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Abstract. The vibrations of bodies subjected to fluid flow can cause modifications in the flow conditions,
giving rise to interaction forces that depend primarily on displacements and velocities of the body in question.
In this paper the linearized equations of motion for bodies of arbitrary prismatic or cylindrical cross-section in
two-dimensional cross-flow are presented, considering the three degrees of freedom of the body cross-section.
By restraining the rotational motion, equations applicable to circular tubes, pipes or cables are obtained. These
equations can be used to determine stability limits for such structural systems when subjected to non uniform
cross-flow, or to evaluate, under the quasi static assumption, their response to vortex or turbulent excitation. As
a simple illustration, the stability of a pipe subjected to a bidimensional flow in the direction normal to the
pipe axis is examined. It is shown that the approach is extremely powerful, allowing the evaluation of fluid-
structure interaction in unidimensional structural systems, such as straight or curved pipes, cables, etc, by
means of either a combined experimental-numerical scheme or through purely numerical methods.
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1. Introduction

Fluid flow past fixed boundaries, as well as the pressure excerted on those boundaries, may
be significantly altered by motion of the boundary. Thus, as it displaces and oscillates in
response to the interface pressures, a flexible structure immersed in fluid flow will influence the
excitation, in a process known as fluid-structure interaction. This may give rise to enhanced dy-
namic response, or to hydro or aeroelastic instability.

Although the phenomenon has wide implications in engineering, from the design of long span
bridges, to pipe bundles in heat exchangers or vibrations of iced conductors, not to mention
some of the most important problems of aeronautical engineering, there is yet no comprehensive
theory or global approach to the subject. The so called pseudo-static theory, as presented by
Brito and Riera (1995) offers such possibility, at least for two-dimensional situations. In fact,
the authors suggested a general procedure to obtain the displacement and velocity dependent
interaction forces in case of a cylindrical body subjected to a nonuniform flow, from which the
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equations applicable to many well known problems, such as simple galloping, coupled vertical
and horizontal galloping, vibration of conductor in the wind field modified by others conductors,
may be obtained.

In this paper those general equations are reproduced. The equation of motion of a tube in a
bidimensional flow is then obtained and the ensuing problem of dynamic instability investigated.
It is shown that the approach, which so far has been shown to accurately predict at least the
onset of dynamic instability, is quite appealing for design applications.

2. Aerodynamic forces in two-dimensional flow

Consider a cylindrical or prismatic body submerged in a fluid that flows with uniform velo-
city V, in the free field, oriented in the direction normal to the shear axis of the body. In order
to render the final equations applicable to thin-walled, open section or multiple cell beams, the
so-called shear or flexure center is adopted as origin of the coordinate system. If the body
presents two planes of symmetry, the shear center coincides with the center of gravit of the
cross section. The Ox axis of the rectangular coordinate system is taken parallel to the velocity
vector in the free field, while the Oz axis coincides with the axis of the body.

Under those conditions it may be assumed that, in the neighbourhood of the plane of interest
z=constant, the flow remains bi-dimensional. In general, except for very low flow velocities, the
resulting fluid pressures will fluctuate with time ¢ Hence, the forces per unit length of the
cylinder in the Ox and Oy directions, as well as the torsional moment may be assumed to be,
under quite general conditions, stationary random processes with expected values given by

F. =3 PVABC. (@), F, =2 pVIbC, (@), M = 5 pV2b'Cy (), (1)
in which p denotes the specific mass of the fluid, b is a characteristic cross sectional dimension,
usually equal to the body's projection on a plane normal to the Ox axis, while C,, C, and C,
are nondimensional coefficients that depend on the shape of the cross section as well as on the
angle of incidence .

For any given cross-section, the coefficients C,, C, and C,, may be experimentally obtained in
wind tunnel tests. It is well known, however, that under nonuniform flow conditions, the free-
field turbulence may affect the coefficients under consideration, which may also vary with
Reynolds Number Re. Hence, it will be further assumed that C,, C, and C,, can be measured
under the flow conditions that correspond to the specific problem at hand, in which case they
may be considered functions of « only.

There is ample evidence, moreover, suggesting that Egs. (1) are still valid if V, and o are
slowly varying functions of time. Theories based on this hypothesis are known as quasi-static.
They have been successfully used in the study of galloping oscillations. Assume now that the
flow is not uniform, but defined by the equations

Vx:(PxVOa Vy:(pyVo, (2)

in which V, and V, denote the flow mean velocity components in the x and y coordinate direc-
tions and ¢,, ¢, being continuous, differentiable, slowly varying functions of x and y. The
dimensions of the body are small in comparison with the length scale of the fluctuations of ¢,
and @,. The velocity field (2) may be produced by an upstream obstacle, or group of bodies, or
simply by the flow boundary conditions.
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Fig. 1 Definition of relative velocity vector

Consider now that the body is displaced, u, v being the displacements in the coordinate direc-
tions, and @ the rotation around the shear center. The square of the modulus of the incident velo-
city V,, relative to the body, will then be given by

