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Modeling of wind and temperature effects on modal 
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Abstract. Wind and temperature have been shown to be the critical sources causing changes in the
modal properties of large-scale bridges. While the individual effects of wind and temperature on modal
variability have been widely studied, the investigation about the effects of multiple environmental factors
on structural modal properties was scarcely reported. This paper addresses the modeling of the
simultaneous effects of wind and temperature on the modal frequencies of an instrumented cable-stayed
bridge. Making use of the long-term monitoring data from anemometers, temperature sensors and
accelerometers, a neural network model is formulated to correlate the modal frequency of each vibration
mode with wind speed and temperature simultaneously. Research efforts have been made on enhancing
the prediction capability of the neural network model through optimal selection of the number of hidden
nodes and an analysis of relative strength of effect (RSE) for input reconstruction. The generalization
performance of the formulated model is verified with a set of new testing data that have not been used in
formulating the model. It is shown that using the significant components of wind speeds and temperatures
rather than the whole measurement components as input to neural network can enhance the prediction
capability. For the fundamental mode of the bridge investigated, wind and temperature together apply an
overall negative action on the modal frequency, and the change in wind condition contributes less to the
modal variability than the change in temperature.

Keywords: modal variability; environmental effect; wind; temperature; relative strength of effect (RSE);
neural network; cable-stayed bridge.

1. Introduction

Vibration-based damage detection techniques constitute the fastest growing aspect in the field of

structural health monitoring. This kind of techniques uses the measured changes in dynamic
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characteristics (mainly modal parameters) to evaluate changes in physical properties that may

indicate structural damage or deterioration. In reality, however, civil engineering structures are

subject to varying environmental and operational conditions such as wind, temperature, traffic,

humidity and solar radiation. These environmental effects also cause changes in modal parameters

which may mask the changes caused by structural damage and result in false-positive or false-

negative damage diagnosis. It is of paramount importance to formulate the correlation model

between modal properties and environmental factors for reliable performance of vibration-based

damage detection methods. When such a correlation model is available, the environmental effects in

damage detection can be eliminated or reduced by normalizing the measured modal properties

before and after structural damage to an identical reference status of environmental factors with the

help of the correlation model (Kim, et al. 2004, Olson, et al. 2005, Wenzel, et al. 2005, Kim, et al.

2007, Sohn 2007, Zhou, et al. 2007).

The previous studies through field measurements and laboratory experiments indicate that

temperature accounts for changes in modal frequencies by up to 6% for bridge structures (Robert

and Pearson 1996, Abdel Wahab and De Roeck 1997, Cornwell, et al. 1999, Alampalli 2000, Lloyd,

et al. 2000, Rohrmann, et al. 2000, Ko, et al. 2003, Kim, et al. 2004, Xia, et al. 2006). It has also

been shown that wind is a major contributory to changes in the modal properties of long-span

bridges because of the response-amplitude-dependent modal properties and the aeroelastic coupling

between wind and bridge (Abe, et al. 2000, Mahmoud, et al. 2001, Link, et al. 2002), whereas

vehicle mass has only little influence on the modal properties of large-scale bridges (Kim, et al.

2001, De Reock and Maeck 2002, Zhang, et al. 2002). As a result, wind and temperature are two

main sources causing modal variability in long-span bridges. Research efforts have been made to

establish the correlation models between modal frequencies and environmental factors (Sohn, et al.

1999, Peeters and De Roeck 2001, Hua, et al. 2007). In all the previous studies, only one kind of

environmental factor was observed and accounted for while neglecting the effects of other

environmental factors. In fact, however, different environmental factors contribute simultaneous

effects on the modal variability of a bridge structure.

