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Probability distribution and statistical moments
of the maximum wind velocity
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Abstract. This paper formulates a probabilistic model which is able to represent the maximum
instantaneous wind velocity. Unlike the classical methods, where the randomness is circumscribed within
the mean maximum component, this model relies also on the randomness of the maximum value of the
turbulent fluctuation. The application of the FOSM method fumishes the first and second statistical
moments in closed form. The comparison between the results herein obtained and those supplied by
classical methods points out the central role of the turbulence intensity. Its importance is exalted when
extending the analysis from the wind velocity to the wind pressure.
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1. Introduction

The wind engineering literature generally defines the design wind actions on structures by two
alternative methods (Solari 1993). The first method associates the maximum value of the pressure
with the maximum value of the velocity given as the product of the mean velocity value by the
related gust factor. This factor is a function of the duration of the gust peak, which depends on
the exposed surface according to suitable spatial-temporal equivalence criteria.

The second method expresses the maximum value of the pressure as the product of the mean
pressure value by the related gust factor. This factor takes into account the non-contemporaneity
of the maximum local pressures on the exposed surface, using the theory of the stochastic time
dependent fields. Both the above methods circumscribe the randomness of the physical
phenomenon within the maximum values of the mean velocity and the mean pressure. The
respective gust factors synthesize the role of the maximum turbulent fluctuations, which are
random variables, according to the well-known pseudo-deterministic principles formulated by
Davenport (1961, 1964).

This paper evaluates the distribution of the maximum instantaneous wind velocity by a so
called maximum summation method (Schettini 1996). Section 2 provides the formulation of
the model by means of which the instantaneous wind velocity is schematized. On the basis of
considerations regarding the physics of the aeolian phenomenon, the maximum instantaneous
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wind velocity is identified with the maximum fluctuation achieved concomitant with a
suitable neighbourhood of the maximum mean velocity. This method, illustrated in Section 3,
utilizes the results of numerical experiments presented in Section 4. The first and second
statistical moments of the maximum instantaneous wind velocity are evaluated in Section 5 using
the FOSM (“First-Order & Second-Moment") technique. Section 6 illustrates some applications
comparing the results of the procedure herein proposed with those supplied by the classical
methods. Section 7 discusses the conclusions and the perspectives of this work, above all the
extension of this formulation from the wind velocity to the wind pressure (Schettini 1996,
Schettini and Solari 1998). :

All studies herein carried out refer to well-behaved climates and extra-tropical cyclones.
Extensions to mixed populations comprehending different phenomena such as tropical cyclones,
tornadoes, downbursts, frontal and thunderstorm winds involve advanced approaches (Gomes and
Vickery 1977, 1978). Analogous developments are necessary to take climate changes into account

(Kasperski 1998).

2. Wind velocity

Neglecting the explicit dependence on height above ground for simplicity of notation, let V
be the instantaneous wind velocity.

The mean wind velocity, or macro-meteorological component of V (Van der Hoven 1957),
is defined as :

1 t+Al/
Vo (t ) AT It~AT/

Ve V(E)dE D

2

where ¢ is the time and AT is the time interval (ranging between 10 minutes and 1 hour)
where V is averaged. It is assumed that V, varies so slowly over the time as to be considered
as constant in AT.

The atmospheric turbulence, or micro-meteorological component of V, is defined as :

Vi()=V(t)-V,(1) ¥))

Unlike V,, V' varies rapidly over the time.
The standard deviation of turbulence is defined as :

o=\ 2 o v EraE ®

Like V,, also oy varies so slowly over the time as to be considered as constant in AT.
It is assumed that the ratio between the standard deviation of turbulence and the mean wind
velocity, defined as turbulence intensity, is independent of time :
_ov(1)
Vo (1)

Finally, the following nondimensional quantity :

I, (Vo >0) )
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9'(0%% (6> 0) ©)

is defined as the reduced turbulence. Like V', also V' varies rapidly over the time.
Utilizing Eqgs. (1)~(5), the instantaneous wind velocity assumes the form :

V()=Ve())[1+L V' ()] (6)
where V(¥), V, (), V'(), V’(t) and oy.(f) can be treated as mono-dimensional stochastic
stationary processes (Davenport 1967, Gomes and Vickery 1977).

