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Abstract. Structural system identification (SSI) is an inverse problem of difficult solution. Currently,
difficulties lie in the development of algorithms which can cater to large size problems. In this paper, a
parameter estimation technique based on evolutionary strategy is presented to overcome some of the
difficulties encountered in using the traditional system identification methods in terms of convergence. In this
paper, a non-traditional form of system identification technique employing evolutionary algorithms is proposed.
In order to improve the convergence characteristics, it is proposed to employ immune algorithms which are
proved to be built with superior diversification mechanism than the conventional evolutionary algorithms and
are being used for several practical complex optimisation problems. In order to reduce the number of design
variables, domain decomposition methods are used, where the identification process of the entire structure is
carried out in multiple stages rather than in single step. The domain decomposition based methods also help in
limiting the number of sensors to be employed during dynamic testing of the structure to be identified, as the
process of system identification is carried out in multiple stages. A fifteen storey framed structure, truss bridge
and 40 m tall microwave tower are considered as a numerical examples to demonstrate the effectiveness of the
domain decomposition based structural system identification technique using immune algorithm. 

Keywords: system identification; domain decomposition; evolutionary algorithm; immune algorithm; mea-
surement noise; Nelder Mead algorithm.

1. Introduction

System identification (SI) is the process of constructing or updating the mathematical model of a

dynamical system based on input and output (I/O) observations. Structural system identification is

an important research topic and has greater significance for civil engineering applications. In

addition to updating numerical models for better response prediction, system identification can be

applied to health monitoring of structures and even detect damages based on changes in identified

parameters. For active vibration control of structures, actual parameter values of the structure, rather

than the assumed or design values, are required for effective control.

Due to rapid advances in computer and instrumentation capabilities, the use of structural

identification methods has increasingly become a feasible option for nondestructive structural

assessment. Research interest in this subject has been intense over the last two decades, and many

different methods have been proposed (Ghanem and Shinozuka 1995). Even though, the structural
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identification methods can be classified under various categories, the main categorization is perhaps

by means of the domain (frequency or time) in which structural identification is carried out.

Frequency (or spectral) domain methods often deal with natural frequencies, mode shapes, transfer

functions, mobilities etc. The major advantage of these frequency domain methods is that they give

better insight in to the physical behavior gained in terms of contributions of various dynamic

modes. Time domain methods, on the other hand, deal with the differential equations that describe

the state of motion and solve the equations at discrete times over time intervals. The idea is to

update the mathematical model with suitable parameters (to be identified) that can predict the next

output based on observed input. In comparison with frequency domain methods, time domain methods

are generally more capable of extracting detailed information by adjusting the system parameters so

that they match as closely as possible with the time-evolving measured output, however at a higher

computational cost. With their respective capabilities and limitations, frequency domain and time

domain methods should be taken as complementary rather than competitive. The choice of a

specific identification method depends on the nature of the physical problem, information available,

and the purpose of structural identification. In this paper, the time domain approach is employed.

Currently, a wide range of analytical methods exists for linear or nonlinear system identification.

Majority of earlier system identification methods comes under the purview of traditional methods,

uses invariably least square methods. Some of the popular methods include recursive least square

method (Tang et al. 2006, Yang et al. 2007, Zhang et al. 2007), the extended Kalman filter (Yang et

al. 2005), instrumental variable, and maximum likelihood methods (Ghanem and Shinozuka 1995),

Hα filter method (Sato and Qi 1998), particle filter method (Li et al. 2004, Tang and Sato 2005) etc.

These methods often have certain traits in common that tend to limit their applicability and success

due to the complexity of practical real world problems. Most of these methods require an initial

guess so that the process can start. The problem can be very sensitive to the choice of these initial

estimates, which makes them a poor choice if no prior knowledge is available. Further, these methods

(Ghanem and Shinozuka 1995) in one way or another, search the optimal solution by exploiting the

previous solution. As the system of unknowns grows in size, the numerical difficulty increases often

to the extent that the convergence becomes extremely difficult, if not impossible. Hence, the

challenge lies in developing system identification techniques to solve large and practical engineering

problems. some reasonable successes have been achieved with various meta-heuristic algorithms

such as genetic algorithms (GAs), evolution strategy (ES), simulated annealing (SA), and swarm

intelligence techniques. These heuristic stochastic search techniques seem to be a promising

alternative to traditional approaches In this paper, we present a formulation for system identification

in time domain using an evolutionary strategy, which has several advantages over traditional system

identification techniques. Nevertheless, if applied directly, this approach requires enormous computational

time when dealing with structural systems large in both unknowns and degrees of freedom. Keeping

this in view, a domain decomposition based approach is employed in order to identify the structural

parameters in multiple stages rather than in single step. This reduces the number of variables for

identification and also degrees of freedom, thereby considerably improves the computational efficiency

and also robustness of the algorithm. The domain decomposition formulations discussed in this paper

require only acceleration measurement at limited locations which can be measured much more

accurately when compared to velocities and displacements.

In recent years, population based meta-heuristic algorithms like Genetic Algorithms (GA) (Goldberg

1989), immune algorithms (IA) (Luh and Chueh 2004), swarm intelligence techniques (Dorigo et al.

1996, Eberhart and Kennedy 1995) like ant colony optimisation (ACO), particle swarm optimization
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(PSO) algorithms and also guided search algorithms like simulated annealing(SA) (Kirkpatrick Jr. et

al. 1983), tabu search (TS) (Glover 1990) are being popularly employed for solving variety of

engineering optimisation problems. Specific to structural system identification, Cunha et al. (1999) used

GAs to identify the elastic constants of composite materials. Franco et al. (2004) used evolutionary

strategies (ES) to identify multiple degree-of freedom (DOF) systems. Perry et al. (2006) used a modified

GA to identify structural systems. Chou and Ghaboussi (2001) introduced GAs method to identify

damage severity of trusses. Koh et al. (2000, 2000a, 2003) applied GAs method to solve the global

system identification problem in shear-type building structures. Levin and Lieven (1998) applied SA

method to optimize a finite element model for describing the dynamic behavior of structures.