Vi=(Ve—in)*+(V, -1)° 3)
where dots represent derivatives with respect to time. Introducing Egs. (2) into (3) we obtain
V2=V +07)-2Vo (¢ u+¢y v)+u’+v? @)
On the other hand, the angle of relative incidence, shown in Fig. 1, becomes
L Vv
o= 0-tan _ 5)
Vi—u

The Egs. (1), initially proposed for a stationary body in uniform flow, may now be extended, in-
troducing a classical notion in aeronautical engineering, to the situation under consideration, by observing
that the aerodynamic coefficients depend both on ¢ as well as on the angular velocity of the body 8

Fi= %pV,szx (@, 0),F, = %pV,ZbCy (@, 8), M = %pv,szcM (@, 0) ©)

The expressions for the forces are nonlinear in the velocities u and v. Admitting now that v,

<<V, and expanding the coefficients C,, C, and C,,, as well as o and V,?, as power series
around a reference angle ¢, after some algebraic manipulations and neglecting higher order
terms, the following linearized equations may be obtained (Brito 1995, Brito and Riera 1995)

Fe| g Dol ul 1 ‘
F,l == pbV2{C, b +=pbV2A [vi + pbV2B {0 %)

in which

Co =(0+¢7) G, C=(07+97)C,, Cr=b (¢} +¢])Cy ®)



62 Jorge D. Riera and J.L.V. Brito

Morever, the coefficients of matrices A and B are given by :
All = 2CX (¢x ¢x,x +¢,V ‘Py,x )_¢x Cx,ll(l +aoz) ((py,x _av ¢x,x )

A=2C: (9 9oy +8 6, )= Coa(1402) (8, -0 8,,)
A13:Cx,a(¢xz+¢y2)

Ay=2C, (¢ 0+ ¢, )=0: Co(1+a)) (9~ 00 dpr)
Ap=2C, (¢ by +& ¢, )~ Cu(l+0)) (¢, — 00 )
Axn=C, o (9+9))

Ay =b [2Cu (¢ G+ 6,0 )= 0 Cura(1+ ) (@0 — 0o 1))

Ay =b[2Cy (¢ byt 8, )= Cua(lt ) (¢, — 0 §oy)]
Ay =bCyo(§7+¢))
B=[-2C, ¢.—C,o($ +0. 0 ) VV,
Bu=[-2Cc ¢ +C. ot (1+ X))V,
B, =C,o(¢7+9))
By=[-2C, ¢ —C,o(d +¢ a2)/V,
Bp=[-2C ¢ —C,o0. (1+a2) )V,
By =C, (9 +¢))

By=b[-2Cy ¢ —Cyo(+6 ) ]/V,

By=b[-2Cy ¢ +Cyad (1+02))/V,

B33, =bC,y, 4( o+ ¢y2 )

©)
(10)
(11)

12)

(13)
(14)

(15)

(16)
(17)

(18)

(19)
(20)

1)
(22)
23)
(24)

(25)
(26)

in which og=¢,/ ¢, and ¢,.=0¢,/dx, etc. The constants Cp, C;, C; and the elements of the ma
trices A and B are function of coefficients @,, ¢,, ¢, etc. as well as the aerodynamic constants
C,, C,,, etc, and are evaluated at the origin of the coordinate system (u=v=0=0). The
former characterize the flow at the location of the body, while the latter depend on the cross sec-
tion of the body. The important issue is that both sets of values may be determined in
independent wind tunnel tests; it is also possible to combine numerical predictions of the flow
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functions with experimentally determined aerodynamic coefficients.
3. Body with two degrees of freedom: restricted torsional motion

In many cases of practical interest, torsional vibration are negligible, either because the
torsional exitationis small or the torsional stiffness high. The aerodynamic forces may be ob-
tained from Egs. (7), by setting 8=0. For example, Jones (1992) studied the coupled vertical
and horizontal galloping oscillations of iced conductors. With the notation of this paper, the
interaction forces in such case (¢, =1, ¢,=0) are :

F 1 C 1 u
L 9p 2 D il 2n/ 27
) sl v .
in which :
’—__1__ -2Cp _(CL_CD,a)
5=, [ch ~(Cr+Cp0) (28)

the aerodynamic loads given by Eqgs. (27) coincide with the velocity-dependent forces con-
sidered by Jones (1992).

4. Aerodynamic forces for body with circular cross section

The general linearized Eqgs. (7) may also be particularized to a situtaion of considerable prat-
ical interest : the wake induced flutter in cables with circular corss-section. In fact, Egs. (7)
allow the treatment of cables with arbitrary cross-section, like ice-covered conductors and may
also be applied to wind induced instability of cables and other applications by setting 6=0.

