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Abstract. This paper addresses the control issue of vibratory MEMS-based gyroscopes. This study considers a
gyroscope that can be modeled by an inner mass attached to an outer mass by four springs and four dampers. The
outer mass itself is attached to the rotating frame by an equal number of springs and dampers. In order to measure
the angular rate of the rotating frame, a driving force is applied to the inner mass and the Coriolis force is sensed
along the y-direction associated with the outer mass. Due to micro-fabrication imperfections, including anisoelasticity
and damping effects, both gyroscopes do not allow accurate measurements, and therefore, it becomes necessary to
devise feedback controllers to reduce the effects of such imperfections. Given an ideal gyroscope that meets certain
performance specifications, a feedback control strategy is synthesized to reduce the error dynamics between the
actual and ideal gyroscopes. For a dual-mass gyroscope, it is demonstrated that the error dynamics are remarkably
decreased with the application of four actuators applied to both masses in the x and y directions. It is also shown
that it is possible to reduce the error dynamics with only two actuators applied to the outer mass only. Simulation
results are presented to prove the efficiency of the proposed control design.
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1. Introduction

The technology of micromachined accelerometers and gyroscopes has been expanded and commercialized

over the past decade. Accelerometers are detection devices that produce a signal relative to a linear motion

whereas gyroscopes generate a signal relative to an angular velocity or angular rotation. While accelerometers

are the current leaders of the MEMS market technology, gyroscopes are expected to gain more popularity

and exhibit similar success (Nasiri 2004). Micromachined gyroscopes are vibrating structures composed

of an outer mass oscillating along a drive direction and an inner mass coupled with the outer one via a

Coriolis force. The proof mass is suspended by elastic flexures anchored to the substrate (Acar 2004).

Vibrating on the drive direction, the outer proof mass induces a Coriolis force in the sense direction so that

the angular rotation becomes measurable. The oscillation in the drive mode, selected for amplifying the

gyro motion and applying control forces, transforms the energy to the sense direction capable of detecting

the angular rate or measuring the angular deflection (Zhuravlev 1993, Painter and Shkel 2003,

Piyabongkarn et al. 2005).
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From all the reported gyroscopes in the literature (including Acar et al. 2009 and Trusov et al. 2009), the

requirements of higher order of magnitude, improved robustness and long-term stability must be met. In

fact, the micro-fabrication deficiencies and uncontrollable environmental variations affect the gyro

angular deflections. As a result of structural and thermal fluctuations, these deficiencies result in the

performance degradation of gyroscopes. Micromachining includes many steps to be performed: deposition

process, etching process and material pattern. These processes yield performance degradation of the

gyroscope since they contribute to the increase of the fabrication defects, such as anisoelasticity and

anisodamping (Shkel et al. 1999a, Gallacher et al. 2005). Anisoelasticity results in frequency mismatch

and mode coupling causing a disruption of the line of oscillation and exhibits an ellipsoid motion.

Damping non-idealities produce zero rate output which affects the measurements by leading to precession

of the line of oscillation and amplitude change (Park and Horowitz 2005). A vibrating gyroscope oscillates

to reach desired amplitude, and thus, perform a transfer of energy from the drive mode to the sense mode.

Then, the energy has to be kept at a constant value to measure the input angular velocity. Furthermore, the

device has to cancel out the effect of quadrature error due to fabrication imperfections, and finally a

measurement of the input angular velocity is performed.

To sum up, manufacturing defects such as anisoelasticity and damping affect the gyro output. For this,

control techniques are necessary to cancel out the error and null the parasitic effects while maintaining a

high accurate response. Generally, large imperfections which cause the interference between the

measurements and the Coriolis force are trimmed by electronic components. The small perturbations are

minimized by the implemented feedback control strategy. The drive combs are used to apply control

forces to maintain oscillation of the proof mass while the sense combs are used to detect angular

displacement and velocity.

Currently, force-balancing feedback control schemes (Yazdi et al. 1998, Jiang et al. 2000, Chang et al.