However, it is a well known fact that every optimisation algorithm has its own advantages and

disadvantages. This fact is also valid for these modern meta-heuristic algorithms, too. For instance,

the performance of TS and SA usually depends on the starting point of the search since these two

algorithms employ a form of neighbourhood search mechanism. The main features of ACO algorithm

are distributed computation, positive feedback and constructive greedy search. Of these algorithms,

GA and artificial IA are the approaches inspired from biological systems. GA is a stochastic optimisation

algorithm employed for combinatorial and continuous optimisation problems. GA can efficiently search

large solution spaces due to its parallel structure and the probabilistic transition rules employed in

the operators. However, a basic GA has two main drawbacks: lack of good local search ability and

premature convergence. The natural immune system (Farmer et al. 1986, Dipankar Dasgupta 1999)

uses learning, memory, and associative retrieval to solve recognition and classification tasks. Specifically,

it learns to recognize relevant patterns, remember patterns that have been seen previously, and use

combinatorics to construct pattern detectors efficiently. The natural immune system is a great source

of inspiration for developing intelligent problem solving techniques and however a few computational

models have been developed. So, artificial immune systems emerged currently as a new computational

research area (Farmer et al. 1986, Dipankar Dasgupta 1999, Cortes and Coello 2003, Hunt and

Cooke 1996, Anoop Prakash et al. 2008, Naderi et al. 2009, Gong et al. 2008). An immune

algorithm simulates a learning technique carried out by natural immune system. The following are

some of merits of artificial immune algorithm (IA) over other popular probabilistic optimization

algorithms such as genetic algorithms.

i. IA operates on the memory cell, which guarantees fast convergence towards the global optimum.

ii. IA has an affinity calculation feature to numerically simulate the diversity of the real immune

system.

iii. The self-adjustment of the immune response can be numerically simulated to either encourage

or suppress antibodies production.

In this paper a method based on immune algorithm is devised and employed for solving complex

optimisation problem associated with structural system identification formulations. Application of

immune algorithm for structural system identification has not been reported so far, in the literature.

2. Formulation details

The governing equilibrium equation of structural dynamics can be expressed as

[M]{a} + [C]{v} + [K]{d} = {p(t)}  (1) 

With d(0) = d0 and v(0) = v0
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Where, M is the mass matrix, C is the damping matrix and K is the stiffness matrix. a, v and d

are the acceleration, velocity and displacement vectors respectively. p(t) is the time varying external

excitation force. Solution of this initial value problem requires integration through time. Any one of

the time integration procedures can be used for this purpose. In order to write the equations of

motion for the subdomain as shown in Fig. 1(b), the equations of motion for the entire structure can

be arranged as follows

(2)

where subscript ‘r’ denotes internal degrees of freedom of the subdomain concerned, subscripts ‘f’’ and

‘g’ denotes interface degrees of freedom of the substructure with the remaining structure on the two

sides ‘f ’ and ‘g’, respectively as shown in Fig. 1(a), and the subscripts u and d represent degrees of

freedom (DOFs) of the remaining structure. Let Subscript j denotes interface degrees of freedom (i.e., f

and g included) for concise presentation. For the subdomain considered, the equations of motion may

be extracted from the above system of equations as

(3)
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Fig. 1 Schematic view of domain decomposition approach
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The interaction effect at the interface is treated as ‘input’ and Eq. (3) can be rearranged as

(4)

By representing damping with Rayleigh damping coefficients, Eq. (4) can be written as 

 (5)

It is assumed that mass is known. Stiffness and damping parameters are unknown. Identification of the

global structure parameters requires response measurements at interface degrees of freedom and some

measurements at internal degrees of freedom. The point of application and magnitude of force is known

a priori. Acceleration measurements at the interface degrees of freedom are measured. The velocity and

displacement at the interface degrees of freedom can be obtained by integration. Since the R.H.S values

in Eq. (4) i.e., displacements, velocities and accelerations at the interfaces are known, time integration

can be performed with estimated parameters of stiffness and damping. Since the mass is known, the

actual mass matrix can be used in the time integration. In the present work, Newmark’s time marching

scheme is employed for time integration. 

The system identification is formulated as an optimization problem with element stiffness parameters

and damping coefficients (α and β), as design variables. The objective function is formulated by

comparing the actual acceleration responses obtained at some selected internal degrees of freedom

with the responses obtained from time integration scheme with estimated stiffness and damping

parameters. The fitness function can be defined in terms of the measured acceleration time history

at selected internal degrees of freedom

(6)

Where subscripts ‘m’ and ‘e’ denote measured and estimated quantities, respectively, NT is the number

of time steps and M is the number of measurement sensors employed at internal degrees of freedom.

The fitness function is alternatively referred to as objective function in this paper.

The complex nonlinear optimisation problem associated with the proposed domain decomposition

system identification formulations is solved using evolutionary computing techniques. In this paper,

an artificial immune algorithm has been employed for solving the optimisation problem.

3. Immune system

The natural immune system is a distributed adaptive novel pattern detection system with several

functional components positioned in strategic locations through out the body to defend from foreign

pathogens (bacteria or viruses). The immune system is able to categorize all cells (or molecules)

within the body and identify these cells as self or non-self (Dasgupta 2002).

It has dramatic and complex mechanisms that recombine the gene to cope with the invading

antigens, produce the antibodies and exclude the antigens (Mori et al. 1993). Pathogens are associated
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with specific proteins (antigens). The infection process involves invasion of a pathogen and its

proliferation within the organism. The immune system contains cells that are capable of recognizing

antigens and killing pathogens. These cells, further referred to as immune cells (antibodies), are randomly

distributed throughout the immune system. In the relatively evolutionarily advanced animals, the

immune system is capable of enhanced response to re-infection by an earlier encountered pathogen

(adaptive immunity). Each individual immune cell involved in adaptive immunity is capable of

recognizing only one type of antigen. Therefore, there is a huge diversity of immune cells in the

organism waiting for many possible antigens. In case of infection only a small proportion of immune

cells would react, i.e., those that are pre-programmed for this particular antigen. This interaction

triggers fast multiplication of these particular cells (clonal proliferation). The number of immune

cells capable of recognizing the specific antigens and killing the specific pathogen increases by many

orders. Thus, the organism’s immune system becomes tuned to fight not just random pathogens but

specifically the one that actually invaded (Gutnikov and Melnikov 2003). The clonal selection and

affinity maturation principles are used to explain how the immune system reacts to pathogens and

how it improves its capability of recognizing and eliminating pathogens. Clonal selection states that

when a pathogen invades the organism, a number of immune cells that recognize these pathogens

will proliferate; some of them will become effector cells, while others will be maintained as

memory cells. The effector cells secrete antibodies in large numbers, and the memory cells have

long life spans so as to act faster and more effectively in future exposures to the same or a similar

pathogen. During cellular reproduction, the cells suffer somatic mutations at high rates, together

with a selective force; the cells with higher affinity to the invading pathogen differentiate into memory

cells. This whole process of somatic mutation plus selection is known as affinity maturation (De

Castro and Timmis 2002).