This paper presents a study on the modeling of the simultaneous effects of wind and temperature

on modal frequencies by taking the cable-stayed Ting Kau Bridge as a paradigm. The Ting Kau

Bridge in Hong Kong was instrumented with a long-term structural health monitoring system in

1998. With the acquired wind, temperature and vibration data under different wind conditions

(including several typhoon events) and temperature conditions, a correlation model is formulated by

means of the neural network technique for mapping between the two environmental factors (wind

and temperature) and the modal frequency for each mode. As it is aimed to predict the

environment-caused modal variability in damage detection, research efforts have been made to

enhance the prediction capability of the formulated correlation model. First, the number of hidden

nodes of the neural network model is optimized with this target by applying the early stopping

technique in consideration of training, validation and testing stages. Then the relative strength of

effect (RSE) of the input components is analyzed through evaluating the partial derivatives of the

neural network output with respect to its input. Significant input components are selected by leaving

out those with small RSEs. The neural network model is then re-configured by using only the

significant input components with the aim to eliminate the multicolinearity and further enhance the

prediction capability.
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2. Theoretical background

2.1. Modeling using neural network technique

Artificial neural networks have been shown to be a powerful mathematical tool for pattern

recognition, classification and prediction. They generalize the knowledge implicit in the training

samples and become capable of providing solutions to new situations. In this study, a back-

propagation neural network (BPNN) model with its input being the environmental factors (wind

speed and temperature) and its output being the modal frequency of a specific mode will be

formulated using long-term monitoring data from a structure. Consider an m-layer BPNN as shown

in Fig. 1, in which the input to the node i in the layer l is 

(1)

where  is the weight connecting the node i in the layer l with the node j in the layer l−1;

y l−1( j) the output of the node j in the layer l −1; bl(i) the bias of the node i in the layer l; and S l−1 the

number of nodes in the layer l−1. The output of the node i is

(2)

where f l is the transfer function in the layer l.

It has been proven that a two-layer BPNN with biases, a sigmoid transfer function for the hidden

layer, and a linear transfer function for the output layer is capable of approximating any function

with a finite number of discontinuities to an arbitrary degree of precision (Cybenko 1989). Such a

BPNN is therefore employed in the present study. It is known that taking into consideration thermal

inertia effect can provide a more accurate representation of the temperature-frequency correlation

when continuous measurement data are available (Peeters and De Roeck 2001, Hua, et al. 2007).

However, the long-term measurement data from an on-line monitoring system are usually

discontinuous because of the existence of an automatic trigger system and abnormal signals. Due to

this reason and to facilitate the combination with damage detection methods, the BPNN is
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configured herein for the correlation between instant modal frequency and instant environmental

condition. As a result, the number of input nodes is equal to the number of available wind and

temperature measurement components in a structure, while the output layer has only one node that

represents the modal frequency at a specific mode. As shown later, the number of nodes in the

hidden layer is determined so as to have good prediction capability of the formulated model.

In regard to the application for damage detection, we are more concerned about the prediction

(generalization) capability of the formulated correlation model than its reproduction (simulation)

capability. Several regularization techniques to enhance the generalization capability of neural

networks are available, which include the AIC/FPE technique (Alippi 1996, Ljung 1999), the early

stopping technique (Morgan and Bourlard 1990, Amari, et al. 1997), and the Bayesian regularization

technique (Mackay 1992, Foresee and Hagan 1998). These regularization techniques also help

release basic rules of thumb that relate the total number of trainable weights to the number of

training data. On the basis of a comparative study of these procedures (Ni, et al. 2007), the early

stopping technique is employed herein to attain an optimized neural network configuration. For

doing so, the data available for model formulation are divided into three subsets, i.e., training,

validation, and testing sets. The weights and biases of the neural network are optimized with the

training set while the progression of the optimization process is regulated by the performance of the

resulting network on the validation set. The error on the validation set is monitored during the

training process. It will normally decrease during the initial phase of training, as does the error on

the training set. However, when the neural network becomes overfitting, the error on the validation

set will typically begin to rise. When the validation error increases for a specific number of

iterations, the training is stopped and the weights and biases at the minimum of the validation error

are returned. The optimal model is taken as the one which generates the minimal validation error.

By repeating this process for different numbers of hidden nodes, a family of optimal models is

obtained and the best BPNN model that achieves the global minimum of the validation error is

picked out. The prediction capability of such formulated BPNN model will be verified using the

testing set that has not been used in formulating the model.