1998) have been widely used to cancel the effect of off-diagonal terms in the stiffness matrix which is

referred to as the quadrature error, and also to increase the bandwidth and dynamic range of the gyroscope

beyond the open-loop mode of operation. Park and Horowitz (2004) developed a new MEMS gyroscope

operation mode and a corresponding continuous time controller determined from an adaptive control

algorithm. The adaptive controlled gyroscope is self-calibrating, compensates for friction forces and

fabrication imperfections that normally cause quadrature errors, and produces an unbiased angular velocity

measurement that has no zero rate output. They also presented a discrete time version of the observer-

based adaptive control system for MEMS gyroscopes, which can be implemented using digital process

(Park and Horowitz 2005). Recently, Park et al. (2008) presented an algorithm for controlling vibratory

MEMS gyroscopes so that they can directly measure the rotation angle without integration of the angular

rate. Dong et al. (2008) developed a sixth order continuous-time force-feedback band-pass sigma-delta

modulator control system for the detection mode of micromachined vibratory gyroscopes.

Structural anisoelasticities and nonproportional damping lead to significant modal coupling between the

sense and drive modes in a resonant gyroscope, thereby reducing the accuracy of the sense output.

Accurate modeling and identification of these characteristics will significantly enhance the ability to

compensate for these errors via feedback/feedforward control strategies thus leading to the next generation

“smart” MEMS gyroscopes with self calibrating capabilities (Painter and Shkel 2001). Piyabongkarn et

al. (2005) have developed a composite nonlinear feedback control system that compensates for the effects

of dissipative forces, mismatched springs, cross-axis stiffness and transmission of rotary torque and

ensures that the gyroscope’s mass behaves as a freely vibrating structure for accurate measurement of its

angle and angular rate for low bandwidth applications. Shkel et al. (1999a) have proposed an appropriate

feedback control that compensates for anisoelasticity while not interfering with the precession. Painter and



On the control of vibratory MEMS gyroscopes 795

Shkel (2003) have demonstrated the necessity for a dual stage control architecture comprising feedforward

and feedback control systems in order to compensate for fabrication imperfections and in-operation

perturbations prevalent in micromachined gyroscopes.

In this paper, feedback control strategies are synthesized for dual-mass gyroscopes for the purpose of

reducing the effects of anisoelasticity and damping coupling. The remainder of the paper is organized as

follows: section 2 is concerned with the modeling and control of dual-mass gyroscopes. Simulations are

presented in sections 3. Conclusions and future work are given in section 4.

2. Dynamics and control of dual mass vibratory gyroscopes 

In this section, the control of a dual-mass vibratory MEMS-based gyroscope for sensing the angular rate

is proposed. The gyroscope is modeled by two masses; the first mass is driven in the x-direction, and the

response of the second mass is sensed along the y-axis (see Fig. 1). 

It is assumed that the dynamics of the actual gyroscope is influenced by micro-fabrication imperfections

resulting from system anisoelasticity and structural aero-dynamic damping. In addition, the proposed

design assumes the knowledge of a reference (ideal) gyroscope that meets certain performance specifications

in the time and/or frequency domains. Specifically, the sensing direction and the amplitude of vibration

associated with the inner mass. In order to compensate for these imperfections, the proposed control

design can be stated as follows: given the dynamics of a reference gyroscope, devise a feedback control

law for the reduction of the error between the reference dynamics and that of the actual gyroscope.

2.1 Dynamics of the reference gyroscope

A dual-mass gyroscope is a lumped mass spring system. The gyro is modeled by a drive mass-active

gimbal m1 which is vibrating with small amplitudes and a slave mass-sensing plate m2 which is oscillating

at large amplitudes if the amplitude amplification design is used (Chang et al. 1998). The dual-mass ideal

gyroscope assumes small cross-coupling damping coefficients and neglects the effect of the stiffness non-

idealities. In addition, the system is undamped with isotropic suspension. 