4. Artificial immune algorithm

Inspired by the above clonal selection and affinity maturation principles, an artificial immune

algorithm is proposed for structural system identification. The objective function and constraints are

represented as antigen inputs. Initial antibodies are randomly generated on a feasible space. The

exploration of new antibodies is generally implemented by crossover and mutation. The Gaussian

mutation operator could be viewed as a heuristic mutation operator and is employed in artificial

immune algorithm. Clones of each antibody are mutated proportional to the objective function value

of their parent antibody, which is inversely proportional to the affinity between the antigen and

antibody. This embodies affinity maturation. An affinity calculation between antibodies is also

embedded within the algorithm to suppress similar antibodies. Through immune algorithm computations,

an antibody that most fits the antigen is considered as the solution to system identification problem.

Details of the proposed immune algorithm is discussed below:

1. Recognize antigen: formulate the objective function

2. Generation of initial group of antibodies: Initial group of antibodies is randomly formed.

3. Calculation of affinities of each antibody: Calculate the objective function and the affinity

between antigen and antibodies and normalize the vector of the objective function. It is corresponding

with the effectiveness of counter measures of the antibody. Moreover, the affinity between two

antibodies is calculated. It is corresponding with the resemblance of two antibodies. 

4. Clonal Proliferation and hyper-mutation: in biological immune systems, only antibodies
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stimulated by antigens enter the germinal center for clonal proliferation. In proposed immune

algorithm, the best antibody determined based on the affinity values are chosen for hyper-mutation

during the clonal proliferation process, with a user-defined hyper-mutation rate and proliferation

number. 

5. Renewal of memory cell: The antibody having high affinity with the antigen is added into the

memory cell. New antibody is placed in memory cell by replacing the already existing antibody

with close resemblance.

6. Selection of antibodies for reproduction: The antibodies reproduced into the group in next

generation are selected by tournament selection method. 

7. Crossover and mutation: Several pairs of antibodies perform a crossover to produce new

antibodies. This process is akin to exchanging their information. Moreover, mutation is applied to

each element of antibody with the assumed probability. Thus, a new group of antibodies is formed.

Since the optimization process in the proposed system identification formulations involves continuous

search spaces, it is proposed to use float encoded design variables. To suit this formulation, the SBX

crossover (Kalyanmoy Deb and Agarwal 1996) and parameter based mutation operators (Kalyanmoy

Deb and Goyal 1996) are used for crossover and mutation respectively.

8. Judgment of convergence condition: The above process is repeated until the specified

convergence criterion is met.

4.1 Recognition of antigen

In the proposed immune algorithm, the antigen pattern is represented in real coding. Compared

with binary coding, neither encoding nor decoding is performed and the computation time is shorter.

Using artificial immune algorithm for SSI, the measurement data including representations of the

objective function and constraints are regarded as antigen.

4.2 Generation of initial antibody

The design variables in the proposed system identification formulations are the stiffness and

damping parameters. Since the proposed optimization involves searching continuous design spaces,

float encoded design variables are employed and accordingly the initial antibodies are randomly

generated in the feasible space.

4.3 Affinity computation

There are two kinds of affinities in immune algorithms. One is the affinity (affg)i between the

antigen and an antibody i, which represents the combination intensity between antigen and antibody

i. For the proposed system identification problem, the smaller the objective function, the higher the

affinity affg and the better the antibody. In Immune algorithm, the affinity (affg)i is calculated by

 (7)

where fi is the objective function of antibody i.

The other is the affinity (affb)jk between antibody j and antibody k, which measures how similar

these two antibodies are. It is calculated by

affg( )i
1

1 fi+( )
-----------------=
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 (8)

where disjk is the Euclidean distance between antibody j and antibody k. The shorter the distance disjk is

the larger the affinity (affb)jk. In otherwords, it can also be inferred that if the affinity is larger, the

similarity between antibodies j and k is higher.

4.4 Antibody clones

Generate nc clones for each antibody, where nc is the number of clones. The clones and their

parent antibody are viewed as a family.

4.5 Self-adaptive mutation

The clones are self-adaptively mutated. The mutated clones and their parent antibody are viewed

as a new family. In each new family, only one best antibody can survive and enter the next generation.

Self-adaptive mutation plays the key role in immune algorithm. In order to avoid trapping in a

local optimal solution and to ensure the searching capability of near global optimal solution, the

better antibody suffers a smaller mutation, whereas the worse one undergoes a larger mutation.

The self-adaptive mutation is performed according to the following expression

 (9)

where Nji (0,1) is a Gaussian random variable of mean zero and standard deviation σ = 1 when re-

sampling each variable xji of antibody j, j = 1, 2, ... popsize, i = 1, 2, ..., numvar, where popsize is the

number of antibodies and numvar is the number of design variables in the antibody.

γj is the mutation step length of antibody j and is expressed as

 (10)

where  is the objective function value of antibody j normalized in the interval [0,1], and ψ is a

parameter that controls the mutation step length of the best antibody in every generation of evolution. ψ

is set to different values in different evolution phases. In proposed algorithm, the evolution process

towards minimising the objective function is divided into two phases. In the first phase, the primary

objective is to find the approximate solution and to reduce the search space. Therefore, ψ is set larger.

In the second phase, the main aim is to tune the solution in order to find the best solution, so ψ is set a

bit smaller. ζ is also a parameter that controls the mutation intensity and is usually set to 1. The values

of ψ is experimentally decided based on detailed parametric studies using the standard test functions

and also current application. In our experiment, based on the parametric studies, ψ is set to 0.00115 and

0.000085 in two phases, respectively. 

4.6 Suppress similar antibodies

If the Euclidean distance between two antibodies is less than the suppression threshold εs, these

two antibodies are called similar ones. In order to maintain diversity, the similar antibody whose

affb( )jk
1

1 disjk+( )
-------------------------=
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objective function value is larger is suppressed and a new antibody is generated randomly. During

evolutionary process in immune algorithm, all the antibodies in each generation must be evaluated

and the best one among them substitutes for the worst one.

