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Abstract. This paper presents a novel finite element (FE) model for analyzing coupled flutter of long-
span bridges using the commercial FE package ANSYS. This model utilizes a specific user-defined
element Matrix27 in ANSYS to model the aeroelastic forces acting on the bridge, wherein the stiffness
and damping matrices are expressed in terms of the reduced wind velocity and flutter derivatives. Making
use of this FE model, damped complex eigenvalue analysis is carried out to determine the complex
eigenvalues, of which the real part is the logarithm decay rate and the imaginary part is the damped
vibration frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity,
the structural system incorporating fictitious Matrix27 elements has a complex eigenvalue with zero or
near-zero real part, with the imaginary part of this eigenvalue being the flutter frequency. Case studies are
provided to validate the developed procedure as well as to demonstrate the flutter analysis of cable-
supported bridges using ANSYS. The proposed method enables the bridge designers and engineering
practitioners to analyze flutter instability by using the commercial FE package ANSYS.

Keywords: long-span bridge; coupled flutter; instability; complex eigenvalue analysis; finite element (FE)
model; ANSYS.

1. Introduction

It is well known that flexible and slender structures such as long-span cable-supported bridges,

high-rise buildings and chimneys are prone to a variety of wind-induced vibrations due to their low
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natural frequency and mechanical damping (Simiu and Scanlan 1996). The aeroelastic instabilities

have become one of important considerations during the design of long-span bridges since the

collapse of old Tocoma Narrows suspension bridge. The most dangerous one among various

aeroelastic instabilities is flutter which is a dynamic instability phenomenon, wherein at some

critical wind velocity the bridge oscillates in a divergent and destructive manner. As a result, flutter

instability is prohibitive during the design of long-span bridges, and the critical flutter wind velocity

of a bridge must exceed the design value. The objective of flutter analysis is to predict the lowest

critical wind velocity that induces flutter instability, and the corresponding flutter frequency.

During the past four decades, comprehensive studies have been carried out to develop procedures

for analyzing coupled flutter of long-span bridges by integrating analytical skills with measured

flutter derivatives. Bleich (1948) was among the first to analyze the coupled flutter problem of

suspension bridges using Thoedorsen’s formulation on unsteady aeroelastic forces. The coupled

flutter analysis for long-span bridges using measured flutter derivatives from wind tunnel tests of

section model was pioneered by Scanlan and his co-workers (Scanlan and Tomko 1971, Scanlan

1978, Scanlan and Jones 1990). At present there are two general approaches for coupled flutter

analysis of bridges: (i) the multimode flutter analysis approach where the equations of motion for

structures are represented using a modal superposition technique (Agar 1989, Namini, et al. 1992,

Tanaka, et al. 1992, Chen 1994, Katsuchi, et al. 1999, Ding, et al. 2002), and (ii) the full-order

flutter analysis approach where the aeroelastic loadings are applied directly to the physical

coordinate of structures (Miyata and Yamada 1990, Dung, et al. 1998, Ge and Tanaka 2000, Ding,

et al. 2002). A lot of research efforts have been devoted to developing efficient methods for

solution of the complex eigenvalue problem in flutter analysis (Tanaka, et al. 1992, Jain, et al.

1996, D’Asdia and Sepe 1998, Dung, et al. 1998, Katsuchi, et al. 1999) and formulating appropriate

expressions of unsteady self-excited aerodynamic forces for flutter analysis (Xie and Xiang 1985,

Boonyapinyo, et al. 1999, Chen, et al. 2000, Briseghella, et al. 2002).

Since the 1970s a variety of commercial finite element (FE) packages such as ANSYS, ABAQUS

and ADINA have emerged and received wide applications in various disciplines along with the

advancement of FE methods and computing technologies. These FE packages have friendly

graphical user interface and powerful computational capability. However, the general purpose

commercial FE packages commonly used in civil engineering community cannot be directly used

for flutter analysis of large-scale bridges due to lack of the capability of calculating motion-

dependent wind loads. Although it is possible to develop special purpose FE packages to tackle

flutter analysis of bridges such as ANSUSP (Agar 1989), NACS (Chen 1994) and NASAB (Xiao

and Cheng 2004), the incorporation of functions or modules capable of flutter analysis into general

purpose commercial FE packages provides an alternative way.