Fig. 1 A dual-mass vibratory gyroscope
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The dynamics of the gyroscope is first derived using Newton’s second law. Let us consider the gyro

dynamics in the moving frame {x, y, z}. At any time instant t, the position vector of the center of mass of

mi (i = 1, 2) at time t is  in the moving frame is

(1)

where  and  are unit vectors along the x and y directions, respectively. These unit vectors can be

expressed in terms of the unit vectors  and  associated with the inertial frame as

  (2)

The absolute acceleration of mass mi can be expressed as follows

(3)

where  is the input angular velocity vector. Applying Newton’s second law, the equations of motion

of the drive and passive masses can be written as

(4)

where  and  are the spring forces and  and  the damping forces. It can be shown that the

open-loop dynamics of the reference gyroscope is written as

(5)

or

(6)

where , ,  and  are the damping coefficients (not represented in Fig. 1) , ,  and  are the

spring coefficients, Ω is the angular velocity, assumed to be constant in this study,  is the input vector

of size 4, and Fd is the driving force applied to the outer mass. In order to guarantee sufficiently large

amplitudes of the sensing mass, it is assumed that the reference gyroscope has no structural damping.
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The undamped reference gyroscope ( = 0; i = 1,2,3,4) is composed of 4 natural frequencies

determined from

(7)

If =  (i = 1,2,3,4), it can be shown that the resulting undamped natural frequencies are

(8)

The frequency response of the ideal gyroscope is shown in Fig. 2 (m1 = 5.2×10-10 kg, m2 = 3.12×10-10 kg,

= = = = 4 Nm-1, = = = = 1.9×10-6 N sec m-1, Ω = 200 rad/sec). It can be observed

that at the frequency 10 KHz, the driving mass results into larger amplitude of the sensing mass. The

region between the two peaks associated with the driving mass is, general, taken as the operating

frequency range. More specifically, gyroscope design focuses the amplification of the time response

and/or the increase of bandwidth. Depending on the objective the control strategy is different in

structure.

ci
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Fig. 2 Frequency response of the ideal dual-mass gyroscope



798 S. Choura, N. Aouni and S. El-Borgi

The open-loop response of the ideal gyroscope, in both local and inertial frames, is shown in Fig. 3. The

notion of angular precession holds true for both masses and a line of oscillation is associated with each. In

this case, notice that the sensing plate undergoes relatively larger amplitude with respect to that of the

driving gimbal mass m1.

2.2 Dynamics of the actual gyroscope

As a result of micro-fabrication imperfections, anisoelasticity causes the line of oscillation to precess

away from the physical axes of elasticity and follow the principal axis of elasticity. Anisoelasticity leads to

frequency mismatch and mode coupling resulting in performance degradation (Nasiri 2004). The coefficients

multiplying the position variables represent the non-ideal spring forces acting on the system rising from

the lack of perfect symmetry in the gyroscope. Here, we consider a 4-DOF sense angular rates MEMS

gyroscope shown in Fig. 4. 

In the presence of structural aero-dynamic damping and anisoelasticity, the dynamics of the actual

gyroscope is governed by the following matrix equation

(9)

 

 

Fig. 3 Response of the ideal dual-mass gyroscope
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or

(10)
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 are the spring coefficients, Ω is the angular velocity of the moving

frame (x, y) attached to the outer mass with respect to the inertial frame (X, Y) (not shown in Fig. 4), B is

the control input matrix of size 4×m (1≤m≤4), F is the feedback control vector of size m, and  is the

input matrix associated with the driving force Fd applied to the outer mass. The device commonly

operates by first driving the proof mass into forced oscillation. Upon reaching the desired amplitude,

the drive force is removed and the energy of the system is maintained using the designed feedback

control law F (Shkel et al. 1999a). The spring coefficients are given by

i = 1,2 (11)

where kn
1
=(k1 + k2)/2 and kn

2
=(k3 + k4)/2 are the isotropic stiffnesses, and h1 = (k1 - k2)/2 and h2 = (k3 -

k4)/2 are the mismatch stiffnesses along the principal axes of elasticity. Similarly, the damping

coefficients are

i = 1,2 (12)

where cn
1
= (c1 + c2)/2, cn

2
= (c3 + c4)/2 are the ideal damping coefficients, d1 = (c1 - c2)/2 and d2 = (c3 -

c4)/2 are the cross-damping terms, and βi (not shown in Fig. 4) is the angle between the physical axes

and principal axes of damping. 