4.7 Selection of immune algorithm control parameters

Based on detailed parametric studies on some well known bench mark test functions like DE

Jong’s Sphere function, Schaffer2 function, Rosenbrock and Ackley function etc., which are being

popularly used for the evaluation of meta-heuristic algorithms and also the current system identification

problems, the control parameters of the proposed immune algorithm are tuned for optimal performance.

The details of these studies are deliberately omitted in the paper as they are very elaborate and are

of least consequence. Based on these studies, the following control parameters are used in the

numerical investigations carried out in this paper.

Diversification rate = 0.10

Crossover = 0.85

Maximum number of generations = 500

The antibody size and clone size are set to 20 and 30 respectively. Suppression threshold is set to

0.05. The proliferation number is taken as 5 and mutation rate is set as 0.004. The solution is

assumed to have converged if there is no improvement in the last 20 evolutions.

5. Numerical studies

In order to evaluate the performance of the domain decomposition based SSI techniques three

numerical examples of increased complexities are considered. The numerical examples considered

in this paper are a fifteen storey framed structure, truss bridge and a 40 m tall microwave tower.

The experiment is numerically simulated using the known models. The data of all DOFs of the

numerical model is first calculated in terms of displacement, velocity and acceleration using

Newmark’s time integration method. 

One of the main issues related to structural system identification techniques, when applied to real

situations, is their sensitivity to noise. In view of this, It is decided to add white Gaussian noise to

the acceleration time history response generated by the finite element code. The white Gaussian

noise is added to the acceleration time history before they were processed. The white Gaussian

noise is added in the form of ‘snr’ (signal-to-noise ratio) that defines the ‘amplitude’ of the noise

with respect to that of the clean signal. When the noise level is given by a particular value of ‘snr’

it means that a noisy signal with such an ‘snr’ has been added to the time series of each node. Moreover

the noisy sequences affecting different nodes are uncorrelated, in this way severe experimental

conditions are simulated. The velocity and displacement responses at each DOF are obtained by

integrating the acceleration response.

In order to demonstrate the performance of the proposed artificial immune algorithm, the system

identification is also attempted using genetic algorithm with the proposed domain decomposition

based approach. Since proposed system identification formulation leads to a continuous parameter

optimisation, float-encoded GAs are employed in the present work with tournament selection. SBX

crossover with 0.85 as probability and parameter based mutation operator with 0.004 are employed. 

A modified version of genetic algorithm usually known in the literature as a memetic algorithm
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(Moscato 1999) is also employed for solving the optimization problem associated with the proposed

domain decomposition based system identification technique. Basically, they are genetic algorithms

that apply a separate neighbourhood search process to refine individuals. It is usually being applied

after crossover and mutation and before the selection. One big difference between memes and genes

is that memes are processed and possibly improved by the people that hold them - something that

cannot happen to genes. Experimental results show that the memetic algorithms have better results

over simple genetic or evolutionary algorithms (Moscato 1999). The memetic algorithm employed

here is devised by introducing a neighborhood search algorithm to improve the intensification mechanism

of the algorithm by way of searching around a good solution and adopting a better solution, if found. 

Nelder-Mead algorithm (Nelder and Mead 1965) is one of the most popular derivative-free

nonlinear optimization algorithms. Instead of using the derivative information of the function to be

minimized, the Nelder-Mead algorithm maintains at each iteration a non-degenerate simplex, a geometric

figure in n dimensions of nonzero volume that is the convex hull of n+1 vertices, x1; x2; ...; xn+1, and

their respective function values. In each iteration, new points are computed, along with their function

values, to form a new simplex. Four scalar parameters must be specified to define a complete Nelder-

Mead algorithm; coefficients of reflection (ρ), expansion (χ), contraction (γ), and shrinkage (σ): These

parameters are chosen to satisfy: ρ > 0, χ > 1, 0 < r < 1 and 0 < σ < 1. The Nelder-Mead algorithm

is given in Fig. 2. The implementation of Nelder-Mead algorithm in the float encoded GA algorithm

is as follows:

Fig. 2 Nelder-Mead algorithm
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i After every user specified number of generations, the population is sorted according to their

fitness values and the best twenty percent of the total number of population is chosen for

refinement using neighbourhood search algorithm. 

ii. After several years of studying and applying the Nelder-Mead method, McKinnon (1999)

shows that the Nelder-Mead algorithm can stagnate and converge to a non-optimal point even

for very simple problems. However, Kelley (1999, 1999a) proposes a test for sufficient

decrease which, if passed for all iterations, will guarantee convergence of the Nelder-Mead

iteration to a stationary point under some appropriate conditions. The Kelley's modification

(Kelley 1999, Tang et al. 2006) of the Nelder-Mead method is employed in the final stage of

our method i.e., at the end of the search, the best solution is refined using the Kelly’s

modification of Nelder-Mead algorithm. 

The resulting memetic algorithm is termed in this paper as hybrid genetic algorithm. Both the

float encoded GA and hybrid GA discussed above are used in the proposed system identification

formulations. Numerical studies have been carried out using GA and hybrid GA to compare and

evaluate the performance of the proposed immune algorithm for structural system identification

problems.

5.1 Example 1: 15-story building frame

The proposed domain decomposition based technique is employed to identify the structural

parameters of a 15-story-high building shown in Fig. 3. The actual parameters are given in Table 1.

The first four natural frequencies of the structure are 0.62 Hz, 1.84 Hz, 3.05 Hz, 4.23 Hz respectively.

The two damping coefficients of the Rayleigh damping model are computed assuming 5% damping

ratio for the first two modes of vibration. Accordingly the Rayleigh coefficients α and β are taken

as 0.2963 and 0.0064 respectively. The structure is assumed to be excited by an earthquake load and

Fig. 3 15 storey framed Structure
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Bhuj earth quake acceleration data is used for this purpose. The dynamic responses are computed

for 10 seconds with a time step of 0.001s.

The numerical simulated response is used to identify the stiffness parameters and input time

history of the full structure and substructure. The full structure is divided into three subdomains, as

shown in Fig. 4. The forces shown at the ends A and B of the subdomain are forces due to interface

Table 1 Actual system properties of shear building model

Element number Stiffness kN/m Mass 103 Kg.