2.2. Analysis of relative strength of effect (RSE)

Since both wind and temperature account for modal variability, it is desirable to quantitatively

understand their RSEs on the variation in modal properties. Likewise, when a long-span bridge is

instrumented with a monitoring system, each type of sensors (anemometers, temperature sensors,

etc.) are usually deployed at different locations and levels of the bridge. As a result, the data from

multiple measurement points may be highly correlated. When the highly correlated data are wholly

used for modeling, the resulting correlation model may perform unsatisfactorily in prediction due to

the multicolinearity (Rencher 2002). In the present study, the RSE analysis is carried out to identify

the significant components of wind and temperature measurement data, which will be used to re-

configure the neural network model for improvement of its prediction capability. Another well-

known approach for the same purpose is the principal component analysis (PCA) (Jolliffe 2002).

Compared with PCA, the RSE analysis adopted in the present study has the advantage that it is

capable of quantifying the RSEs of various environmental components. In addition, the significant

components identified by the RSE analysis possess physical meanings whereas the features

extracted by PCA do not. The identified significant components also provide an instruction on the

optimal placement of sensors.
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The RSE analysis for a correlation model in terms of neural network aims to identify the

significance of each cause factor (input) on the effect factors (output). It can be conducted by

evaluating the partial derivatives of output components of the neural network with respect to its

input components at the training session (Yang and Zhang 1997). For the BPNN shown in Fig. 1,

the partial derivative of the ith output with respect to the ith input can be expressed as

(3)

where G( · ) is the differentiation of the output of the considered neuron to its input. The commonly

utilized transfer functions, such as log-sigmoid, tan-sigmoid, and linear functions are differentiable

and thus Eq. (3) always exists. For the network configuration employed in the present study (a tan-

sigmoid hidden layer and a linear output layer), Eq. (3) is elaborated as

(4)

The RSE of the ith input on the kth output, RSEki, is obtained by normalizing the partial derivative

 to a constant which controls the maximum absolute value of RSEki to unity, i.e.,

(5)

It is obvious that RSE ranges between −1 and 1 for any input variable. The larger the absolute

value of RSE, the greater the effect the corresponding input variable has on the output variable. The

sign of RSE indicates the direction of influence. The input variable applies a positive action on the

output variable when RSE > 0 and a negative action when RSE < 0. A positive action means that

the output increases with the increase of the corresponding input, while a negative action means that

the output decreases with the increase of the corresponding input. A zero value of RSE implies that

the input variable has no influence on the output variable.

3. Instrumented bridge

3.1. Monitoring system

The Ting Kau Bridge, as shown in Fig. 2, is a multi-span cable-stayed bridge with three towers

supporting two main spans of 448 m and 475 m respectively and two side spans of 127 m each. A

unique feature of the bridge is its arrangement of the three single-leg towers that are strengthened

by longitudinal and transverse stabilizing cables. After completing its construction in 1998, the

bridge was instrumented with a long-term structural health monitoring system by the Highways

Department of the Hong Kong SAR Government (Wong 2004). The system involves more than 230

sensors and accomplishes 24-hour monitoring per day.
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As part of the monitoring system, 7 anemometers have been permanently installed on the bridge to

surveil the wind environments, of which four ultrasonic-type anemometers are positioned at the deck

level and the other three propeller-type anemometers at the tower top. Likewise, a total of 83

temperature sensors have been installed at different locations of the bridge to measure: (i) steel-girder

temperature, (ii) temperature inside concrete deck, (iii) temperature in tower legs, (iv) temperature in

asphalt pavement, and (v) atmosphere temperature. For vibration measurement of the bridge, 24 uni-

axial accelerometers, 20 bi-axial accelerometers and 1 tri-axial accelerometer (a total of 67 signal

channels) have been installed on the deck of two main spans and two side spans, the longitudinal

stabilizing cables, the top of the three towers, and the base of the central tower. Fig. 3 illustrates the

deployment locations of anemometers, temperature sensors and accelerometers on the bridge.