This paper presents a novel FE formulation for the analysis of coupled flutter of long-span bridges

using the commercial FE package ANSYS. In this formulation, a user-defined element in ANSYS,

namely Matrix27 (SASI 2004), is adapted to model aeroelastic forces acting on the deck of long-

span bridges. The aeroelastic stiffness and damping matrices in Matrix27 elements are derived and

expressed in terms of the flutter derivatives, using either a lumped or consistent formulation. Then

damped eigenvalue analysis is carried out with respect to the integrated system of the structure

incorporating a series of Matrix27 elements, to determine the real and imaginary parts of complex

eigenvalues. The condition for onset of flutter instability becomes that, at a certain wind velocity,

the system has a complex eigenvalue with zero or near zero real part and the imaginary part of the

eigenvalue being the flutter frequency. Case studies of three structures with typical flutter derivative



Flutter analysis of long-span bridges using ANSYS 63

parameters, namely a simply supported beam-like bridge with thin-airfoil cross section, a cable-

stayed bridge with bluff cross section and a suspension bridge with streamline cross section, are

conducted to validate the developed procedure and to demonstrate the flutter analysis of cable-

supported bridges using the commercial FE package ANSYS.

2. Formulation

2.1. FE for flutter analysis

The equation of motion of a bridge structure in the smooth flow can be expressed as

(1)

where M, C and K are the global mass, damping and stiffness matrices, respectively; X,  and 

represent the nodal displacement, velocity and acceleration vectors, respectively; Fse denotes the

vector of the nodal aeroelastic forces.

The aeroelastic forces acting on unit span of bridge girder can be expressed as a linear function of

nodal displacement and nodal velocity (Scanlan 1978, Jain, et al. 1996):

 (2a)

 (2b)

 (2c)

where ρ is air mass density; U is wind velocity; B is the width of bridge deck;  is the

reduced circular frequency; h, p and α are the vertical, lateral and torsional displacements,

respectively; each dot denotes the differentiation with respect to time t; ,  and  (i=1, ,

6) are non-dimensional flutter derivatives, which are functions of the reduced frequency and

determined from wind tunnel tests of section model of the bridge deck. The aeroelastic forces acting

on bridge deck are illustrated in Fig. 1.

Eqs. (2a) to (2c) represent aeroelastic forces distributed on unit deck length. In finite element
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Fig. 1 Aeroelastic forces acting on bridge deck
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analysis, these distributed forces are converted into equivalent nodal loadings acting at the member

ends. Thus the aeroelastic forces for element e can be expressed in terms of nodal displacement and

nodal velocity as

(3)

where  and  represent the local aeroelastic stiffness and damping matrices for element e,

respectively. Similar to the general procedures in formulating element mass matrix, either a lumped

or consistent formulation can be used to derive the element aeroelastic stiffness and damping

matrices (Namini 1991). Making use of the lumped formulation, the expressions of  and 

are obtained as

, (4a, b)

(4c)

(4d)

where a =ρU2K2Le/2  and b =ρUBKLe/2; Le is the length of element e.

The user-defined element in ANSYS, Matrix27, is a versatile element with two nodes each having

six degrees of freedom, and with its local coordinate system being coincident with the global

coordinate system (SASI 2004). The element is arbitrary in geometrical configuration and the

element properties are specified by stiffness, mass, and damping coefficients. Fig. 2 illustrates the

geometry configuration of Matrix27 and its local coordinate system. Compared with other structural

elements in ANSYS, Matrix27 possesses some unique features: (i) user-specified coefficients of

mass, stiffness or damping matrices instead of physical parameters such as mass density, Young’s

modulus; (ii) accommodating both symmetric and asymmetric element matrices; and (iii)

representation of only either a mass element, or a stiffness element, or a damping element. The first

two features enable the modeling of self-excited forces using Matrix27 in ANSYS, and the last

feature implies that two elements are needed to model the self-excited force acting on each node.
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The first step for flutter analysis using ANSYS is to simulate the aeroelastic forces acting on each

node by element Matrix27. To achieve this, a hybrid FE model incorporating one structural element

with four Matrix27 elements as illustrated in Fig. 3 is formulated. Because one Matrix27 element

can only model either an aeroelastic stiffness matrix or an aeroelastic damping matrix instead of

both of them simultaneously, a pair of Matirx27 elements are attached to each of the nodes in a

structural element to simulate the aeroelastic forces. For a deck element e as shown in Fig. 3,

Matrix27 elements e1 and e3 are attached after defining a fictitious node k to represent the

aeroelastic stiffness and damping at node i, while Matrix27 elements e2 and e4 are attached after

defining a fictitious node l to represent the aeroelastic stiffness and damping at node j. The pair of

Matrix27 elements attached to each structural node share the same nodes.