1 4.3051 30.0000

2 4.2776 28.8960

3 4.2761 28.8960

4 4.2536 28.8960

5 4.2496 28.8960

6 4.2422 28.8960

7 4.2398 28.8960

8 4.2372 28.8960

9 4.2291 28.8960

10 4.2172 28.8960

11 4.2114 28.8960

12 4.2093 28.8960

13 4.1898 28.8960

14 4.1649 28.8960

15 4.1464 27.7410

Fig. 4 Details of the three subdomains of the framed structure considered in the proposed system identification
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reactions (they are shown by arrows in Fig. 4). The first subdomain consists of the stiffnesses of the

first four levels from the base; the unknown parameters here are these four stiffnesses and two

Rayleigh damping coefficients. The rest of the structure is divided into two subdomains with five

and six stiffnesses (levels), respectively. Table 2 gives the identified parameters of the full structure

and subdomain for the noise free case. The 15 stiffness values and 2 damping parameters are

identified using three subdomains. To investigate the effectiveness of the proposed parameter

identification technique with noisy measurements, SNR values of 40, 50 and 60 are considered.

Table 2 also shows the identified stiffness parameters and damping coefficients with various SNR

values. A close look at the results presented in Table 2, clearly indicates that the proposed system

identification algorithm performs rather well even with noisy measurements. The damping

parameters are also identified with reasonable accuracy. In order to study the convergence

characteristics of immune algorithm, the system identification of the framed structure given in Fig.

3 is carried out using GA and also hybrid GA with the proposed domain decomposition

formulations. In order to have a fair comparison, the control parameters and convergence criteria are

set identical for all the three algorithms. The convergence characteristics of all the three algorithms

are shown in Fig. 5. The comparative performances of the three algorithms i.e., proposed immune

algorithm, hybrid GA and genetic algorithm are shown in Table 3. A close look at Fig. 5 and also the

results furnished in Table 3, clearly indicates that the proposed immune algorithm converges faster and

also the solutions obtained are optimal.

Table 2 Details of identified stiffness and damping parameters for framed structure using the proposed system
identification formulation with immune algorithm

Ele-
ment 

number 

Actual 
stiffness 
kN/m

Without noise With noise SNR=40 With noise SNR=50 With noise SNR=60

Identified 
stiffness 
kN/m

% error
Identified 
stiffness 
kN/m

% error
Identified 
stiffness 
kN/m

% error
Identified 
stiffness 
kN/m

% error

1 4.3051 4.3102 0.11846415 4.2734 0.73633597 4.2724 0.75956424 4.2865 0.43204571

2 4.2776 4.2696 0.18702076 4.2943 0.39040584 4.2653 0.28754442 4.2821 0.10519918

3 4.2761 4.2701 0.14031477 4.2982 0.51682608 4.2867 0.24788943 4.2791 0.07015739

4 4.2536 4.2489 0.11049464 4.2677 0.33148392 4.2642 0.24920068 4.2544 0.0188076

5 4.2496 4.2456 0.09412651 4.2686 0.4471009 4.2364 0.31061747 4.2511 0.03529744

6 4.2422 4.2501 0.18622413 4.2261 0.37952006 4.2359 0.14850785 4.2404 0.04243081

7 4.2398 4.2432 0.08019246 4.2584 0.43869994 4.2375 0.05424784 4.2402 0.00943441

8 4.2372 4.2488 0.27376569 4.2566 0.45784952 4.2453 0.19116398 4.2308 0.0094402

9 4.2291 4.2308 0.04019768 4.2049 0.57222577 4.2354 0.14896787 4.2205 0.15105828

10 4.2172 4.2193 0.04979607 4.2312 0.33197382 4.2242 0.16598691 4.2088 0.19918429

11 4.2114 4.2198 0.19945861 4.2444 0.78358741 4.2336 0.52714062 4.2042 0.17096452

12 4.2093 4.2003 0.21381227 4.2234 0.33497256 4.2429 0.79823249 4.2154 0.14491721

13 4.1898 4.1844 0.12888443 4.2432 1.27452384 4.2127 0.54656547 4.1944 0.10979044

14 4.1649 4.1602 0.11284785 4.1231 1.00362554 4.1554 0.22809671 4.1405 0.58584479

15 4.1464 4.1497 0.07958711 4.1114 0.84410573 4.1312 0.36658306 4.1406 0.13988038

α 0.2963 0.296108 0.06479919 0.284082 4.12352346 0.306912 3.58150523 0.302524 2.10057374

β 0.0064 0.006482 1.28125 0.006964 8.8125 0.006704 4.75 0.006623 3.484375
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5.2 Example 2: Truss bridge

The model of the truss bridge with 55 elements, 24 nodes and 44 DOFs is taken as the second

numerical example. The detailed geometrical configuration of the truss bridge is shown in Fig. 6.

The structure is subjected to vertical harmonic excitation at F1 and F2. It is considered here for the

identification of axial rigidity of the substructure members and the two Rayleigh damping coefficients.

Fig. 5 Convergence characteristics of immune algorithm for system identification of a framed structure for
subdomain SD2

Table 3 Performance of the proposed structural system identification algorithm for building frame

Details Proposed immune algorithm Hybrid GA GA

without noise

Minimum error(%) 0.0402 0.0823 0.1018

Maximum error(%) 0.2738 0.6071 0.8419

Absolute mean error(%) 0.1343 0.2358 0.2908

With noise-SNR=60

Minimum error(%) 0.0094 0.0120 0.0104

Maximum error(%) 0.5858 0.6731 0.6412

Absolute mean error(%) 0.1612 0.2574 0.3276

With noise-SNR=50

Minimum error(%) 0.0542 0.0413 0.0827

Maximum error(%) 0.7982 0.8822 0.8946

Absolute mean error(%) 0.3354 0.3973 0.4134

With noise-SNR=40

Minimum error(%) 0.3315 0.3876 0.3031

Maximum error(%) 1.2745 1.1945 1.6621

Absolute mean error(%) 0.5895 0.6912 0.7849
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The elastic modulus E, cross-sectional area A and mass density of all the elements are 210 GPa,

0.03 m2 and 8000 kg/m3, respectively. The two damping coefficients α and β are chosen as 2.177

and 0.0011, respectively, resulting in a 5% damping ratio for the first two modes. The first two

natural frequencies of the structure are 5.9 Hz and 8.3 Hz. Identification of full structural parameters

(i.e., all 55 axial elemental rigidities and two damping parameters) needs response measurements at

all 44 DOFs, which would be impractical because of limitations on the number of sensors. Thus, the

global identification is not attempted here. For identification, purposes, the truss is divided into four

subdomains (SD-1 to SD-4), as shown in Fig. 6. The subdomain SD-2 is used for identification

here. The elemental axial rigidity (EA) for each element and the two Rayleigh damping coefficients

are assumed to be unknown. Identification results for the entire structure are presented here. The

identified parameters for the first two subdomains are shown in Table 4 for the noise-free condition

as well as with measurement noise considering SNR as 40, 50 and 60. A close look at the results

indicates that the proposed system identification technique with immune algorithm performs rather

well even for noisy measurements. The damping parameters are also identified with reasonable

accuracy. The velocity time history response obtained with the identified structure at node 5 is

shown in Fig. 7 and it has been compared with the original structural response. It can be easily

verified from the response time history given in Fig. 7 that the proposed identification strategy is

effective. The comparative performances of the three algorithms i.e., proposed immune algorithm,

hybrid GA and genetic algorithm for system identification of truss bridge are shown in Table 5.