Denoting by b and C, the cable diameter and drag coefficient, respectively, considering that
C, and C, are zero, and assuming that ¢,, the lateral velocity coefficient as well as its
derivatives are small quantities, the following equations may be obtained :

F)_1 L), 1 26— ] i
{F}—-z—prDVOZ{LZ}+—2_prD‘/() l:"(py _(bx:l _ +

\%
}_ 2 2¢x ¢X,x 2¢X (px,y u
T PGV [@ Goet 0 by B0y +0 ¢} {V} @9)
where

Li=(¢2+¢?)cosa,, L,=(¢>+¢?)sina, (30)

Note that there was an error in coefficients B, and B, in Egs. (29) as given by Brito and Riera
(1995). Eqgs. (29) reduce to the equations due to Simpson (1971) and Price (1975) to analyze the
vibrations induced in overhead conductors by the presence of parallel conductors in the upwind
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direction. The satisfactory results obtained in these applications also lend support to the validity
of the basic assumptions upon which they are based.

5. Dynamic stability of spring-supported pipe in bidimensional flow

By way of illustration, two simple applications of the preceding equations will be presented in
this section. Consider a pipe or tube parallel to the Oz axis, that is, normal to the plane of a bi-
dimensional flow defined by the functions ¢, and ¢,. Let the pipe be located at the origin of the
coordinate system xy, for the following cases :

a) Flow A : shear flow, presented in Fig. 2, where the nondimensional functions are

¢ =1-y/a and ¢ =0

b) Flow B : radial flow in direction to a sink of intensity Q, presented in Fig. 3, where the
nondimensional functions are

0 =0 (a-x)/[(x-a)+y’]and ¢ =-Qy/[(x-a) +y’]
The equations of motion for a two degrees of freedom system are :

T

Fig. 2 Spring-supported pipe in flow A

s\.\ /_sink

O—» X, U

pipe

YoV
qa
+ 1

Fig. 3 Spring-supported pipe in flow B
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m(i+2& o u+owlu)=F, (31)

m(V+2§ @ v+av)=F, (32)

in which m denotes the cylinder mass per unit length, ¢, and ¢ the damping ratios and @,, @,
the natural vibration frequencies. F, and F, denote the total flow interaction forces, per unit
length, in the coordinate directions.

For case a), the aerodynamic forces given by Egs. (29) take the form :

Fy| _ 2 11 -2 u 0 2/a)| lu
T R R I | R P 1

in which C,=1/2 p b C,. The first term in the right hand side represents mean values, giving
rise to a static response. Hence, it needs not be considered in instability analysis. When the
aeroelastic forces (33) are introduced in the equations of motion, the mass matrix M, the
effective damping matrix [ C+C’] and the effective stiffness matrix [ K+K'] can be show to be
positive definite for any velocity V,, indicating that the system is assyntotically stable.

Now, in case b), the aerodynamic forces also computed from Egs. (29) results:

Fy , 0° : ~ ] , 0°
{Fy} =C,V; %— {(1)} +C,V, % [_(2) _‘ﬂ i, v % {g _(1’] {ﬁ} (34)

v

Again, introducing Egs. (34) in the equations of motion (31-32) positive definite mass and
effective damping matrices result. On the other hand, the effective stiffness turns singular for a
critical value of the velocity V,. In fact:

_|mw-2C,Q* Va3 0
K+K = (395)
0 ma}+C,Q° Va3

Consequently, it is sufficient to investigate the static problem, since in this case the instability is
of the divergent type. It is evident that the effective stiffness matrix, given by Eqgs. (35),
becomes singular when its first diagonal term is zero, which leads to the critical velocity :

A ’ m w?a3
(Vo) o = _—_ZC(, Q2 (36)

6. Conclusions

An approach to evaluate fluid-structure interaction forces, applicable to any bidimensional
problem in which the wave lengths of the fluctuations of the functions ¢, and ¢, that des-
cribe the flow are larger than the body cross-sectional dimensions, is described. A simple ap-
plication to examine the stability of a spring-supported pipe in two different flow conditions
is presented.
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Notations

a a distance

Ay coefficientsof aerodynamic matris A in displacement-dependent term of Egs. (7)

b characteristic cross sectional dimension, usually the body's dimension normal to the flow
By coefficients of aerodynamic matrix B in velocity-dependent term of Egs. (7)

G, G, Cy nondimensional aerodynamic coefficients

Cp, G, Cr drag, lift and torsion coefficients, given by Egs. (8)

viscous damping matrix

total force exerted by the fluid in the x and y direction, respectively, per unit length of body.
clastic stiffness matrix

L, L, nondimensional coefficients in static component in Egs. (30)

mass per unit span of the cylinder

torsional moment around body's axis, per unit length of body

mass matrix

intensity of a sink

displacement of the body in x direction

displacement of the body in y direction

wind velocity in the free field

incident velocity

mean flow velocity components

angle between instantaneous wind velocity vector and Ox axis

arbitrary reference angle

reference angle in Taylor's series expansion of aerodynamic coefficinest, taken equal to ¢,/ ¢,
damping ratios, respectively, in the x and y directions

rotation of the body around its shear center

specific mass of the fluid

nondimensional functions of the spatial coordinates that define the mean flow
natural frequencies, respectively, in the x and y directions of vibration
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