The aeroelastic stiffness and damping matrices for the four Matrix27 elements attached to a deck

element e can be expressed as

,    (5a, b)

,    (5c, d)

Assembling all element matrices into global aeroelastic stiffness and damping matrices leads to

(6)

where Kae and Cae denote the global aeroelastic stiffness and damping matrices, respectively.

Substituting Eq. (6) into Eq. (1) results in the governing equation of motion for the structure after

incorporating Matrix27 elements, as
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Fig. 2 Geometry configuration of Matrix27

Fig. 3 Hybrid finite element model for flutter analysis in ANSYS



66 X. G. Hua, Z. Q. Chen, Y. Q. Ni and J. M. Ko

(7)

Eq. (7) represents an integrated system with the effect of aeroelasticity, parameterized in terms of

wind velocity and response frequency. With this equation, damped complex eigenvalue analysis can

be carried out to determine the characteristic of the parameterized system.

The system dynamic response can be approximated by a superposition of the first m conjugate

pairs of complex eigenvalues and eigenvectors, as

(8)

where  is the jth complex conjugate pair of eigenvectors;  is the jth

conjugate pair of complex eigenvalues; and .

The system is dynamically stable if the real part of all eigenvalues is negative and dynamically

unstable if the real part of one or more eigenvalues is positive. The condition for occurrence of

flutter instability is then identified as follows: at a certain wind velocity Uf the system has one

complex eigenvalue λf with zero or near zero real part, the corresponding wind velocity Uf being

the critical flutter wind velocity and the imaginary part  of the complex eigenvalue λf becoming

the flutter frequency.

For large-scale civil engineering structures, the FE model usually involves thousands of degrees of

freedom and it is impractical to compute all eigenvalues and eigenvectors. As flutter in real

structures always occurs with the lowest flutter wind velocity corresponding to low-order

eigenvalues, only the first several eigenvalues are required in complex eigenvalue analysis.

2.2. Incorporation of mechanical damping

The mechanical damping of a structure is generally given in terms of modal damping ratios by

assuming the Rayleigh damping matrix

C = αM + βK (9)

where α and β are proportionality coefficients. When the damping ratios for the mth and nth modes are

measured or assumed, the proportionality coefficients can be obtained by (Clough and Penzien 1993)

 (10a)

 (10b)

where  and  are the circular frequency and damping ratio for the mth mode;  and  are

the circular frequency and damping ratio for the nth mode.

After incorporating the mechanical damping, the governing equation of motion for flutter analysis

becomes
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where  is the modified damping matrix and  is the modified aeroelastic damping matrix.

They are expressed as

(12a)

 (12b)

3. Algorithm implementation in ANSYS

As shown in Eq. (4), the aeroelastic stiffness and damping matrices in Matrix27 elements are

expressed in terms of three parameters, namely wind velocity, response frequency, and reduced

frequency, but only two of them are independent. As a result, the identification of condition for

occurrence of flutter instability involves a sweep and iterative procedure. In this study the wind

velocity and response frequency are selected as independent variables in solution, and the

investigation of flutter instability involves a sweep through a range of wind velocity and iteration

with respect to response frequency.

The damped eigensolution of Eq. (7) or Eq. (11) yields m complex conjugate pairs of eigenvalues

of the form  . Because the complex mode which corresponds to a

real flutter frequency is a priori unknown, a mode-by-mode tracing method (Ge and Tanaka 2000)

is employed to iteratively search the flutter frequency and determine the critical flutter wind

velocity. The implementation of the developed flutter analysis procedure in ANSYS is summarized

in the following steps:

1) Establish the initial structural FE model without Matrix27 elements and compute the first m

natural modes ;

2) Establish the FE model of the integrated system with Matrix27 elements, in which the flutter

derivatives are inputted through the command TABLE in ANSYS;

3) Set an initial guess of critical wind velocity  and its increment . Let the initial

oscillation frequency  be the frequency  of each natural mode in turn. Given the

tolerance ε;

4) Determine the reduced wind velocity and the aeroelastic stiffness and damping matrices in

Matrix27 elements at the present iteration, and then carry out the damped eigenvalue analysis;

5) Compare the imaginary part of the ith computed complex eigenvalue  with ω0. If

  5
) , let ω0 = Im(λi) and repeat steps 4 and 5; otherwise go to step 6;

6) Repeat steps 4 and 5 over all m computed natural modes. If the real parts of all complex

eigenvalues  are negative, let  and repeat steps 4 and 5;

otherwise terminate the iteration.