Finally, the convergence characteristics of the proposed Immune algorithm with float encoded

genetic algorithm and hybrid GA for the second subdomain is shown in Fig. 8. It can be clearly

observed from Fig. 8 and also the details furnished in Table 5 for various levels of measurement

noise, that the proposed immune algorithm exhibits better convergence characteristics than hybrid

GA and also the genetic algorithms. 

Fig. 6 Truss-bridge bridge-system identification using domain decomposition techniques



358 A. Rama Mohan Rao and K. Lakshmi

5.3 Example 3: Microwave tower

The third numerical example considered is a 40 m high microwave tower shown in Fig. 9. It has

360 members with 164 nodes. The young’s modulus is taken as 205 GPa. The mass is taken as

Table 4 Details of identified axial rigidity and damping parameters of truss bridge using the proposed system
identification formulation with immune algorithm 

Ele-
ment 
num-
ber

Actual axial 
rigidity 

(AE)×106 
kN

Without noise
With noise
SNR=40

With noise
SNR = 50

With noise
SNR = 60

Identified 
axial rigidity 
(AE)×106 kN

%
error

Identified axial 
rigidity 

(AE)×106 kN

%
error

Identified axial 
rigidity 

(AE)×106 kN

%
error

Identified axial 
rigidity 

(AE)×106 kN

%
error

Subdomain-1 ( SD1)

1 6.3 6.2932 0.10793 6.3323 0.5126 6.3188 0.29841 6.2949 0.080952

2 6.3 6.2974 0.04126 6.3488 0.7746 6.3167 0.26507 6.3062 0.098412

3 6.3 6.3127 0.20158 6.3367 0.5825 6.3127 0.20158 6.2907 0.147653

4 6.3 6.2964 0.05714 6.2732 0.4253 6.2804 0.31111 6.2901 0.157131

5 6.3 6.2908 0.14603 6.3204 0.3238 6.2888 0.17777 6.3008 0.127936

6 6.3 6.2932 0.10793 6.2654 0.5492 6.2832 0.26666 6.2905 0.150820

7 6.3 6.2874 0.2 6.2667 0.5285 6.2884 0.18412 6.2931 0.109523

8 6.3 6.3047 0.07460 6.3475 0.7539 6.3167 0.26507 6.3098 0.155609

9 6.3 6.3052 0.08253 6.3396 0.6285 6.3142 0.22539 6.3078 0.123890

10 6.3 6.3067 0.10634 6.3276 0.4380 6.3107 0.16984 6.3074 0.117522

11 6.3 6.2912 0.13968 6.3345 0.5476 6.3142 0.22539 6.2802 0.314317

12 6.3 6.3044 0.06984 6.3498 0.7904 6.3044 0.06984 6.3012 0.019047

13 6.3 6.3066 0.10476 6.3401 0.6365 6.2908 0.14603 6.3004 0.006349

α 0.2963 0.296108 0.06479 0.284082 4.1235 0.306512 3.4465 0.306512 3.44650

β 0.0064 0.006432 0.5 0.006964 8.8125 0.006704 4.75 0.006704 4.75

Subdomain-2 ( SD2)

1 6.3 6.3057 0.09047 6.3278 0.4412 6.3224 0.35555 6.2852 0.226984

2 6.3 6.3064 0.10158 6.3323 0.5126 6.3223 0.35396 6.2933 0.057142

3 6.3 6.2973 0.04285 6.2636 0.5777 6.3146 0.23174 6.2767 0.360317

4 6.3 6.2952 0.07619 6.2727 0.4333 6.284 0.25396 6.3126 0.241269

5 6.3 6.2904 0.15238 6.3318 0.5047 6.2723 0.43968 6.3119 0.165079

6 6.3 6.3087 0.13809 6.2709 0.4619 6.3268 0.42539 6.2882 0.179365

7 6.3 6.3092 0.14603 6.3312 0.4952 6.3121 0.19206 6.2987 0.012698

8 6.3 6.3017 0.02698 6.3437 0.6936 6.3267 0.42380 6.3219 0.344444

9 6.3 6.2963 0.05873 6.2721 0.4428 6.3235 0.37301 6.3056 0.100024

10 6.3 6.3187 0.29682 6.3367 0.5853 6.2979 0.03333 6.2904 0.020634

12 6.3 6.3154 0.24444 6.3501 0.7952 6.2841 0.25238 6.3281 0.403174

13 6.3 6.2993 0.01111 6.2795 0.3253 6.2697 0.48095 6.3383 0.623809

14 6.3 6.3126 0.20001 6.2688 0.4952 6.3304 0.48253 6.3155 0.204582

15 6.3 6.2944 0.08888 6.3428 0.6793 6.3356 0.56507 6.3244 0.387301

16 6.3 6.3021 0.03333 6.2797 0.3222 6.3267 0.42380 6.3021 0.033333
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7850 Kg/m3. The two damping coefficients α and β are chosen as 0.977 and 0.0081, respectively,

resulting in a 5% damping ratio for the first two modes. Identification of full structural parameters

(i.e., all 360 axial elemental rigidities and two damping parameters) needs response measurements

at all 480 DOFs, which would be impractical. Hence, the global identification is not a feasible

option for parametric identification. For identification purposes, the tower model is decomposed into

10 subdomains. The elemental rigidities of all leg members at each level are considered constant

and similarly the bracings at each level are considered constant. It may be observed that at each

Fig. 7 Velocity time history response of the identified system

Fig. 8 Convergence characteristics of Immune algorithm for system identification of a truss bridge
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level, the number of leg members is 4 and bracing members are 8. With this, the total number of

design variables including the Rayleigh damping coefficients, for each subdomain identification

reduces to 10. The stiffness ratio of the identified element stiffness to the actual element stiffness

is evaluated. The stiffness ratios of the microwave tower obtained from the proposed domain

decomposition based formulation discussed in this paper using the proposed immune algorithm,

hybrid GA and GA are shown in Fig. 10. Similarly the results obtained with measurement noise

