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Analysis of light-frame, low-rise buildings
under simulated lateral wind loads
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Abstract. The Monte Carlo procedure was used to simulate wind load effects on a light-frame low-rise
structure of irregular shape and a main wind force resisting system. Two analytical models were studied:
rigid-beam and rigid-plate models. The models assumed that roof diaphragms were rigid beam or rigid plate
and shear walls controlled system behavior and failure. The parameters defining wall stiffness, including
imperfections, were random and included wall stiffness, wall capacity and yield displacements. The effect of
openings was included in the simulation via a set of discrete multipliers with uniform distribution. One and
two-story buildings were analyzed and the models can be expanded into multiple-floor structures provided
that the assumptions made in this paper are not violated.
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1. Introduction

In the United States, over 95% of all residential structures are designed as light-frame buildings.

The majority of these types of structures is designed as low-rise buildings with a maximum of two

stories. Wood-stud frame systems are used in over 90% of the designs. Due to their low masses, the

light-frame buildings (LFB) perform well under a short-term dynamic load such as an earthquake

but are vulnerable in high winds where significant structural damage is a concern, mainly in

hurricane-prone regions. Strong winds can be destructive for LFBs, due to their low masses and

limited resistance to negative pressure components. After Hurricane Andrew (Cook and Soltani

1994), national codes in the US reflected on lessons learned and adopted guidelines governing the

construction of LFBs and prescriptive bracing requirements (IRC 2006). Bracing requirements are

geared toward providing lateral resistance of the entire structure, are based on shear wall

performance and the lowest bracing requirements cover areas with wind speeds at or below 44.7 m/s
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(100 mph) and seismic categories defined as A and B (IRC 2006). This requirement may have an

adverse impact on residential structures located in areas with lower-than 44.7 m/s wind speeds and

low seismicity. While the building code requirements are a positive step to ensuring safety, the

nature of these prescriptive requirements is not entirely clear; the requirements are based on a

tributary area approach, simple rectangular building shapes and a deterministic analysis - see Kasal

and Crandell (2007).

Laboratory experiments have shown that analytical modeling of wind-induced, structural response

of LFBs is possible (Kasal, et al. 1999, and Pavere, et al. 2003). The deterministic models showed

acceptable predictive power and reasonable estimates of load paths (Kasal, et al. 1999, Pavere, et al.

2003, Collins, et al. 2005a,b). An approach to combining stochastic and deterministic analyses had

been proposed, but no sufficient experimental data existed to explore the applicability of it to the

analysis and design of LFBs (IRC 2006). 

The wind loads on low-rise buildings have been simulated using mostly wind tunnel

experiments; little information is available from in-situ full-scale tests. Data from instrumented

full-scale LFBs tested in Canada will permit further verification of deterministic models and will

allow for the validation of scaled wind tunnel experiments, as it is shown in Smith and Kasal

(2004). Recently, database-assisted design (DAD) has been proposed by Whalen, et al. (1998a,b),

in which time histories of pressures that are measured at a large number of points on the structure

envelope are used to simulate the response of a structure over a given period of time - see Sadek,

et al. (2004). The known problem with low-rise structures is that the spatial pressure distribution

is affected by the surrounding terrain and the building response is non-Gaussian, as indicated by

Sadek and Simiu (2002). The authors report that using one hour sample records to estimate the

peak responses has high variability and propose using the entire data sets contained in the time

series. They used a probability plot correlation coefficient (PPCC) method and proposed Extreme

Value Type I (Gumbel), Reverse Weibull and Gamma distributions to model the largest response

peaks. The aerodynamic databases, as reported e.g. by Whalen, et al. (1998b) were successfully

applied to main wind force resisting systems (MWFRS) (portal frames) analysis. The most recent

work by Hanzlík, et al. (2005) shows that building orientation and wind effects can be

successfully modeled with the DAD approach. Corotis and Dougherty (2004) studied wind

records from 5 different locations and used 6 different types of distributions and the peak-over-

thresholds approach to calculate the expected wind speeds for different return periods. They

concluded that the calibrated probability distributions, even if filtered, were unreliable even for

short return periods.