The commercial FE package ANSYS provides three tools for users to customize and expand its

existing capabilities. These are ANSYS Parametric Design Language (APDL), User Interface

Design Language (UIDL) and User Programmable Features (UPFs) (SASI 2004). The APDL is a

scripting language that enables users to automate common tasks or even build the FE model in

terms of parameters (variables). It also encompasses a wide range of other features such as

repeating a command, macros, if-then-else branching, do-loops, and scalar, vector and matrix

operations. Making use of the tool APDL, all aforementioned steps can be readily implemented in

ANSYS without difficulty.

C Cae

C αM β K Kae–( )+=

Cae Cae βKae+=

λi σi iω i±= i 1  2  …  m,,,=( )

ω i

0
i 1  2  …  m,,,=( )

U0 ∆U

ω0 ω i

0

λi

Im λi( ) ω0–

Im λi( )
---------------------------- ε>

λi i 1  2  …  m,,,=( ) U U0 ∆U+=



68 X. G. Hua, Z. Q. Chen, Y. Q. Ni and J. M. Ko

4. Case studies

4.1. Simply supported thin-airfoil structure

The first application illustrated here is the flutter analysis of a simply supported beam-like bridge

with thin-airfoil cross section. Since the theoretical solution of flutter frequency and flutter wind

velocity for this structure is available, this example serves as a verification of the developed

procedure. The parameters of the structure are as follows: span l = 300 m; width of the bridge deck

B = 40 m; vertical flexural rigidity EIz = 2.1×106 MPa·m4; lateral flexural rigidity EIy = 1.8×107 MPa·m4;

torsional rigidity GIt = 4.1×105 MPa·m4; mass m = 20,000 kg/m; mass moment of inertia Im = 4.5×106

MPa·m2/m; air mass density ρ = 1.248 kg/m3. The structural damping is assumed to be zero.

The unsteady aeroelastic forces acting on a thin-airfoil cross section in smooth flow were first

analytically derived by Theodorsen (1935). The relation between the flutter derivates and the

unsteady aeroelastic forces can be found in literature (e.g. Ge and Tanaka 2000). Fig. 4 shows the

variation of flutter derivatives versus the reduced wind velocity U/fB.

Natural mode analysis of the bridge FE model without Matrix27 elements is first conducted,

where the lumped mass formulation is used to construct the mass matrix for bridge distributed mass

and mass moment of inertia. The bridge is discretized by 30 deck elements as shown in Fig. 5. The

two-node beam element Beam4 in ANSYS is used to represent the deck elements; and the element

Mass21 in ANSYS is used to model the mass moments of inertia. The first ten natural modes are

extracted using ANSYS and summarized in Table 1.

After establishing the structural FE model, Matrix27 elements are incorporated into the model to

represent the aeroelastic forces acting on the bridge deck for damped complex eigenvalue analysis.

Fig. 4 Flutter derivatives for thin airfoil

Fig. 5 Finite element model for natural mode analysis
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It is accomplished by generating the fictitious nodes and linking them with the original structural

nodes. A total of 58 Matrix27 elements are employed to formulate 29 aeroelastic stiffness matrices

and 29 aeroelastic damping matrices. The FE model of the bridge incorporating Matrix27 elements

for flutter analysis is illustrated in Fig. 6.

The initial wind velocity U0 in flutter analysis is estimated from the Van der Put’s formula (1976)

(13)

where  is the ratio of frequencies between the torsional natural mode and the vertical

bending natural mode; µ = m/(πρb2) is the ratio of bridge mass density to air mass density;

 is the radius of gyration; and b is half of the bridge width. The initial trial frequency

for each complex mode is taken as the computed frequency of the corresponding natural mode.

