pressure

coefficient measured at time t by tap j in the ith run, and I( j) is the influence coefficient for tap j on

the particular knee of interest. 

4. Variability of bending moments 

The values of the bending moments vary both within each run, and between runs. The between-

runs variability provides a standard against which one should assess the severity of any loss of

information that a data compression scheme may incur: indeed, if the compression is lossy (that is,

some information gets lost in the process), but the corresponding degradation of the signal that

results from a compression-uncompression cycle is comparable to the variability between-runs, then

the degradation arguably is practically insignificant. 

This variability, which is due to the vagaries of wind-tunnel testing, provides only a lower bound

on the uncertainty of the bending moments. Other participating sources of uncertainty (whose

contributions we will not attempt to quantify in this study) include: the analog-to-digital converter,

the measurement of the reference pressure, the determination of the tap locations, and the

computation of the influence coefficients. 

To begin to quantify the components of variability of the bending moments that are attributable to

the vagaries of wind-tunnel testing, we fitted a linear, Gaussian mixed-effects model (Pinheiro and

Bates 2000) to the 15% trimmed mean of the values of the bending moment over each interval of

duration 1 full-scale minute (comprising 819 measurements), at each knee of the frame separately.

(The 15% trimmed mean of a batch of numbers is obtained by discarding the smallest 15% and the

largest 15% of the batch, and then averaging the rest.) The models were fitted to the data using

function lme of the nlme package (Pinheiro, et al. 2008) for the R environment for statistical

computing (R Development Core Team 2008). 

We chose that summary statistic, the 15% trimmed mean, rather than the average or the median,

to strike a felicitous compromise between resistance to outliers and most efficient summarization of

the information in the data, and to ensure compliance with the assumptions that validate the

statistical analysis just mentioned. (Different but nearby values of the trimming percentage lead to

similar results.) 

The between-run variability was about 5 times larger than the within-run variability at one of the

frame’s knees, and it was about 2 times larger at the other. At both knees, the component of the

Σj=1

18
Cp i,j,t( )I j( )
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standard uncertainty corresponding to between-run variability amounted to about 2.5% of the typical

value of the bending moment. And if the analysis focuses on the maximum absolute value of the

bending moment over the same 1 full-scale minute intervals, then this becomes 5.5%. 

Since this is a lower bound on the uncertainty, any distortion resulting from data compression that

is comparable to this uncertainty is inconsequential. 

In our opinion, an error of approximately 5% due to the data compression is therefore acceptable.

Parenthetically we note that an international comparison of wind tunnel estimates of wind effects on

low-rise buildings (Fritz, et al. 2008) shows that the peak moments in a frame section near the knee

joint typically varied by more than 10% when the same structure was tested in different tunnels. 

5. Representation 

The sheer volume of data that wind-tunnel testing typically generates poses a challenge to the

dissemination and practical use of the invaluable information that they hold. Data compression

should alleviate the difficulties that these datasets create, but only if it manages to reduce data

volume by more than one order of magnitude, while still preserving the features of the time series

of pressures that are critical for building design: in particular, the largest excursions in value that are

likely to induce extreme values of the internal forces and bending moments that act upon the

supporting structures. 

In addition, it is desirable that the compression mechanism should data transmission by allowing

meaningful discretization and stratification of the information in the data: in other words, the

representation of the compressed data should be such that it comprises mutually orthogonal packets

whose natural ordering is such that successive packets merely refine what preceding packets have

conveyed already. In this way, it is possible to increase the accuracy of the signal’s representation

incrementally, as circumstances may demand, without having to retransmit what has been sent

already. 

The test that is the focus of our attention here is of modest size, when compared with wind-tunnel

tests of model buildings that are instrumented with hundreds of taps, measuring pressures at high

data rates (500 Hz being typical): modest as it may be, already it produced about 88 million

measurements of Cp. 

Fig. 3 shows a segment of the time series of Cp values measured at tap 3, close to the end of run

48. The pattern that it exhibits is fairly typical: the fluctuations do not suggest any obvious

periodicity, and are dominated by occasional sharp spikes (up or down) of very short duration,

against a background of oscillations that may drift over time, in level, amplitude and frequency. 