Rosowski and Cheng (1999a, b) studied the reliability of roof systems in high-wind regions. They

used the Extreme Value Type I distribution to describe wind speed and the ASCE 7-95 (2005) and

7-93 standards and a tributary area approach for spatial pressure distribution. Properties of panel-to-

frame connections were random. Although the analytical model that was used in this study has not

been described, the work represents an interesting insight into roof performance, even if the load

sharing and redistribution has not been fully accounted for. Pinelli, et al. (2004) presented a

probabilistic framework for annual damage estimation resulting from windstorms using the Monte

Carlo simulation that related probabilistic loads and resistances. Five basic damage modes were

defined that included roof sheathing and roof-to-wall connections. The structural engineering

analysis and Monte Carlo simulations were identified as critical issues. The structural models were

identified as one of the key components of uncertainties. 
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2. Simplified analytical models

Analytical models are frequently used to simulate the expected behavior of a system and can have

different varying degrees of complexity. More complex and computationally demanding models,

presented e.g. by Collins, et al. (2005a, b) or Kasal, et al. (2004) yield more accurate results but are

not particularly suitable for stochastic analyses where computational efficiency is critical. The

common feature of complex models is that they are relatively inefficient, slowly converging and

relatively difficult to develop, due to their complex geometries. Complex numerical models are, in

most cases, not suitable for stochastic analyses since no closed-form solutions exist. However,

complex models can yield information about local behavior and failure modes. Such level of

accuracy is usually lost in simplified models. Simplified analytical models are needed to obtain a

reasonable estimate of statistics needed to describe failure probability. Model accuracy and correct

load representation constitute two fundamental problems in the simulation procedures. 

The model must be computationally efficient to permit repeated analyses. This generally requires

significant simplifications of the complex geometries, material and connection properties. Such

simplifications may result in a loss of predictive power of the physical behavior. The accuracy of

various simplified analytical models of LFBs has been discussed in the work of Kasal, et al. (2004) and

compared with the full-scale experiments. A loss of information resulting from model simplification was

demonstrated and quantified.

The LFB can be represented as a system of horizontal diaphragms and vertical shear walls. The

horizontal diaphragms distribute forces into shear walls which then transfer them to the foundation.

This simplified approach to analyze LFBs subjected to lateral loads has been used in analyses of such

structures subjected to wind loads and assumes that the shear walls are a key component controlling

the safety of the LFB under lateral loads. This is true when one studies the main wind force resisting

system (MWFRS), and not local wind effects on a building (components and cladding).

The focus of this paper is to show how MWFRS and two relatively simple analytical models are

used to represent the LFB: rigid-beam and rigid-plate models. The performance of both of these

models is demonstrated on the existing LFB structure described in Collins, et al. (2005a, b),

Foliente, et al. (2000), Kasal, et al. (2004) and shown in Fig. 1. In both models, the diaphragm is

assumed to be rigid and no slip between the walls and the diaphragm is permitted. The walls are

represented as linear or nonlinear springs.

Fig. 1 Floor plan of the tested structure (dimensions in m).
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2.1. The rigid beam model

In this model, the diaphragm of each floor is represented by a rigid beam supported by uni-

directional springs representing shear walls. Only the walls perpendicular to the beam orientation

are accounted for as lateral resisting elements – see Fig. 2a. The model is one-dimensional and will

thus overestimate the building’s response to a lateral load. The location of individual walls is

determined by the variable xi for i = 1.. my,s, where my,s is number of walls of floor s oriented in the

y direction. The deformation in the point (wall) xs,i is designated as ∆s,i. The geometrical condition

of rigidity (see equations below for the rigid plate) is written as

∆s,i = λsx i + γs (1)

The parameters λs and γs represent the rotation and translation of the beam representing floor s.

Two conditions for force and moment equilibrium for each diaphragm are available:

(2)

(3)

where ky,s,i(∆ s,i) is the corresponding nonlinear stiffness of wall i (or nonlinear spring, i) as a

function of the displacement ∆s,i at the point xs,i; Fy,s is the resultant force from the wind pressure

acting at level s, and at location ρy,s; Fy,s+1,j is the reaction force from the floor above in wall j at

the location of ρy,s+1; and my,s+1 is the number of walls in the floor above.