2.1. Mean wind velocity distributions

Using the Weibull model (1951) corrected by the hybrid technique (Takle and Brown 1978,
Conradsen et al. 1984, Solari 1996a), the probability density function (pdf) and the cumulative
distribution function (cdf) of the mean wind velocity V, are given by :

fv. (vo) =F, 5(v0)+(1—F0)1c‘- (KC-] exp[_ Yo J } )

Fy,(vo)=F, +(1-F, ) { 1—exp {— ("c ] ®)

where v, is the state variable of V,; F, is the probability that V,=0; §( ) is Dirac's function ;
c and k are model parameters.

The distribution of the maximum value of the mean wind velocity V,, in a generic time
interval T> AT is generally obtained by the asymptotic analysis or by the process analysis
(Lagomarsino et al. 1992, Solari 1996b).

Applying the asymptotic analysis, the pdf and the cdf of V,,, are expressed by the I type
asymptotic distribution (Gumbel 1958) :

Frau (Voy ) =a exp{—exp[~a (v,, —u)]} exp[-a (v, ~u)] ©
Eyp (Va ) =exp{~exp[~a (vayr —u )]} (10)

where v, is the state variable of V,,; a, u are model parameters. The mean value and the
standard deviation of V,,, are known in closed form (Benjamin and Cornell 1970) :

0.5772
Py =4 +— an
T
GVoM = —6—(1- (12)

The process analysis schematizes the mean wind velocity as a stochastic stationary process
(Davenport 1967, Gomes and Vickery 1977). Assuming that the up-crossings of a sufficiently
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high velocity threshold are Poissonian events, the pdf and the cdf of V,,, are given by (Solari
1996b) :

Jvpg Ve )=—2 exp{—2o fv, (Vo ) } X

ot (][22 0] o

FVDM(voM)=eXp{_AO fVo (voM)T} (14)
where :
To=[ Vo f; (Vo)dv, (15)
0 o
fy, is the pdf of V,, , V,, being the prime temporal derivative of V.
2.2. Reduced turbulence distributions

The reduced turbulence V'(f) is a stochastic stationary Gaussian process with zero mean and
unit variance. _

Let V', be the maximum of V' in the time interval AT where V,=v,, v, being a generic
mean wind velocity. Applying the procedure formulated by Davenport (1964), the pdf and the
cdf of V', are given by :

= =, Vi Vo
f;',n( Vim)= v;,AT Vn€Xpy— > exp —v;,AT exp [— > jl (16)
~ v 2 '
F;, (vn)=exp|-v, AT exp| — 2’” )

where v',, is the state variable of 17’,,,; v, is the expected frequency of V'

1 oy
Vo, = — 18
vi 2w Oy (18)

oy'is the standard derivation of V', V. being the prime temporal derivative of V'. The mean
value and the standard deviation of V', depend on vy, through the expressions (Davenport

1964) :
0.5772
_ =AZWm[AT V- ]+ 19
ks, LAY ZI[AT v ] )
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n 1
o, =— 20
m N6 [2In[AT v; ] @0
Applying the closed form solution developed by Solari (1993) :
G, =vo Iy 1 @)
0.74
'\/ 1+0.56 ( L J
Ly
21
oy = V, 1y 1.124 (22)
Ly .
074 144
1+0.56 | 2o e
Ly Ly
where Ly is the integral length scale of turbulence; 7 is the duration of the gust peak.
Substituting Egs. (21), (22) into Eq. (18), it follows :
0.28
= 0.178 v, 23)
10.72 L ‘9,28

which points out the dependence of vy, and therefore of the distribution of l7’,,, (Egs. (16),
(17)), on the mean wind velocity v,.