Following the computational steps described in the previous section, damped complex eigenvalue

analysis is conducted for the integrated system under wind velocity ranging from 0 to 180 m/s. The

first ten conjugate pairs of complex eigenvalues and complex eigenvectors are obtained, and the

variation of these complex eigenvalues versus wind velocity is plotted in Fig. 7. It is observed that,

in the considered wind velocity range, (i) the vibration frequencies (i.e. the imaginary part of

complex eigenvalues) of vertical bending modes exhibit a slight increase with increase of wind

velocity while the real part decreases with increasing wind velocity; (ii) for lateral bending modes,

both the real and imaginary parts of complex eigenvalues remain unchanged with the increase of

wind velocity; and (iii) the imaginary part of complex eigenvalues for torsional modes decreases

with the increase of wind velocity, while the real part decreases at the outset and then increases with

increasing wind velocity. As shown in Fig. 7(a), the real part of the second complex mode becomes

zero at a wind velocity of 135.1 m/s, and the corresponding imaginary part of the complex

eigenvalue becomes 0.3940 Hz, identifying the onset of flutter instability. The input file for ANSYS
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Fig. 6 Finite element model for flutter analysis

Table 1 Description of the first ten modes

Mode No.
Frequency

(Hz)
Mode shape Mode No.

Frequency
(Hz)

Mode shape

1 0.1788 S-V 6 1.5030 S-T

2 0.5028 S-T 7 1.6096 S-V

3 0.5236 S-L 8 1.9976 A-T

4 0.7154 A-V 9 2.0944 A-L

5 1.0043 A-T 10 2.4867 S-T

Note: S – symmetric; A – asymmetric; V – vertical; L – lateral; T – torsional.
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to conduct flutter analysis of this structure is provided in the Appendix.

To illustrate the characteristic of coupled flutter, Fig. 8 provides the variation of the generalized

mass in vertical and torsional directions for the second complex eigenvalue versus wind velocity. As

expected, the second complex mode is a purely torsional mode with the generalized mass in

torsional direction being unity when the wind velocity is zero, and then it becomes a vertically and

torsionally coupled mode with the increase of wind velocity.

For this simple structure, a time-domain analysis of the integrated system can be carried out to verify the

frequency-domain computational results. For a given wind velocity, the time-domain response of the

system subjected to an initial excitation can be readily computed using a time integration scheme. Figs. 9

to 11 show the response time histories of mid-span under different wind velocities. It is seen that the

system is neutrally stable with a response frequency of 0.3940 Hz at the critical wind velocity of 134.1 m/s

(Fig. 9). The system is dynamically stable when the wind velocity is lower than the critical value (Fig. 10)

Fig. 7 Variation of complex eigenvalues versus wind velocity

Fig. 8 Variation of generalized mass versus wind velocity
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and becomes dynamically unstable when the wind velocity is larger than the critical value (Fig. 11).

Table 2 gives a comparison of the results obtained by different methods. The exact solution of the

flutter frequency and critical wind velocity is obtained by using the two-mode classical flutter

theory (Theodorsen 1935, Bleich 1948). The result from the M-S method (Chen 1994) taking into

account multimode participation is also listed in the table for comparison. It is seen that the present

procedure gives rise to agreeable results with the multimode method as well as the exact solution.

Fig. 10 Time-domain response of mid-span at wind velocity of 120.0 m/s

Fig. 11 Time-domain response of mid-span at wind velocity of 140.0 m/s

Fig. 9 Time-domain response of mid-span at wind velocity of 134.1 m/s
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4.2. Dongting Lake cable-stayed bridge

The Dongting Lake Bridge, as shown in Fig. 12, is a multi-span cable-stayed bridge with three

towers supporting a center spans of 310 m each and two identical side spans of 130 m each. The

bridge towers are mede of reinforced concrete, and the heights of the central tower and the two side

towers above pylon base are 123.48 m and 98.3 m, respectively. The prestressed concrete bridge

deck has a shallow π-type cross section in a width of 23.4 m as shown in Fig. 13. It is supported by

two inclined cable planes emanating from deck anchorages to tower tops, each plane comprising

112 cables. The horizontal distance between two adjacent cables is 8 m.

The flutter derivatives  and  have been determined by wind tunnel tests of a

scaled section model of the bridge deck (Chen and Yu 2002). Fig. 14 illustrates the 1:75 scale

section model used for wind tunnel tests. The flutter derivatives under different wind incidences

have been measured and those under a wind incidence of zero degree are shown in Fig. 15.