On the one hand, since the pressures measured by the taps are integrated to compute forces and

moments, any compression procedure must preserve the phase relations between the signals

measured by different taps. On the other hand, some signal loss may be tolerable because only the

largest pressure excursions are likely to induce extreme forces and moments, which drive the design

of the building’s structure. 

The discrete Fourier transform (Percival and Walden 1993, Oppenheim, et al. 1999) affords a

representation that certainly possesses the orthogonality alluded to above, whereby the signal is

decomposed into sinusoidal oscillations of different frequencies (and amplitudes, and phases). It

does, however, suffer from two shortcomings in the context of our application: (i) if the signal is

not stationary, then the Fourier representation may require an unwieldy large number of sinusoidal
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components; (ii) if the signal is markedly non-periodic, possibly displaying occasional spikes, then

the Fourier transform similarly struggles to represent these temporally isolated occurrences. 

The wavelet representation (Mallat 1989), instead, seems tailor-made for our situation because it

naturally adapts to signals with patterns that are prevalent in our data. It achieves this by using a

functional template (the so-called mother wavelet) that it then dilates and translates to produce a

collection of basis functions for the signal, in a manner that parsimoniously represents features that

are localized in time, and whose frequency content also lies within particular, narrow bands −

(Percival and Walden 2000, Gençay, et al. 2002). 

Fig. 4 shows the components of an additive decomposition (multiresolution analysis (Percival and

Walden 2000)) of the time series of Cp values depicted in Fig. 3: each of those components is a

projection onto the wavelet basis, and reveals how this time series varies at a particular scale. The

decomposition was computed using function mra of the package waveslim (Whitcher 2007) for the

R environment for statistical computing (R Development Core Team 2008).

The wavelet representation possesses these distinctive attributes: (i) a very small number of

coefficients suffice to delineate the principal features of the time series, even when this series is far

from stationary; (ii) the components that it produces can be transmitted and added in sequence until

the cumulative sum achieves the required representational accuracy. The first allows very efficient

compression, and the second makes the compression process tunable (that is, one can choose the

target compression ratio). 

Fig. 3 Cp Fluctuations. Trace of 1,024 consecutive Cp values measured at tap 3, close to the end of run 48,
shows a typical pattern: the fluctuations have no obvious periodicity, and are dominated by occasional
sharp spikes (up or down) of very short duration, against a background that may drift over time.
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6. Compression

The discrete wavelet transform of a time series of Cp values is defined by the mother wavelet, and

by the corresponding wavelet coefficients (of which there are as many as there are data points in the

series). The preceding discussion of multiresolution analysis suggests that a simple compression

scheme amounts to treating as zero all wavelet coefficients whose absolute value is smaller than a

suitably chosen threshold τ > 0: then all one needs to keep are the values of those coefficients that are

greater than t in absolute value, and also the indexes that indicate their position in the sequence of

coefficients. Thresholding (Donoho and Johnstone 1994) has been widely used in many applications,

including in structural engineering (Gurley and Kareem 1999). Our compression procedure consists

of the following two steps, which must be applied to the series of Cp values measured at each tap:

• Step 1: Compute the discrete wavelet transform of the data series, using a selected mother

wavelet and a specified number of levels of detail for the corresponding multiresolution analysis,

and adopting a particular policy to deal with boundary effects (we use periodic boundary

conditions throughout this study); 

• Step 2: Define the threshold τ as the 100(1-2α)th percentile (for 0 < α < ¼) of the absolute

values of the wavelet coefficients, and set all wavelet coefficients to 0 whose absolute value is

less than or equal to τ. 