3. Maximum summation method

The maximum summation method (Schettini 1996) is based on the physical property that
the turbulent fluctuations are large where the mean wind velocity is large. The method
assumes that the maximum instantaneous wind velocity V), during the time interval T occurs
concomitant with the maximum atmospheric turbulence in the time interval AT = AT,,; where
V,=Var, Vour being the reduced maximum mean wind velocity (Fig. 1). It follows that :

o~

Viu =Var (1+L,V ) (24)
VoMR =B VoM (25)

in which V'_ is the maximum value of V' in AT,,, called the maximum reduced fluctuation.
Vi is the maximum mean velocity during 7. B & [0, 1] is a stochastic variable referred to as
the noncontemporaneity factor; its distribution and statistical moments are defined in the
following section.

Assuming V,, and V', as statistically independent, the cdf of V,, is given by :

Fog )= [ fro (o ) Fy. ( 5 —i]dvom (26)

Iv VOMR Iv
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Fig. 1 Maximum instantaneous velocity

where vy, and v, are the state variables of V), and V,z; fy,, . is the pdf of Vi, Fy. _ is the
cdf of V', The latter is given by Eqgs. (17) and (23) assuming v, = v,
Considering V,,, and B as statistically independent, f, , . is provided by :

fv,,MR (VoMR)z'[;fB (b)fVoM (‘)OMR ]ldb (27)

b |b

where b is the state variable of B; f; and f, , are the pdf of B and V.
Defining :

fo(b)=68(b-1) (28)

is equivalent to assume that the maximum instantaneous wind velocity V,, occurs concomitant
with the maximum atmospheric turbulence in the time interval where the maximum mean
wind velocity V,, is achieved. Eq. (28) obviously provides an upper limit of the maximum
real value.

Furthermore, disregarding the randomness of the maximum turbulence means postulating :

F; ( Vin)=H (Vim k5, ) (29)

where V', is the maximum reduced fluctuation in the time interval AT,, where V,=V,,;
Fy., and v, are the cdf and the state variable of V'..; H() is Heaviside function; W,
is the mean value of V',, and represents a peak factor (Davenport 1964). It is given by Egs.
(19), (23) assigning v,=v,,. The substitution of Eqs. (28), (29) into Egs. (26), (27) leads to
the following relationship :

Fuy (%) =Fuy [gi J (30)

which, consistent with classical methods, implies :
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VM = VOM GV (31)
GV - 1 +u";, IV (32)

where Gy, is referred to as the velocity gust factor (Solari 1993).

4. Noncontemporaneity factor

The distribution of noncontemporaneity factor B is evaluated by numerical experiments.
Analyses are performed based on mean wind velocity measurements (over AT =10 minutes)
carried out at five Italian meteorological stations (Ballio ez al. 1997).

Table 1 lists the stations examined showing, for each one, the time interval #,-¢, of the available
data, the latitude @, the longitude @, the height a, above sea level, the characteristics of the site
(H=hilly terrain, C=coast, P=plain), the height # above ground of the anemometer, the
acquisition system. Data measured every 3 hours have been suitably interpolated with the aim of
realizing a base of continuous measurements extending over several years.

In order to ensure a homogeneous treatment, measured velocities have been transformed
into reference velocities corresponding to various conventional sites characterized by different
values of the roughness coefficient z, and of the turbulence intensity .

For each reference site and for each transformed v, value, assumed as constant in AT, the
maximum instantaneous wind velocity in AT has been determined by generating an artificial
occurrence of the maximum fluctuation using the Monte Carlo technique.

The maximum mean velocity v, and the maximum instantaneous velocity v,, have been
initially obtained for data blocks corresponding to T=1 year. The maximum reduced mean
velocity v,y is the value of v, in correspondence of which v, occurs; b=v, /v, is the
occurrence of B. In order to obtain enough occurrences of B to derive its distribution, this
criterion has been applied 1000 times per each year of available data at the stations and
reference sites examined.

Fig. 2 shows some typical histograms of noncontemporaneity factors referred to single stations
and single years. It is apparent that B assumes values averagely close to 1. Furthermore, its
statistical moments do not seem to depend on the position of the station considered and on the
year examined (Schettini 1996).