A triple-girder FE model considering the effect of warping stiffness has been established for the

Hi

*
Ai

*
i 1  2  3  4,,,=( )

Fig. 12 Illustration of Dongting Lake cable-stayed bridge

Fig. 13 Typical cross section of bridge deck

Table 2 Comparison of flutter analysis results

Method Flutter velocity (m/s) Flutter frequency (Hz)

Present procedure (frequency domain) 135.1 0.3940

Present procedure (time domain) 134.1 0.3940

M-S method 134.3 0.3936

Exact solution 136.3 0.3914

Fig. 14 Scaled section model for wind tunnel testing (unit: mm)



Flutter analysis of long-span bridges using ANSYS 73

bridge for natural mode analysis. The structural model, as shown in Fig. 16, is composed of 925

elements. The first twenty natural modes are extracted using the Lanczos method in ANSYS, and

the natural frequencies and mode shapes of the first ten modes are summarized in Table 3.

Table 3 Description of the first ten modes for Dongting Lake Bridge

Mode No.
Frequency

(Hz)
Mode shape Mode No.

Frequency
(Hz)

Mode shape

1 0.1369 A-LS 6 0.6118 S-L

2 0.2332 A-V 7 0.6813 S-V

3 0.4329 S-V 8 0.8258 A-V

4 0.4884 A-V 9 0.8574 S-V

5 0.5283 A-L 10 0.9339 S-T

Note: S – symmetric; A – asymmetric; V – vertical; L – lateral; T – torsional; LS – longitudinal sway.

Fig. 16  Finite element model of Dongting Lake Bridge for natural mode analysis

Fig. 15 Flutter derivatives of scale section model
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A series of Matrix27 elements are then attached to the nodes at the central girder to model

aerodynamic coupling effects between the bridge and air flow. A total of 226 Matrix27 elements are

used, half of them modeling the aerodynamic stiffness while the remaining modeling the

aerodynamic damping. Fig. 17 illustrates the FE model of the bridge incorporating Matrix27

elements for flutter analysis, where the boundary conditions for the constrained nodes are not

displayed for clarity.

Damped complex eigenvalue analysis is first carried out without considering mechanical damping

under wind velocity ranging from 0 to 100 m/s. The first ten conjugate pairs of complex

eigenvalues and complex eigenvectors are obtained, and the variation of these complex eigenvalues

versus wind velocity is plotted in Fig. 18. It is observed that the imaginary part of complex

eigenvalues for all modes remains almost unchanged in the considered wind velocity range, while

the real part of complex eigenvalues for bending and torsional modes exhibits a significant

alteration with the increase of wind velocity. As shown in Fig. 18(a), the real part of the 10th

complex mode crosses over zero at a wind velocity of 63.1 m/s, identifying the occurrence of flutter

instability. The flutter frequency is predicted as 0.9315 Hz.

Fig. 17 Finite element model of Dongting Lake Bridge for flutter analysis

Fig. 18 Variation of complex eigenvalues versus wind velocity for Dongting Lake Bridge
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Then the analysis is repeated by assuming that the damping ratios ξj for all the first ten modes are

0.5%. In this case the proportionality coefficients α and β of Rayleigh damping matrix are obtained

by least square fit of the function

(14)

Fig. 19 shows the function values obtained from the assumed modal damping ratios and those

reconstructed by use of the fitted proportionality coefficients. After introducing the mechanical

damping matrix in the complex eigenvalue analysis, the flutter wind velocity is predicted as 183.5

m/s and the corresponding flutter frequency is 0.9246 Hz.

4.3. Humen suspension bridge

The Humen Bridge, as illustrated in Fig. 20, is a suspension bridge with a main span of 888 m

(Zheng and Yang 1998). The bridge deck is a stiffening steel box girder of 36.1 m wide and 3.0 m

high. The two main cables are 33 m apart and the bridge deck is suspended by hangers at intervals

of 12 m. The two bridge towers are 150.5 m high reinforced concrete structures. Wind tunnel tests

have been conducted on an aeroelastic model of the bridge (SLDRCE 1995) and the flutter

derivative parameters ,  and  have been measured under the wind attack angle of 0 degree

and 3 degrees, respectively. Fig. 21 shows the measured flutter derivatives.