3.2. Measurement data

A total of 152-hour monitoring data covering three typhoon events constitute the database for this

study. As given in Table 1, the maximum hourly-averaged wind speed measured at the tower top is

respectively 14.5, 14.1, and 17.6 m/s during the three typhoon events. To facilitate the data processing,

Fig. 2 Ting Kau Bridge

Fig. 3 Deployment locations of anemometers, temperature sensors and accelerometers
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the wind speed data acquired from the anemometers installed at the same level are averaged to form

the mean wind speed at that level. Likewise, four temperature sensors which are deployed at the

locations most susceptible to temperature variation are preliminarily selected from each of the five

temperature monitoring categories. Consequently a total of 20 temperature sensors, as listed in Table

2, are chosen to provide temperature measurement data for the present study. With the acceleration

data acquired from all the 67 accelerometer channels, modal parameters of the bridge were

identified at one-hour intervals by using an output-only modal identification program (Ni, et al.

2005). The identified modal shapes for the first two modes of the bridge are shown in Fig. 4, in

which the legend ‘U’ denotes the undeflected bridge deck configuration; the legends ‘V1’ and ‘V2’

denote the deck vertical modal components at western and eastern edges, respectively; and the

Table 1 Durations and maximum wind speeds of three typhoon events

Typhoon Time period of data
Duration 
(hours)

Maximum wind 
speed (m/s)

Leo 12:00 of 2 May to 05:00 of 4 May 42 14.5

Maggie 16:00 of 7 June to 08:00 of 9 June 41 14.1

Cam 00:00 of 25 September to 23:00 of 27 September 72 17.6

Table 2 Locations of 20 selected temperature sensors

Number Category Location

1

Steel-girder temperature

East side of deck

2 East side of deck

3 West side of deck

4 West side of deck

5

Air temperature

North outer side of central tower at 73 m high

6 South outer side of central tower at 143 m high

7 Under east side of deck

8 Above east side of deck

9

Temperature in tower leg

North inner side of central tower at 73 m high

10 East inner side of central tower at 73 m high

11 South inner side of central tower at 73 m high

12 West inner side of central tower at 73 m high

13

Temperature inside concrete deck panel

East side of deck

14 East side of deck

15 West side of deck

16 West side of deck

17

Temperature in asphalt pavement

East side of deck

18 East side of deck

19 West side of deck

20 West side of deck
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legend ‘L’ denotes the deck lateral modal components at central girder. Fig. 5 illustrates the

sequences of the mean wind speeds at the deck level and tower top, the hourly-averaged

Fig. 4 Identified modal shapes of the bridge: (a) 1st mode; (b) 2nd mode

Fig. 5 Sequences of measured mean wind speeds, hourly-averaged temperatures and modal frequencies: (a)
Wind speed; (b) Temperature; (c) Modal frequency
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temperatures from the 20 sensors, and the measured modal frequencies for the first eight modes.

Discontinuity in the modal frequency sequences as shown in Fig. 5(c) is due to the failure of modal

identification for some time intervals in which the coupled torsional and lateral vibration modes of

the bridge were not motivated. As the identified modal frequencies of higher modes are incomplete,

the present study focuses on analyzing the effects of wind and temperature on the first modal

frequency. It has been reported that wind normally excites the fundamental mode predominantly

(Pan, et al. 2004, Brownjohn, et al. 2005).

4. Development of correlation model

4.1. Model formulation using whole measurement components

The mean wind speeds at the deck level and tower top and the temperatures at the 20 selected

locations are first used as input to formulate the neural network model. In this case the number of

input nodes is 22 (two wind speed components and 20 temperature components) and the number of

output nodes is 1 (modal frequency at a specific mode). To accommodate the early stopping

technique, the first half of the 152-hour monitoring data are taken as the training set and the second

half of the 152-hour monitoring data are equally divided as the validation and testing sets. As a

result, 78 training samples, 39 validation samples and 39 testing samples are discretionarily

constituted without overlap. The early stopping technique is then applied to construct a family of

optimal BPNNs with various hidden nodes, where the training samples are used to train the neural

network while the validation samples are used to monitor the training progression until a minimal

validation error is generated for each number of hidden nodes. To find the global minimum of

performance function, each BPNN is trained 500 runs with different random initializations of the

free parameters using the Levenberg-Marquardt algorithm. Each run is terminated within a

maximum epoch of 10,000. Fig. 6 shows the averaged validation errors of the optimal BPNNs for

the first mode when the number of hidden nodes n varies from 1 to 40. Here the validation error is

represented by the mean square error (MSE) between the target output of the validation data and the

predicted output when feeding the validation input data into the BPNN. It is observed that the

validation error (MSE) decreases monotonously with the increase of n until it reaches a minimum at