Fig. 4 Multiresolution analysis of Cp series. Additive wavelet decomposition of the time series of Cp values
depicted in Fig. 3, computed using function mra of the package waveslim (Whitcher 2007) for the R
environment for statistical computing (R Development Core Team 2008). The discrete wavelet
transform used the Haar wavelet (Daubechies 1992) and periodic boundary conditions (Gençay, et al.
2002), and the analysis was carried out to depth 2: this expresses the observed Cp values as the sum of
a “smooth” (s3) and two levels of “detail” (d1 and d2). The four panels have the same vertical scale,
which is labeled in Fig. 3. 
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The compressed series is then stored as its τ-thresholded wavelet representation, which comprises

the non-zero wavelet coefficients, and their indexes (so that one will know where the non-zero

coefficients should be placed in the sequence of wavelet coefficients that otherwise are 0, prior to

reconstructing the series via the inverse wavelet transform): the effective compression rate is 100(1−

α)%.

Fig. 5 shows the result of reconstructing the series with 1,024 measurements depicted in Fig. 3

after 90% compression using the procedure just described, where the discrete wavelet transform

consisted of 1 “smooth” and 9 levels of “detail”, and was computed with Daubechies (1992) least

asymmetric wavelet LA(20) and periodic boundary conditions (Gençay, et al. 2002). Since only 52

of the original 1,024 wavelet coefficients are greater than τ, the effective compression rate is 1-

(2×52/1,024) ≈ 90%: the factor 2 that multiplies 52 accounts for the fact that, to perform the

reconstruction, one needs to know not only the values of the non-zero wavelet coefficients, but also

their positions in the vector of wavelet coefficients. Table 1 is included for the reader’s convenience

and presents the core of the corresponding compression procedure, as implemented in the R

environment for statistical computing and graphics (R Development Core Team 2008) − comparably

concise implementations are viable in other computational environments. 

Fig. 5 Reconstruction of Cp series after compression. The black line depicts the same series of 1,024 Cp values
that was introduced in Fig. 3, and the red line depicts the series that obtains after compression and
reconstruction from the compressed series, performed as explained in §6. In this case, the effective
compression rate was 90%, the maximum reconstruction error was 0.25 (13% of the maximum Cp

value), and the root mean squared reconstruction error was 0.078 (4% of the maximum Cp value).
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7. Performance assessment 

The LA(20) mother wavelet was selected for the illustration presented in §6 because it

outperformed many other alternatives in a comparative study that assessed the maximum absolute

error and the root mean square error in the reconstructions that they produced, for a 90%

compression ratio. 

However, in the context of database-assisted design the performance that matters is not so much

the fidelity with which series of Cp values can be reconstructed from compressed data, but much

more the accuracy that the compressed data achieve in reproducing the values of internal forces and

bending moments. 

Fig. 6 shows the extreme values of the moments observed over intervals of duration 20 full-scale

minutes that correspond to the measured pressures, and to the pressures reconstructed after 90%

compression. 

The ordinates of the (blue) open circles are values of extreme moments corresponding to the

measured pressures, and the ordinates of the (red) dots are values of the extreme moments

corresponding to the pressures reconstructed after compression. The abscissae are the expected

values of a sample of the same size, drawn from a generalized extreme value (GEV) distribution

(Johnson, et al. 1995) fitted to the extreme moments corresponding to the measured pressures. Since

the parameters of the best fitting GEV distribution are different before and after compression, the

abscissae of the (blue) open circles typically are different from the abscissae of the (red) dots in the

same panel.

The light-gray envelopes were built via Monte Carlo sampling, so that, with very high probability,

99.5% of the samples of the same size as those under consideration, and drawn from the best fitting

GEV distribution, should yield points lying inside the envelope. Therefore, if the (red) dots lie

between the upper and lower gray curves, then this suggests that the compression induced distortion

that is statistically insignificant. This is obviously not the case for the minima at knee 1: here,

however, the GEV model does not provide a good fit either to the moments corresponding to the

measured, or to the compressed data. 

The GEV includes the Gumbel, Fréchet and reversed Weibull distributions as special cases. For

the maxima, the best fitting models were Gumbel, and for the minima they were reversed Weibull.