In recognizing that only partial flutter derivative parameters were measured, complex eigenvalue

analysis is first carried out using theoretical flutter derivatives of the airfoil-like cross section. By

2ω jξj α βω j

2
+=

A2

*
A3

*
H1

*

Fig. 19 Least square fit of proportionality coefficients

Fig. 20 Illustration of Humen suspension bridge
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disregarding mechanical damping and sweeping wind velocity from 0 to 120 m/s, the first ten

conjugate pairs of complex eigenvalues and complex eigenvectors are extracted and the variation of

the complex eigenvalues versus wind velocity is shown in Fig. 22. The closely spaced modes make

it quite difficult to correctly trace a specified mode during the sweep of wind velocity. To ensure a

correct mode trace, the following correlation coefficient of mode shapes is examined for each

increment step of wind velocity

(15)

where φ is the mode shape obtained at the previous wind velocity step Ui−1; and ϕ is the mode

shape obtained at the current wind velocity step Ui. More the value of C is close to 1, more likely

the two mode shapes are similar. From Fig. 22, the critical flutter wind velocity and flutter

C
φ

T
ϕ( )

2

φ
T
φ( ) ϕ

T
ϕ( )

----------------------------=

Fig. 22 Variation of complex eigenvalues versus wind velocity obtained using theoretical flutter derivatives

Fig. 21 Flutter derivatives of bridge deck
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frequency are estimated to be 85.90 m/s and 0.2781 Hz, respectively, when having no mechanical

damping. Then the complex eigenvalue analysis is conducted again by assuming that the damping

ratios for all modes are equal to 0.5%. In this case the critical flutter wind velocity and flutter

frequency are computed to be 92.23 m/s and 0.2752 Hz.

As mentioned before, only three flutter derivative parameters were measured for the Humen

Bridge. The remaining flutter derivative parameters are calculated using Theodorsen’s formulation

(Theodorsen 1935). Then the measured flutter derivative parameters together with the calculated

flutter derivative parameters are used to predict the critical flutter wind velocity and flutter

frequency under the wind attack angle of 0 degree and +3 degrees, respectively, where the

mechanical damping ratios for all concerned modes are set as 0.5% which was also adopted in the

aeroelastic model test of the bridge (SLDRCE 1995). Figs. 23 and 24 illustrate the variation of the

predicted complex eigenvalues versus wind velocity under the wind attack angle of 0 degree and +3

degrees, respectively. Table 4 shows a comparison of the flutter wind velocity and flutter frequency

Fig. 23 Variation of complex eigenvalues versus wind velocity obtained using measured flutter derivatives at
0o attack angle

Fig. 24 Variation of complex eigenvalues versus wind velocity obtained using measured flutter derivatives at
3o attack angle
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predicted by the present procedure with those obtained using the M-S method and measured from

wind tunnel tests. A good agreement between the results obtained by the three approaches is

observed.

5. Conclusions

An ANSYS-based FE model for coupled flutter analysis of long-span bridges is developed in this

paper. The FE model utilizes a user-defined element, Matrix27, to model the aeroelastic forces

acting on the bridge, where the entries of aeroelastic stiffness and damping matrices in Matrix27

elements are parameterized in terms of wind velocity and response frequency. The critical flutter

wind velocity and flutter frequency are determined through complex eigenvalue analysis of an

integrated system of the structural FE model incorporating Matrix27 elements. Three case studies

are provided to verify the proposed method and demonstrate its capability for analyzing coupled

flutter of long-span bridges. In these examples, the flutter analysis results obtained by the proposed

method are compared with those obtained by an analytical solution, a multi-mode analysis

procedure, or wind tunnel tests, and a good agreement is observed. The proposed method enables

the full-order flutter analysis of long-span bridges to be conducted using the commercial FE

package ANSYS.
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Appendix: Macro for flutter analysis of the structure in case 1

/UIS,MSGPOP,3
/CLEAR
/PREP7
ET,1,beam4
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ET,2,mass21
N,1,0,0,
N,31,300,0,0
FILL,1,31
R,1,10,10,85.714,40,0.25,,,
RMORE,0,5.076,,,,,,
R,2,,,,4500,,,,
MP,ex,1,2.1e7 
MP,dens,1,0.2 
MP,gxy,1,8.077e6
TYPE,1
REAL,1
*DO,i,1,30
E,i,i+1
*ENDDO
TYPE,2
REAL,2
*DO,i,2,30
E,i
*ENDDO
/SOLU
D,1,ux,0,0,,,uy,uz,rotx
D,31,uy,0,0,,,uz,rotx
ANTYPE,modal
MODOPT,lanb,10
MXPAND,10
LUMPM,on
SOLVE ! undamped eigenvalue analysis
/POST1
*DIM, freq0,,10,
*DO,i,1,10
*GET,freq0(I),mode,i,freq,,,,
*ENDDO
FINI