Fig. 6 MSE of validation data versus number of hidden nodes
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n = 5. As n increases beyond five, the validation error turns to increase on the whole. As a result,

the BPNN with five hidden nodes is picked out as the best model. For the simplicity of notation,

this BPNN is denoted as NN1 hereafter.

Fig. 7 shows a comparison between the measured modal frequencies and those generated by NN1

for training, validation, and testing data sets at the first mode. To quantitatively evaluate the

reproduction (simulation) and prediction (generalization) capabilities, two indices are defined. The

first index is the residual

(6)

where fn is the modal frequency output generated by the BPNN under the input of training,

validation or testing data; fm is the corresponding target output. The second index is the correlation

coefficient which is defined as

(7)

where Snn is the variance of fn; Smm the variance of fm; and Snm the covariance between fn and fm.

e fn fm–=

R
Snm

Snn Smm⋅
-----------------------------=

Fig. 7 Comparison between NN1-generated and measured first modal frequencies: (a) Training set; (b)
Validation set; (c) Testing set
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Table 3 shows the root mean square (RMS) and the standard deviation (SD) of the residuals of

NN1-generated modal frequencies. It is seen that both RMS and SD of the residuals for training

data are smaller than those for testing data, indicating that the reproduction capability of NN1 is

better than its prediction capability. Table 4 shows the correlation coefficients between the NN1-

generated and measured modal frequencies. With the larger correlation coefficient for training data

than for testing data, the superiority of reproduction capability over prediction capability is

evidenced again. An effort to enhance the prediction capability will be made later.

The RSE analysis of NN1 is carried out with training data. Fig. 8 illustrates the RSEs of the 22

input components generated by NN1, where the first 20 components are temperatures and the last

two components are wind speeds at the towre top and deck level. It is seen that the 12th input

component has the largest absolute value of RSE, which imposes the strongest effect on the first

modal frequency among the 22 input components. It applies a negative action on the first modal

frequency, i.e., the first modal frequency decreases with the increase of this component. The RSE of

the 3rd input component is the smallest (-0.001), which has the least effect on the modal frequency.

Besides, the effects of the 8th, 10th, and 21st input components on the first modal frequency are

also negligible because their RSEs are nearly zero. With the obtained RSE values, it is obvious that

the temperatures affect the modal variability more significantly than the wind speeds. It is also

found that the effect of wind speed at the deck level gains dominance over that at the tower top.

Table 3 Statistics of residuals of NN1-generated first modal frequencies

Root mean square (RMS) (×10-3) Standard deviation (SD) (×10-3)

Training Validation Testing Training Validation Testing

0.832 1.234 1.520 0.838 1.239 1.539

Table 4 Correlation coefficients between NN1-generated and measured first modal frequencies

Correlation coefficient

Training Validation Testing

0.930 0.911 0.762

Fig. 8 RSEs of input components generated by NN1
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The RSE of wind speed at the tower top (the 21st input component) ranks the last but one. The sum

of RSEs for the 22 input components is −0.496, showing an overall negative action of the wind

speeds and temperatures on the first modal frequency.

4.2. Model formulation using significant components

Based on the RSE analysis, the significant input components of wind speeds and temperatures can

be identified by leaving out those with zero or nearly zero RSEs. According to Fig. 8, the three

temperature components (the 3rd, 8th, and 10th components) and the wind speed at the tower top

(the 21st component) with small RSEs are considered as insignificant input components, while the

other 18 significant input components are used as input to re-configure BPNN. In this case the

number of input nodes reduces to 18 and the number of output nodes remains as 1. By applying the

early stopping technique in the same way as before, it is obtained that the BPNN with seven hidden

nodes achieves a minimal validation error. This BPNN, denoted as NN2, is selected as the best

model with the input of significant components.