Fig. 3 collects all the results of the numerical experiments showing the mean value and the
variance of B as functions of the turbulence intensity I, for T=1 year. The expressions :

Mg =1-1.8217+6.121}-6.441;} (33)
07 =0.0817-0231}+0.191;} (34)
Table 1 Characteristics of the meteorological stations
stations t-t, D 2] a, [m] h [m] site acquisition
Campomarino  1985~1992  41°57' 15°01' 15 90 P continuous
Catania 1951~1990 37°28' 15°03' 15 10.5 P every 3 hours
Fiume Santo 1981~1985  40° 50’ 817 15 40 P continuous
Macerata 1984~1989  43°18' 13°25' 15 300 H continuous

Santa Caterina 1981~1988  39°05' 8°29 15 1 CP continuous
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Fiume Santo 1985 Macerata 1985 Santa Caterina 1983
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Fig. 2 Histograms of B
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Fig. 3 Mean values and variances of B as functions of I, (T=1 year)

constitute adequate representations of the data.

In accordance with these graphs, when I, approaches zero the maximum instantaneous velocit
Vi coincides with the maximum mean velocity V,,,; in this case the mean of B approaches on
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and the standard deviation approaches zero. When, on the other hand, I, increases, so does the
probability that the maximum instantaneous velocity does not occur concomitant with the
maximum mean; this is confirmed by the fact that the standard deviation of B increases while,
more significantly, its mean decreases.

Variable B is modelled by a beta distribution whose pdf is given by :

fa(b)=5 b (1= )™ ¢9)
_I()I(=r)
B =110 (36)

where I{) is gamma function; r and ¢ are model parameters linked with the mean value u;
and with the variance 0;" of B through the relationships :

40.00 40.00 16.00
.00+ 35.00
35.00 12.00
30.00 30.00
r 1 t 1 B 800
25.00 25.00 -
] ] 400
20.00 20.00 ~
15.00 —— 15.00 A S A B 0.00 e ep— ey
0.00 0.10 0.20 0.30 0.40 0.00 0.10 0.20 0.30 0.40 0.00 0.10 0.20 0.30 0.40
v . v Iv
(@ (b) ©
Fig. 4 Parameters r (a), ¢t (b) and B (c) as functions of I, (T=1 year)
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7 —@— ve04 4.000E-t —| 8- wvs03
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Fig. 5 Mean values and variances of the noncontemporaneity factor as functions of T
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t=“L(-1;LB)—1 (s + 0) (37)
O-B
r='u;(10_:'uB)_,uB (03 #+ 0) (38)

Fig. 4 shows the diagrams of 7, ¢ and B corresponding to different turbulence intensities.

Fig. 5 illustrates the results of some preliminary analyses (based on data referred to Catania)
aimed at obtaining the dependence of 14 and o;” on the period T over which the maximum is
calculated. For T tending to the lower limit AT (outside the diagram) the maximum instantaneous
velocity tends to become concomitant with the maximum mean velocity; as a consequence [
tends to one and o tends to zero. For T greater than one year, y; decreases and o, increases; in
this case the graphs seem to become relatively uncertain, above all due to the limited quantity of
the available data.

5. Statistical moments of the maximum

The maximum summation method has the advantage that the maximum instantaneous wind
velocity may be analytically expressed as a function of random variables whose distributions
and statistical moments are known. By virtue of this property, the first and the second
statistical moments of V,, may be conveniently evaluated by the FOSM (First-Order Second-
Moment) method (Ditlevsen 1981, Kareem 1987, Solari 1996¢, 1997).

On the basis of Egs. (24) and (25) the maximum instantaneous wind velocity is a function
of the three random variables V,,,, B and V', .. As such, it can be expressed in the form :

VM =F(X1’X27X3) (39)

where X, =V, , X,=Band X,=V' .
Expanding Eq. (39) in Taylor series around the mean values 1, of the stochastic variables
X; (i=1,2,3) and retaining up to the first order derivative terms, it follows :
aF (X17X29X3) ¢
X,

3

Vi =F (Meys Mxys Hxy)+ Y (X — Ly, ) (40)
i=1

in which dF()/dX;|’ is the partial derivative of F with respect to X, calculated in X=g;.