The reaction forces Fy,s+1,j can be expressed in terms of displacements ∆ s+1,i, which permits us to

write Eqs. (2)-(3) in the form:

(4)

For a single story and the top floor of a multi-story building, the Fy,s+1 terms in Eqs. (2)-(3) and

the values of my,s+1, ∆s+1,i, xy,s+1 in Eq. (4) will be zero. 

Using the pressure resultant to represent the wind pressures is convenient, since the pressure

distribution function may not be known and is, by itself, a random variable. Fy,s can be calculated as

(5)

where p(x,z) is the pressure distribution function defined over the area A(x,z) (normal to the

direction of force Fy,s), and z is the coordinate along the height of the building corresponding to

floor s. The location of the resultant force Fy,s can be calculated as
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(6)

where x is the coordinate along the length of the beam. 

2.2. The rigid plate model

Each floor of the building is substituted by a rigid plate. Each plate is allowed to shift and rotate

within its plane and the model captures the translation and rotation of the building. A set of n points

with coordinates (xi ,yi) is used to define the plate geometry, with each point corresponding with the

center of each wall. For the sake of simplicity, the geometry of each floor is assumed to be

constant. Because the model is two-dimensional, the effect of transverse walls on the building’s

response is accounted for. Although the model can be expanded to include the bending stiffness of

the walls, the bending stiffness was considered negligible compared to the in-plane wall stiffness

and was neglected in subsequent analyses. If known (for example from a detailed analysis or

experiments), the bending stiffness can be lumped into the shear wall stiffness.

Individual walls can either be represented by a single spring along the x- or y-axes or divided into

subsections with each subsection represented by a separate spring – see Fig. 2b. The model permits

the inclusion of interior walls as bracing elements. Such contribution to the building’s overall

stiffness is frequently neglected.

Assuming a rigid plate, a general expression for the displacement of point (xi ,yi) of floor s can be

written as: 

(7)

where ξs, ηs and φs describe the rigid body translations and rotations of the diaphragm s; δxs,i, δys,i

ρy s,

xp x zs,( ) Ad
A

∫

p x zs,( ) Ad
A

∫
------------------------------=

δxs i,

δys i,
⎝ ⎠
⎛ ⎞ ξs xi φscos 1–( ) yi φssin–+

ηs xi φssin yi φscos 1–( )+ +⎝ ⎠
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Fig. 2 Schematic of the beam model (a) and the plate model (b)
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are deformations of point i at level s in the directions of x and y; kx,s,i(δxs,i) and ky,s,i(δys,i) and are

the corresponding stiffnesses. Since the rotation angle φs is small, the usual simplification in Eq. (7)

can be used resulting in the right-hand side without trigonometric functions.

The equilibrium of forces in the x and y directions and a moment condition are used to obtain the

three unknowns ξs, ηs and φs for each floor:

Using the force equilibrium:

(8)

(9)

where Fx,s and Fy,s are the external forces acting on the system in the x and y directions corresponding

to floor s, Fx,s+1,j and Fy,s+1,j are reaction forces from the walls above; and m is the number of walls

(m is common for each floor).

Using the moment condition with respect to the center (0, 0):

(10)

where ρx,s and ρy,s are the x and y coordinates of the point where the forces Fx,s and Fy,s are acting

on floor s.

If the reaction forces are expressed using the displacements of the floor above, the Eqs. (8)-(10)

simplify into the form

(11)

Setting δxN+1,i = δxN,i, δyN+1,i = δyN,i, δx0,i = 0 and δy0,i = 0 ensures that Eq. (11) is valid for the

last floor N.

For the linear springs, Eq. (11) can be linearized using the assumption of small rotation φs – Eq. (7).

In this paper only a uni-directional load (wind pressure along the y direction) was used but the

plate model can be also used for bi-directional loading (x- and y- directions simultaneously). The

single direction is used for the purpose of comparison of the beam and plate models. The resultant

force FX,s and its location ρx,s can be calculated using Eqs. (5) and (6) by integrating over the plane

x-z.
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2.4. Shear walls

A piecewise linear function was used to represent the load-deformation characteristic of the shear

walls due to its simplicity but any type of function, such as polynomial or exponential functions,

can be used. Parameters defining the function can be obtained either from experiments or analytical

models. To model the uncertainty of the generic stiffness function, the actual measured stiffness was

scaled by two normally distributed random variables χ1, χ2 with mean 1.0 and variance 0.1 in the

following way:

(12)

where k0(δ) is the generic stiffness function. Hence, the stiffness function varies within 20% - see

Fig. 3. 