The computations required to find the best-fitting GEV, using the method of maximum likelihood,

Table 1 R (R Development Core Team 2008) Implementation of tunable compression. The time series of Cp

values is in vector y, depicted in both Figs. 3 and 5. Line 1 loads the waveslim R package (Whitcher
2007). Line 2 computes the discrete wavelet transform using Daubechies (1992) least asymmetric
wavelet LA(20) and periodic boundary conditions (Gençay, et al. 2002). Line 3 computes the threshold
t corresponding to the target compression ratio of 1-[2×(1−0.95)]=90%. Line 4 sets all the wavelet
coefficients to 0 that are less than τ in absolute value. Line 5 applies the inverse discrete wavelet
transform to the result, producing the time series ys reconstructed from the compressed data, which Fig.
5 depicts alongside y

1 library(waveslim)

2 y.dwt = dwt(y, wf="la20", n.levels=9, boundary="periodic")

3 tau = quantile(abs(unlist(y.dwt)), probs=0.95)

4 for (jL in 1:nL) {y.dwt[[jL]][abs(y.dwt[[jL]]) < tau] = 0}

5 ys = idwt(y.dwt)
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and to find the corresponding expected order statistics that are used as abscissae for the plots, all

were done using facilities provided by package evd (Stephenson 2002) for the R (R Development

Core Team 2008) programming environment for statistical modeling, data analysis, and graphics. 

The maxima at knee 1 and the minima at knee 2 are decisive for the engineering design. The

compression error is less than 5% for 98% of the maxima at knee 1, and for all of the minima at

Fig. 6 Extreme bending moments before versus after compression. The ordinates of each plot are the observed
extreme bending moments (in kNm) per unit of pressure (in kN/m2) and unit of distance between
frames (in m), for 20-min (full-scale) intervals. The abscissae are the expected values of a sample of the
same size, drawn from a generalized extreme value (GEV) distribution fitted to the (blue) open circles,
which correspond to the measured pressures. Since the parameters of the best fitting GEV distribution
are different before and after compression, the abscissae of the (blue) open circles typically are different
from the abscissae of the (red) dots in the same panel. The (red) dots correspond to the pressures
reconstructed after 90% compression. The light-gray envelopes should enclose 99.5% of the samples, of
the same size as those under consideration, that are drawn from the best fitting GEV distribution.
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knee 2 (in Germany, for example, a deviation of 5% of the total design value is widely accepted). 

The largest discrepancy between original data and data reconstructed after compression occurs for

the largest maxima at knee 2. It just so happens that, in this case, the maxima at knee 2 are not

decisive drivers for design. However, even if they were critical, the corresponding design driver

would not be the largest of the maxima (whose uncertainty typically is extremely large) but the 80th

percentile of such maxima, for which the compression-reconstruction cycle induces a difference of

less than 5% relative to the corresponding value for the uncompressed data.

Also, as Fig. 6 shows, the samples of extreme moments corresponding to the compressed data are

statistically indistinguishable from samples drawn from the GEV distributions that best fit the

samples of extreme moments corresponding to the measured, uncompressed pressures.

8. Conclusions 

For the reasons pointed out in §5, wavelet representations are better suited to approximate the

characteristics of time series of pressure measurements that are likely to be consequential for

building design than Fourier representations: in particular because the fluctuations in pressure tend

not to suggest any obvious periodicity, and are dominated by occasional sharp spikes (up or down)

of very short duration, against a background of oscillations that may drift over time, in level,

amplitude and frequency. 

Wavelet representations offer two important benefits: (i) drastically compressing wind tunnel data

in a manner that preserves those features in the data that are most influential for building design;

and (ii) facilitating incremental data transmission, in a way that is adaptable to the accuracy needs

of each particular application. 

Each series of measurements of pressure at each tap is compressed by replacing with zeros the values

of all the wavelet coefficients whose absolute value is less than a particular threshold level, which is

chosen to achieve a desired compression ratio. Once the intrinsic uncertainty of the Cp measurements is

taken into account, which we have done based on replicated measurements made in the same tunnel,

and on the results of an international intercomparison of wind-tunnel measurements, we show that

wavelet-based compression by as much as 90% does not introduce significant distortion, relative to the

complete wind-tunnel data, in the values of the bending moments that drive building design.
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