Applying the mean and variance operators to Eq. (40) and assuming the variables X, as
statistically independent, the following relationships are obtained :

s = Uy, U (1+1y .U;,MR) (41)
oy =U2 L ot +L o;+ v 5> 0%, (42)
M M ‘u‘%M VoM ,l.l; (1+IV /.l;, ) VomR
o omR

where My, and 0'2‘7;”( are the mean value and the variance of V', .
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As confirmed by the examples reported in next section, the precision of Eqs. (41) and (42)
is usually so high as not to require the use of second order approaches (Solari 1997).

Furthermore, the possibility of utilizing known values and closed formulae of the quantities
in Eqgs. (41), (42) makes their application very simple and meaningful. As a rule, i, and
O’y constitute a data of the problem; 1 and ¢ are known as functions of I, (Egs. (33), (34))
and T (Fig. 5); yy . and O'ZVM are supplied by Egs. (19), (20) and (23) assigning v, =y, Uz .

Finally, imposing B=1, i.e., #;=1 and 6%=0 and neglecting the randomness of the
maximum value of the turbulence, i.e., 0'2‘7,0”‘ =0, the classical formulae are obtained :

I'l'VM = 'uVoM GV (43 )
O-VM = O-VoM GV (44)

in which Gy is the velocity gust factor (Eq. (32)).
The comparison between Egs. (43), (44) and Egs. (41), (42) highlights the evolution of the
method proposed with respect to the classical theory.

6. Applications and comparisons

The application and effectiveness of the above procedure are illustrated by using, as an
example, the wind data registered at the meteorological station of Santa Caterina. Measured mean
wind velocities are transformed into homogeneous velocities associated to conventional sites with
height z=30 m and roughness coefficients z,=0.003, 0.1 and 3 m, corresponding to turbulence
intensities 1, =0.133, 0.178 and 0.327 (Solari 1993). Analyses are carried out assuming T=1 year.

The distribution of the yearly maximum mean wind velocity is evaluated by the asymptotic
analysis (A) and by the process analysis (P). The parameters of the two distributions are
summarized in Table 2. Table 3 provides the parameters of the noncontemporaneity factor.
Table 4 lists the main parameters of the atmospheric turbulence (Solari 1993).

The study is carried out by calculating the distributions of the maximum instantaneous
wind velocity with the aim of comparing the results provided by classical analyses reported in
the literature (L) with those obtained applying the maximum summation method (MSM) and
its simplification based on B=1 (MB1).

Table 2 Parameters of the mean wind velocity

z, [m] 0.003 0.1 3
a [s/m] 0.369 0.466 0.908
u [m/s] 31.03 24.61 12.63
Hyos [m/8] (A) 32.59 25.85 13.27
Ova [M/s ] (A) 2.93 2.33 1.19
c[mys] 6.622 5.253 2.696
k 1.445 1.445 1.445
F, 0.0045 0.0045 0.0045
Ao [m/s%) 8.04x10* 6.38x10* 327x10*
Hyos [/s] (P) 32.29 25.61 13.14

Gvon [m/s ] (P) 2.91 2.31 1.17
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Table 3 Parameters of the noncontemporaneity factor

Iy 0.133 0.178 0.327
y7 0.9802 0.9703 0.9457
o} 0.0009 0.0014 0.0026
t 19.80 19.11 18.11
r 19.41 18.55 17.13
B 0.711 0.302 0.061

Table 4 Parameters of the atmospheric turbulence

z, [m] 0.003 0.1 3
I, 0.133 0.178 0.327
Ly[m] 279 154 86
7[s] 1 1 1
o3 A) 2.85 2.88 2.87
v, . (A) 0.450 0.444 0.445
&, . ® 2.84 2.87 2.86
O%,n ® 0.445 0.440 0.441
80.00
d
|ty (Vou)
-
E; = fvo( Vo) . i
>° >_°
>= B >=
_ 4 A
4 - f — 0.00 v T T T Y T T
0.00 20.00 40.00 80.00 80.00 10° 10’ 102 108 10¢

Vo Your V) Im/s]

R [years]
Fig. 6 Distributions of V,, V,, and V,, for I,=0.178 using classical method (L)

Applying the classical methods for I,=0.178, Fig. 6 shows the pdf of V,, V,,, and V,. It
also furnishes V,,, and V), as functions of the mean return period R. Since the parameter & of
the population distribution (Eq. (7)) is greater than one, asymptotic analysis turns out to be
conservative compared to process analysis (Lagomarsino et al. 1992).