A convenient method to simulate different wall stiffnesses is to use a generic stiffness function

k(δ) and a set of multipliers that can be used to change the generic function to represent different

load-deformation curves. 

The stiffness of a single wall within floor s for a particular run is:

(13)

where

k0(χ2δ) is the generic stiffness function,

kx,s,i and ky,s,i are the deterministic multipliers to model the stiffness of the particular wall in the x or

y direction on level s, 

kx,s,w and ky,s,w are normal, random variables with mean 1 and variance 0.15 modeling the variability

of the structure of the wall. The value of the variance reflects the uncertainty in wall

construction practice.

kx,s,type and ky,s,type are uniformly distributed, random coefficients taking the values of 0.3, 0.6, 0.8

and 1.0 and simulating openings in the individual walls, 

χ1, χ2 are normal, random variables with mean 1.0 and variance 0.1 describing the uncertainty of

the generic stiffness function. The value of the variance is based on shear wall tests of

identical construction, performed by Memari, et al. (2008), that indicate a relatively low

variability of stiffness and capacity between shear walls of the same construction.

k δ( ) χ1k0 χ2δ( )=

kx s i, ,
δ( ) kx s type, ,

kx s w, ,
kx s i, ,

χ1k0 χ2δ( )=

ky s i, ,
δ( ) ky s type, ,

ky s w, ,
ky s i, ,

χ1k0 χ2δ( )=

Fig. 3 Example of the load-deformation curve of the shear wall
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The multipliers change the shape of the stiffness function and reflect the potential variable

stiffness of individual walls. Moreover, individual walls are characterized by an additional uniformly

distributed coefficient representing various openings in the wall. 

The generic stiffness functions of the walls, k0(δ), were based on experimental results reported by

Collins, et al. (2005a,b), Foliente, et al. (2000) and Kasal, et al. (2004). The multipliers kx,s,type and

ky,s,type represent a reasonable assumption of the reduction of wall stiffness due to the presence of

openings. These values will be fixed for a known design or for code studies where the amount of

bracing is prescribed as a percentage of the braced wall line length, see IRC (2006). Note the

spacing between the first two multipliers representing wall opening (0.3 and 0.6) that will result in a

bi-modal distribution if the spacing is larger than the variances of the other multipliers. The

multipliers defined above represent a convenient mathematical formulation where a single generic

stiffness function can be used for all walls and its shape can be varied. One can use a set of

functions to describe the stiffness of each shear wall and limit the multipliers to only model

uncertainties in wall stiffness and/or the presence of openings. 

2.5. Wind loading 

A known expression reported by Simiu and Scanlan (1996) was used to calculate wind force and

only the y-direction was considered: 

(14)

where v is the wind speed, ρa is the air density in consistent units, and A is the area over which the

wind is acting. The Reverse Weilbull distribution, described by its cumulative density function Pv(v)

and distribution function Pv(v) was used to represent the wind speed in m/s - see e.g. Grigoriu (2006)

(15)

with parameters α = 42.6684, θ = 11.3373 and ζ = −50.7514 (see Fig. 4). 

These values were obtained from yearly maxima of the peak gust wind speed (m/s) measured at

Pueblo, CO, USA. The wind-speed data set available at the National Institute of Standards (NIST)

database was used (Extreme Wind Speed Data Sets). In this study, we used uniformly distributed

wind pressure but any reasonable function describing wind pressure spatial distribution (over the

building length) can be used. 

 

3. Numerical results

The generic stiffness function k0(δ) described above can be approximated by a piecewise linear

function. Its shape originates from experiments published by Paevere, et al. (2003). These experiments

showed that at the corresponding design wind load, the tested structure displaced about 1-2 mm

laterally. Previous testing of individual walls showed that at a relative displacement of about 1%,

the overall stiffness decreases and a yielding effect occurs. Thus, the occurrence of such a loss of

stiffness was used as a failure criterion. 