Table 5 Performance of the proposed structural system identification algorithm for truss bridge

Details Proposed immune algorithm Hybrid GA GA

SD-1 with no measurement noise

Minimum error (%) 0.0413 0.0823 0.0912

Maximum error(%) 0.2016 0.6071 0.5417

Absolute mean error(%) 0.1107 0.2358 0.3498

SD-2 with no measurement noise

Minimum error (%) 0.0111 0.0312 0.0287

Maximum error(%) 0.2968 0.4201 0.5417

Absolute mean error(%) 0.1139 0.2512 0.3017

SD-1 with noise SNR=60

Minimum error(%) 0.0063 0.0023 0.0087

Maximum error(%) 0.3143 0.5122 0.6732

Absolute mean error(%) 0.1149 0.2746 0.3898

SD-2 with noise SNR=60

Minimum error (%) 0.0206 0.0312 0.0410

Maximum error(%) 0.6079 0.5932 0.7123

Absolute mean error(%) 0.2412 0.2976 0.3376

SD-1 with noise SNR=50

Minimum error(%) 0.0698 0.0712 0.0703

Maximum error(%) 0.3111 0.3818 0.4563

Absolute mean error(%) 0.2159 0.2612 0.2973

SD-2 with noise SNR=50

Minimum error (%) 0.0333 0.0727 0.0867

Maximum error(%) 0.5651 0.6418 0.8761

Absolute mean error(%) 0.3525 0.3957 0.4314

SD-1 with noise SNR=40

Minimum error(%) 0.3238 0.4658 0.4043

Maximum error(%) 0.7905 0.8842 0.9512

Absolute mean error(%) 0.5763 0.7752 0.8817

SD-2 with noise SNR=40

Minimum error (%) 0.3222 0.2891 0.5621

Maximum error(%) 0.7952 0.8729 0.8892

Absolute mean error(%) 0.5176 0.7891 0.8917
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(i.e., with SNR=40, SNR=50 and SNR=60) are shown in Figs. 11 to 13. The comparative

performances of the three meta-heuristic algorithms are also shown in Table 6. A close look at

the Figs. 10 to 13 and also the details furnished in Table 6 clearly indicates that the proposed

system identification with immune algorithm gives fairly accurate stiffness parameters even with

noisy measurements. The performance of Hybrid GA follows immune algorithm, while GA

stands last. The three numerical experiments conducted in this paper and comparisons made with

other popular GA based algorithms clearly establish that the domain decomposition formulations

together with artificial immune algorithms are effective in identifying the structure with

reasonable accuracy.

Fig. 9 40 m microwave tower
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6. Conclusions

In this paper, an artificial immune algorithm (IA) is presented for the problem of structural system

identification. Immune algorithms are build with an effective diversification mechanism and are

therefore extremely competitive for solving complex optimization problems associated with

parametric identification of structural engineering problems. In order to minimize the number of

sensors for measurement and also reduce the number of design variables, it is proposed to use

domain decomposition approach. In this approach, the large structure is decomposed in to several

convenient number of subdomains and each subdomain is identified independently. The number of

sensors required will be limited to interface degrees of freedom and at selected location at the

internal degrees of freedom. Numerical experiments are conducted by solving three problems in the

Fig. 11 System identification of the microwave tower
using the proposed algorithm with (a) Immune
algorithm, (b) hybrid genetic algorithm and (c)
genetic algorithm noise (SNR=40)

Fig. 10 System identification of the microwave tower
using the proposed algorithm with (a) Immune
algorithm, (b) hybrid genetic algorithm and (c)
genetic algorithm with noise free measurements
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order of increasing complexity. To simulate the experimental measurements, measurement noise is

included in the form of signal to noise ratio.

Numerical studies carried out in this paper clearly demonstrate that the proposed immune

algorithm is clearly superior to GA and also hybrid genetic algorithm especially while solving large

size problems. The proposed immune algorithm based technique is a promising tool for structural

parameter estimation of structural systems in the sense that it is an optimal method requiring no

prior knowledge of the structure. The domain decomposition features built in to the proposed

formulations enable to solve large size problems with limited number of sensors placed on the

structures. 

Fig. 12 System identification of the microwave tower
using the proposed algorithm with (a) Immune
algorithm, (b) hybrid genetic algorithm and
(c) genetic algorithm noise (SNR=50)

Fig. 13 System identification of the microwave tower
using the proposed algorithm with (a) Immune
algorithm, (b) hybrid genetic algorithm and
(c) genetic algorithm noise (SNR=60)



364 A. Rama Mohan Rao and K. Lakshmi

Acknowledgements

This paper is being published with the permission of Director, CSIR-Structural Engineering

Research Centre, Council of Scientific and Industrial Research, Chennai, India.

References

Anoop, P., Nitesh, K., Tiwari, M.K. and Yuval, C. (2008), “Modified immune algorithm for job selection and
operation allocation problem in flexible manufacturing systems”, Adv. Eng. Softw., 39(3), 219-232.

Chou, J. and Ghaboussi, J. (2001), “Genetic algorithm in structural damage detection”, Comput. Struct., 79(14),
1335-1353.

Cortes, N.C. and Coello, C.A.C. (2003), “Using artificial immune systems to solve optimisation problems”,
Proceedings of the Genetic and Evolutionary Computation Conference, Workshop Program, 312-315.

Cunha, J., Cogan, S. and Berthod, C. (1999), “Application of genetic algorithms for the identification of elastic
constants of composite materials from dynamic tests”, Int. J. Numer. Meth. Eng., 45(7), 891-900. 

Dasgupta, D. (2002), “Special issue on artificial immune system”, IEEE T. Evolut. Comput., 6, 225-256.
De Castro, L.N. and Timmis, J. (2002), “An artificial immune network for multimodal function optimization”,

CEC’02, Proceedings of the congress on Evolutionary Computation, 699-704.
Dipankar Dasgupta. (1999), Artificial Immune systems and their applications, Ed., Springer Verlag, Berlin.
Dorigo, M., Maniezzo, V. and Colorni, A. (1996), “Ant system: optimization by a colony of cooperating agents”,

IEEE T. Syst. Man, Cy., 26(1), 29-41
Eberhart, R.C. and Kennedy, J. (1995), “A new optimizer using particle swarm theory” , Proceedings of the 6th

Int. Symposium on Micromachine and Human Science, Nagoya Japan.
Farmer, J.D., Packard, N.H. and Perelson, A.S. (1986), “The immune system, adaptation, and machine learning”,

Physica D, 22(1-3), 187-204.
Franco, G., Betti, R. and Lus, H. (2004), “Identification of structural systems using an Evolutionary strategy”, J.