Fig. 7 compares the distributions of the maximum calculated with the classical methods and
those proposed in this paper for I, =0.178. Taking the randomness of the maximum turbulence
into account, the step from L to MBI involves an increase in the dispersion. Taking the
randomness of B into account, the dispersion increases further moving from MB1 to MSM;
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Fig. 7 Distributions of V,, for I,=0.178: (a) asympotic analysis (A); (b) process analysis (P)

furthermore, since 143 < 1, mean values associated with MSM are less than those obtained by MBI.

With reference to the process analysis only, Fig. 8 shows the distribution of V), on varying the
turbulence intensity I;. The results demonstrate that classical methods decrease in accuracy as
atmospheric turbulence grows in intensity. For example, in correspondence with V=35 m/s
and I,=0.327 the classical methods estimate R~1000 years, while the model proposed yields
R~300 years.

Table 5 compares the first and second statistical moments of V,, rigorously deduced from
the distributions and obtained applying the FOSM technique. The precision associated with
the use of FOSM is apparent. Classical methods yield adequate approximations of uy, while
underestimate oy, to a degree which increases on increasing the turbulence intensity.
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Fig. 8 Distributions of V), using process analysis: (a) I,=0.133; (b) I,=0.327

7. Conclusions

This paper formulates a probabilistic model to represent the maximum value of the
instantaneous wind velocity.

Unlike the classical methods, where the randomness of wind velocity is circumscribed within
the mean maximum component, this model also takes into account the randomness of the
fluctuating maximum component. Through the formulation of a series of physically realistic
hypotheses, the distribution of the maximum is obtained by applying classical probability
theorems. The use of the FOSM technique, favoured by the mathematical structure of the
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Table 5 First and second statistical moments of V,, using the FOSM technique (1) and the probabilistic
analysis (2)

z, [m] 0.003 0.1 3
I 0.133 0.178 0.327
Process analysis (1) ) 1) ) 1) 2)
L 44.75 44.75 38.71 38.71 25.52 25.52
[rﬁ ‘;MS 1 MSM 44.57 44.42 38.52 38.37 2531 25.18
MB1 45.48 45.33 39.73 39.58 26.42 26.28
L 4.07 4.07 3.52 3.52 232 2.32
[31‘7”5’] MSM 4.67 4.66 4.29 4.28 3.21 3.19
MB1 4.57 4.55 4.14 4.11 3.07 3.04
z,[m] 0.003 0.1 3
I, 0.133 0.178 0.327
Asymptotic analysis 1 2) 1) ) 1) )
L 45.17 45.17 39.07 39.07 25.76 25.76
[/1;1%] MSM 44.99 44.84 38.88 38.74 25.56 2542
MB1 45.91 45.76 40.10 39.95 26.67 26.53
L 4.80 4.80 4.15 4.15 2.74 2.74
[g%] MSM 532 532 4.83 4.83 3.54 3.52
MB1 5.26 5.25 4.73 4.71 3.43 341

model, furnishes the first and second statistical moments in closed form. It is shown that the
gust factor method may be deduced from these expressions as a simplified particular case.

The comparison between the results supplied by the classical methods and those obtained
by the proposed procedure points out increasing differences on increasing the turbulence
intensity. At least with reference to the cases developed here, such differences appear as
relatively moderate.

This method represents a starting point for expressing the distribution of design wind
actions on structures in complete probabilistic terms. Operating in this context, the step from
velocity to pressure exalts the differences observed above, underlining the conceptual and
quantitative importance of the problem debated (Schettini and Solari 1998).
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