The bearing capacity of the individual wall is consequently defined as the force causing non-linear
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behavior of the stiffness function. Failure occurs when the reaction of a wall exceeds its bearing

capacity. 

In the first example, the geometric parameters of the structure were held fixed. This means that

the position and size of the openings were not varied in the walls and the only random variable was

the wall stiffness itself. The loading force followed the probability distribution according to Eq. (15)

and the wall stiffness followed the normal distribution (with a variability of 20 %) around the

nominal stiffness obtained from the experiments (Foliente, et al. 2000). The bearing capacity of

individual walls depends on the shape of the general stiffness function, namely on the variable χ1

(see Eq. (12)). Such a scenario may be reasonable if the geometric configuration of the shear walls

is known a-priori and only the building imperfections are taken into account.

The results of Monte Carlo simulations are presented in the columns 3-4 of the Table 1. The

probability of failure (overloading of a single wall) of a two-story building in a single year period is

0.1% for the plate model, but 1.2% for the beam model. The most vulnerable wall is W1 on the

ground floor. Table 2 shows shear forces (maximum, minimum, mean value) in the individual walls

acting in the y direction.

Let’s now investigate the situation when the walls contain openings such as doors or windows. To

simulate this situation, a set of discrete multipliers of 0.3, 0.6, 0.8 and 1.0 was introduced. The

multipliers represent the reduction in stiffness due to the presence of openings. A factor of 1.0

represents a wall without any openings; a factor of 0.3 represents a wall with large openings. A

uniform distribution was used to simulate an equal probability of occurrence for each opening size.

The columns 5-6 of Table 1 show the corresponding probabilities for the two-story model. Fig. 5

shows the distribution of the wall stiffness for the fixed geometry and Fig. 5b shows the distribution of

the wall stiffness affected by both the presence of openings (uniform distribution) and the uncertainty

in stiffness itself (normal distribution). The bi-modal shape of the histogram in Fig. 5b indicates the

stepwise effect of the stiffness multipliers. The first mode corresponds to the multiplier of 0.3 and the

second one represents the joint effect of the remaining stiffness multipliers. Since the next multiplier

starts at 0.6 and all other multipliers are equally spaced we obtained a distinct bi-modal distribution.

The bi-modal (or even multi-modal) shape is expected for a superposition of a normally distributed

random variable and a variable that attains several discrete values of equal probability.

From the data in Tables 1 and 2, it is evident that the plate model exhibits a higher stiffness

because of its ability to capture torsional deformation modes and the contribution of the cross-walls

to the building’s overall stiffness. The beam model is two-dimensional and cannot capture the cross-

wall contributions to the building’s lateral stiffness.

The last two columns in Table 1 illustrate the effect of openings on the resistance of an LFB to

Fig. 4 Wind speed distribution governed by the Eq. (11)
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lateral loads when the location and size of the openings are unknown. The presence of openings

significantly increased the failure probability expressed at various displacement levels. Again, the

contribution of transverse walls in the plate model makes the system stiffer.

Table 1 Probability of failure (overloading) of the individual walls. Two-story model, 100000 simulations.
Only walls oriented in y direction are listed. Failure defined as loss of wall stiffness – see Fig. 3

Story Wall Plate model Beam model Plate model Beam model

wall type is fixed wall type varies

1 W1 0.00115 0.01191 0.07211 0.16707

1 W2 0.0009 0.00514 0.06531 0.12695

1 W3a 0.00019 0.00014 0.03249 0.02879

1 W3b 0.00026 0.00022 0.04058 0.03708

1 W3c 0.00021 0.00017 0.03166 0.02793

1 W4a 0.00012 0.00005 0.0139 0.00623

1 W4b 0.00006 0.00004 0.01507 0.00725

2 W1 0.00000 0.00002 0.00035 0.00331

2 W2 0.00001 0.00001 0.0003 0.00176

2 W3a 0.00000 0.00000 0.00014 0.00013

2 W3b 0.00000 0.00000 0.00017 0.00014

2 W3c 0.00000 0.00000 0.00008 0.00005

2 W4a 0.00000 0.00000 0.00008 0.00008

2 W4b 0.00000 0.00000 0.00002 0.00009

Table 2 Shear forces in walls for fixed wall type [kN]. Two-story model, 100000 simulations. Only walls
oriented in y direction are listed