/PREP7
ET,3,matrix27,,1,4,,,,,
ET,4,matrix27,,1,5,,,,
R,3,,,,,, ! initialize real constant
R,4,,,,,,
R,5,,,,,,
R,6,,,,,,

NGEN,2,40,2,30,1,0,-10,0 ! generate the fictitious nodes 
TYPE,3
REAL,3
*DO,i,3,29
E,i,i+40
*ENDDO
TYPE,4
REAL,4
*DO,i,3,29
E,i,i+40
*ENDDO

TYPE,3
REAL,5
E,2,42
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TYPE,4
REAL,6
E,2,42

TYPE,3
REAL,5
E,30,70
TYPE,4
REAL,6
E,30,70

NSEL,s,,,42,70
D,all,all 

! A1 = DRV(1,1)
! A2 = DRV(1,2)
! A3 = DRV(1,3)
! A4 = DRV(1,4)
! H1 = DRV(1,5)
! H2 = DRV(1,6)
! H3 = DRV(1,7)
! H4 = DRV(1,8)

FINISH
*DIM,STIF,,4,
*DIM,DMP,,4,
*DIM,ll,,2
*dim,drv,table,11,8,
*tread,drv,drv,txt,,, !input flutter derivatives from drv.txt
*DIM,freq1r,,10,
*DIM,freq1i,,10,
*cfopen,result,txt

b =40.0
p = 1.248e-4
ll(1)=10
ll(2)=15

! Notation:
! ii -- cycle over wind velocity
! jj -- cycle over number of comlex modes
! kk -- frequency iteration

*DO,ii,0,180 !wind velocity range
U=ii

*DO,jj,1,10 ! number of complex modes
/PREP7
omiga = freq0(JJ)*2*3.1415926
f0 = omiga/(2*3.1415926)

*DO,kk,1,5 ! iteration steps
/PREP7
ru = u/(f0*b)
rku =2*3.1415926*f0*b !RKU=U*RK

*DO,i,1,2
KKK= ll(i)*p*(rku**2)  ! stiffness coef
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CCC = ll(i)*p*b*rku  ! damping coef
STIF(1) = -KKK*DRV(RU,8)
STIF(2) = -KKK*B*DRV(RU,7)
STIF(3) = -KKK*B*DRV(RU,4)
STIF(4) = -KKK*B*B*DRV(RU,3)
DMP(1)  = -CCC*DRV(RU,5)
DMP(2) = -CCC*B*DRV(RU,6)
DMP(3)  = -CCC*B*DRV(RU,1)
DMP(4)  = -CCC*B*B*DRV(RU,2)
RMODIF,2*(i+0.5),13,STIF(1),,STIF(2)
RMODIF,2*(i+0.5),34,STIF(4)
RMODIF,2*(i+0.5),64,STIF(1),,STIF(2)
RMODIF,2*(i+0.5),73,STIF(4)
RMODIF,2*(i+0.5),83,STIF(3)
RMODIF,2*(i+0.5),122,STIF(3)
RMODIF,2*(i+1),13,DMP(1),,DMP(2)
RMODIF,2*(i+1),34,DMP(4)
RMODIF,2*(i+1),64,DMP(1),,DMP(2)
RMODIF,2*(i+1),73,DMP(4)
RMODIF,2*(i+1),83,DMP(3)
RMODIF,2*(i+1),122,DMP(3)
*ENDDO
FINISH
/SOLU
ANTY,modal
MODOPT,damp,20
MXPAND,20
LUMPM,on
ALLSEL,ALL
SOLV
FINISH

*DO,I,1,10
 K=2*(I-1)+1 
!extracting the real part (damping) of complex modes
 *GET,FREQ1R(I),MODE,K,FREQ,,,, 
!extracting the imaginary part (frequency) of complex modes
 *GET,FREQ1I(I),MODE,K,FREQ,IMAG,,, 
*ENDDO
F0=FREQ1I(JJ)
*ENDDO
/post1

temp1=FREQ1R(jj)
temp2=FREQ1I(jj)
*vwrite,temp1,temp2
(4(f10.5,5x))
*ENDDO
*ENDDO

CC