Fig. 9 shows a comparison between the measured modal frequencies and those generated by NN2

Fig. 9 Comparison between NN2-generated and measured first modal frequencies: (a) Training set; (b)
Validation set; (c) Testing set
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for training, validation, and testing data sets at the first mode. The root mean square (RMS) and the

standard deviation (SD) of the residuals of NN2-generated modal frequencies are summarized in

Table 5. By comparing Table 5 (the results of NN2) with Table 3 (the results of NN1), it is found

that the RMS and SD of the residuals for training data increase 3.823% and 4.101%, respectively;

while those for testing data decrease 10.424% and 10.369%, respectively. It demonstrates that NN2

offers worse reproduction capability but better prediction capability than NN1. Table 6 shows the

correlation coefficients between the NN2-generated and measured modal frequencies. It is seen that

NN2 achieves comparable correlation coefficients for testing data and for training data. A

comparison of Table 6 with Table 4 indicates again the superiority in prediction capability and the

inferiority in reproduction capability of NN2 over NN1. Thus, a BPNN model with better prediction

capability has been formulated by using the significant input components of wind speeds and

temperatures. It is known that the neural network learns in stages, moving from realization of fairly

simple to more complex mapping functions. As the training progresses, the neural network model is

trying to assign some importance to the least significant input components as well, instead of

treating them as a pure noise, which distorts the true output and input mapping. As a result, a better

neural network model shall be formulated by discarding the least significant input components from

the network input and using the significant input components only.

Fig. 10 shows the RSEs of the significant input components generated by NN2. For the

Table 5 Statistics of residuals of NN2-generated first modal frequencies

Root mean square (RMS) (×10-3) Standard deviation (SD) (×10-3)

Training Validation Testing Training Validation Testing

0.850 1.200 1.335 0.852 1.199 1.352

Table 6 Correlation coefficients between NN2-generated and measured first modal frequencies

Correlation coefficient

Training Validation Testing

0.929 0.900 0.804

Fig. 10 RSEs of input components generated by NN2
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convenience of comparison, the insignificant input components, which were left out in formulating

the model, are also plotted in this figure with their RSEs equal to zero. The RSEs generated by

NN2 coincide well with the RSEs generated by NN1. The dominance of the 12th component

remains unchanged. The nature of actions of all the input components in NN2 remains the same as

that in NN1. An overall negative effect of the significant components on the first modal frequency

is shown again. Table 7 indicates the locations of the temperature components with large RSE. It is

found that temperatures at the south and east sides (to the bridge alignment) of the bridge exert

positive effects on the first modal frequency; while temperatures at the north and west sides (to the

bridge alignment) of the bridge impose negative effects on the first modal frequency. As the

alignment of the Ting Kau Bridge is north by west and south by east, the south-east side to the

bridge alignment is the sun rise side and the north-west side to the bridge alignment is the sun set

side. Hence the temperatures at the sun rise side induce positive effects on the first modal

frequency; while the temperatures at the sun set side exert negative effects on the first modal

frequency. The implication of this observation deserves further study.

5. Conclusions

In this paper, the simultaneous effects of wind and temperature on the modal frequencies of the

cable-stayed Ting Kau Bridge have been investigated. Making use of the long-term monitoring data

of wind, temperature and structural dynamic response obtained from the bridge, a neural network

model has been developed to correlate the modal frequencies with wind speed and temperature

simultaneously. The early stopping technique has been applied to optimize the neural network

configuration, and a RSE-analysis-based method has been proposed for constructing appropriate

input to the BPNN to enhance its generalization performance. The prediction capability of the

formulated neural network model was verified with the testing data which had not been used in

training and validating the neural network. For the bridge investigated, the following conclusions

are drawn: (i) the wind and temperature together apply an overall negative action on the

fundamental modal frequency; (ii) the change in wind speed, even under the action of typhoons,

contributes less to the modal variability than the change in temperature; (iii) the wind at the deck

level is dominant in affecting the fundamental modal frequency than the wind at the tower top; and

(iv) using the significant components of wind speeds and temperatures as input to neural network

can enhance the prediction capability.
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