Eng. Mech., 130(10), 1125-1139.
Ghanem, R. and Shinozuka, M. (1995), “Structural system identification. I: theory”, J. Eng. Mech-ASCE, 121(2),

255-264.

Table 6 Performance of the proposed structural system identification algorithm for Microwave tower

Details Proposed immune algorithm Hybrid GA GA

Minimum error (%) 0.0393 0.2319 0.1278

Maximum error(%) 7.668 11.9277 14.9489

Absolute mean error(%) 3.57 5.4358 6.49

SNR=60

Minimum error(%) 0.0134 0.3576 0.2253

Maximum error(%) 8.9509 12.68 18.1763

Absolute mean error(%) 4.1948 5.8384 8.3679

SNR=50

Minimum error(%) 0.0782 0.0701 0.3018

Maximum error(%) 9.7366 14.5729 19.9970

Absolute mean error(%) 4.5489 6.2224 9.5252

SNR=40

Minimum error(%) 0.0263 0.1605 0.0099

Maximum error(%) 14.5697 17.7260 20.7521

Absolute mean error(%) 5.8571 8.4250 10.9692



Structural parameter estimation combining domain decomposition techniques with immune algorithm 365

Glover, F. (1990), “Tabu search-part I”, ORSA J. Comput., 2(1), 190-206.
Goldberg, D.E. (1989), “Genetic algorithms in search, optimization and machine learning”, Addison-Wesley, Reading.
Gong, M., Jiao, L., Du, H. and Bo, L. (2008), “Multiobjective immune algorithm with nondominated neighborbased

selection”, Evoluti. Comput., 16(2), 225.
Gutnikov, S. and Melnikov, Y. (2003), “A simple non-linear model of immune response”, Chaos Soliton Fract.,
16(1), 125-132.

Hunt, J.E. and Cooke, D.E. (1996), “Learning using an artificial immune system”, J. Netw. Comput. Appl., 19,
189-212.

Kalyanmoy, D. and Agarwal, R.B. (1995), “Simulated binary crossover for continuous search space”, Complex
Syst., 9, 115-148.

Kalyanmoy, D. and Goyal, M. (1996), “A combined genetic adaptive search (GeneAs) for engineering design”,
Comp. Sci. Inf., 26, 30-45.

Kelley, C.T. (1999), “Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient
decrease condition”, SIAM J. Optimiz., 10, 43-55.

Kelley, C.T. (1999a), “Iterative methods for optimization frontiers”, Appl. Math, 18 SIAM Philadelphia PA.
Kirkpatrick S., Gelatt, C.D., Jr. and Vecchi, M.P. (1983), “Optimization by simulated annealing”, Science,
220(4598), 498-516.

Koh, C., Hong, B. and Liaw, C. (2000), “Parameter identification of large structural systems in time domain”, J.
Struct. Eng., 126(8), 957-963.

Koh, C., Hong, B. and Liaw, C. (2000a), “Substructural system identification by genetic algorithms”, Proceedings of
the 3rd US Japan workshop on nonlinear system identification and structural health monitoring, Los Angeles (CA).

Koh, C., Chen, Y. and Liaw, C. (2003), “A hybrid computational strategy for identification of structural
parameters”, Comput. Struct., 81(2), 107-117.

Levin, R. and Lieven, N. (1998), “Dynamic finite element model updating using simulated annealing and genetic
algorithm”, Mech Syst Signal Pr., 12(1), 91-120.

Li, S., Suzuki, Y. and Noori, M. (2004), “Identification of hysteretic systems with slip using bootstrap filter”,
Mech. Syst. Signal. Pr., 18(4), 781-795.

Luh, G.C. and Chueh, C.H. (2004), “Multi-objective optimal design of truss structure with immune algorithm”,
Comput. Struct., 82(11-12), 829-844.

McKinnon, K.I.M. (1999), “Convergence of the Nelder-Mead simplex method to a non- stationary point”, SIAM
J. Optimiz., 9, 148-58.

Mori, K., Tsukiyama, M. and Fukuda, T. (1993), “Immune algorithm with searching diversity and its application
to resource allocation problem”, Transactions of IEE Japan, 113C, 872-878.

Moscato, P. (1999), Memetic algorithms: An introduction. New Ideas in Optimization, (Eds., D. Corne, M.
Dorigo and F. Glover), McGraw-Hill, London, UK, 1999.

Naderi, B., Khalili, M. and Tavakkoli-Moghaddam, R. (2009), “A hybrid artificial immune algorithm for a
realistic variant of job shops to minimize the total completion time”, Comput. Ind. Eng., 56(4), 1494-1501.

Nelder, J.A. and Mead, R. (1965), “A simplex method for function minimization”, Comput. J., 7(4), 308-313.
Perry, M., Koh, C. and Choo, Y. (2006), “Modified genetic algorithm strategy for structural identification”,

Comput. Struct., 84(8-9), 529-540.
Sato, T. and Qi, K. (1998), “Adaptive H1 filter: its application to structural identification”, J. Eng. Mech-ASCE.,

124(11), 1233-1240.
Tang, H. and Sato, T. (2005), “Auxiliary particle filtering for structural system identification”, Proceedings of the

SPIE’s 12th symposium on smart structures and materials, San Diego (CA).
Tang, H., Xue, S., Chen, R. and Sato, T. (2006), “Online weighted LS-SVM for hysteretic structural system

identification”, Eng. Struct., 28(12), 1728-1735.
Yang, J., Lin, S., Huang, H. and Zhou, L. (2005), “An adaptive extended Kalman filter for structural damage

identification”, Struct. Health Monit., 13(4), 849-867.
Yang, J., Pan, S. and Lin, S. (2007), “Least-squares estimation with unknown excitations for damage identification

of structures”, J. Eng. Mech-ASCE., 133(1), 12-21.
Zhang, J., Sato, T. and Iai, S. (2007), “Support vector regression for on-line health monitoring of large-scale

structures by a novel signal processing technique”, Earthq. Eng. Struct. D., 36(7), 909-925.

CC