Story Wall Plate model Beam model

Min Max Mean Min Max Mean

1 W1 2.41493 10.2179 5.50022 -1.66943 13.3926 6.483

1 W2 1.08312 8.32357 4.36965 -1.32171 11.0938 4.90572

1 W3a 1.49775 6.92939 3.86425 -1.47505 6.87739 3.75538

1 W3b 0.25656 1.62157 0.759755 -0.245031 1.62618 0.738408

1 W3c 1.4373 7.12396 3.86537 -1.39142 6.96625 3.75643

1 W4a 1.71785 8.08469 4.17809 -0.299147 9.00073 3.48047

1 W4b 1.27062 6.82792 3.49258 -0.233306 7.39134 2.91051

2 W1 1.0909 5.86463 2.85618 -0.057814 8.06409 3.36593

2 W2 0.815268 4.58938 2.2691 -0.632613 5.71666 2.54643

2 W3a 0.677066 4.12335 2.0074 -0.633634 4.32369 1.95078

2 W3b 0.143426 0.815176 0.395019 -0.132955 0.857748 0.383915

2 W3c 0.685679 4.08257 2.00987 -0.64078 4.12191 1.95313

2 W4a 0.774931 4.74467 2.16763 -0.424649 5.385 1.80677

2 W4b 0.531117 4.11043 1.81609 -0.353825 5.25958 1.51433
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4. Limitations of the models

The analytical models discussed above can only capture the global failure modes expressed as the

lateral (shear deformations) or forces in individual walls. Local failure modes cannot be investigated

due to the global nature of the models. Currently, the models are massless and limited to static

analysis. A dynamic analysis will require reformulating the models and solution strategy. The beam

model does not capture the contribution of the transverse walls to the building’s stiffness and

therefore overestimates the deformation of the building. The plate model captures the two

dimensional behavior of the system and the contribution of all shear walls to the building’s

resistance to lateral loads. The bending stiffness of walls and any diaphragm distortion (such as

racking) are not accounted for in either model. While the models cannot address the local failure

modes of LFBs, they can be used as a tool to simulate various design scenarios and irregular

building shapes to refine current prescriptive codes governing bracing in residential construction.

5. Conclusions

Simple analytical models can be used to evaluate the probability of failure of LFBs under lateral

loads. In this case, the drift in a single wall was used as a failure criterion but the models permit

us to define other variables as limiting factors for failure decision. These can include global

building displacement, ultimate forces in walls, diaphragm rotation or a combination thereof. The

models are efficient and capture the global behavior of the LFB. The two-dimensional, rigid-plate

model can be used to evaluate various geometries and both models can serve as tools in the

development of prescriptive or performance-based design codes where the system effect is, at least

partially, accounted for. Both models can be used in estimating reaction forces in shear walls. The

plate model can be used in estimating shear forces in non-rectangular buildings with or without

internal walls designated as braced lines. This can be particularly valuable in refining standards

governing the design of bracing systems in low-rise, light-frame buildings.
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Fig. 5 Example of the distribution of the wall stiffness when the wall geometry is held fixed (a) and vary (b)
(for wall W1)
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Nomenclature

∆s, i, (δ xs, i, δ ys, i) deformations of the walls in the directions y for the beam model and x and

y for the plate model in the point i at the level s

kx,s,i(δ xs, i), ky,s,i(δ ys, i) stiffnesses of the walls in the directions x and y in the point i at the level s

mx,s, my,s number of walls in the direction x , y at the level s

N number of floors of the building

Fx,s, Fy,s the external forces in directions x and y

ρx,s, ρy,s x and y coordinates of the point where the forces Fx,s and Fy,s are acting

ξσ, ησ, φσ components of the rigid body translations and rotation of the diaphragm s

λs, γs components of the rigid body translations and rotation of the rigid beam

v wind speed

ρa air density

A exposed area

c pressure coefficient 

Pv(v), pv(v) cumulative density function,  distribution function of Reverse Weibull

distribution

α, θ, ζ coefficients of the Reverse Weibull distribution

χ1, χ2 random variables
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