The uncontrolled response of the dual-mass gyroscope is shown in Fig. 5 (Ω = 200 rad/s, m1 = 5.2×10-10

kg, m2 = 3.12×10-10 kg, k1 = 4 N/m, k2 = 3.8 N/m, k3 = 3.9 N/m, k4 = 3.8 N/m, c1 = 1.2×10-8 N sec/m,
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Fig. 4 Actual dual-mass gyroscope affected by anisoelasticity and damping coupling
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c2 = 0.25×10-8 N sec/m, c3 = 1.933×10-8 N sec/m, c4 = 0.68×10-8 N sec/m, α1 =π/36, α2 = π/54, β1 = π/72,

and β2 =π/36). Plots show an erratic pattern of oscillation manifested in an elliptic pattern bounded by a

parallelogram.

As shown in the figures above, the line of oscillation is disturbed due to the effect of non-idealities and

the motion is more amplified in the drive mass compared to the sensing plate. Thus, the imperfections

shift the natural frequencies and lead to variations in the motion of each mass. To quantify the

performance difference between the ideal and actual gyroscopes, let εx
i
= xa

i
-xr

i
 and εy

i
= ya

i
-yr

i
 (i = 1,2) be

the errors in the xi and yi-directions, respectively. For control purposes, an augmented system can be

constructed using Eqs. (6) and (10). We get

(13)

where 

The damping and stiffness matrices D and K associated with the actual gyroscope are assumed to be

expressed by  and , respectively. The matrices δD and δK characterize the deviations

from the ideal device due to imperfections. Simulations of the open-loop dynamics show that the steady-

state error cannot be brought faster to zero due to the effect of anisoelasticity (see Fig. 6). A feedback

control force is thus required to compensate for these errors. For this, we propose two types of feedback

control strategy. The first is based on the Lyapunov technique and the second is constructed using optimal

control.

 

 

D δD+ K δK+

Fig. 5 Motion of the inner and outer masses in the moving and inertial frames
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2.3 Lyapunov-based control

In this section, we propose a Lyapunov-based control design for the reduction of the dual-mass

gyroscope sensitivity to micro-fabrication imperfections. Eq. (11) reveals that the error dynamics can be

written as

(14)

or

(15)

Therefore, for small anisoelasticity and damping effects, the error stability is linked to system (M, D,

K). For this, we propose to use the following Lyapunov energy function

(16)

The time derivative of the Eq. (16) suggests that the controller (B is set to the identity matrix) be in the

following form

(17)

where ωi (i = 1,2,3,4) are the ideal gyro’s natural frequencies and ξ1, ξ2, ξ3 and ξ4 are damping ratios.

The resulting performance is shown in Figs. 7 and 8. It is clear that the errors are remarkably reduced
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Fig. 6 The error is not regular
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with the proposed control strategy, and thus, the actual gyroscope tracks the ideal dynamics. The

remaining constant amplitude of the error is due to the effect of the feedforward term presented in Eq.

(15) leading to the appearance of the beating phenomena.

It can be noticed that the aforementioned control structure uses a full feedback control (use of 4

actuators). The advantage of the above control is that its structure is simple since the control law is made

of 4 independent derivative control forces. In the next section, we develop a different control strategy in

which the number of actuators is addressed.

2.4 Optimal control

This section is concerned with the design of an optimal control strategy with the aim of stabilizing the

Fig. 7 Controlled motion of the actual gyroscope

Fig. 8 Controlled errors of the actual gyroscope
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closed-loop dynamics of the dual-mass gyroscope and reducing the error amplitude during precession. In

the presence of structural damping and anisoelesticity, the error dynamics is governed by the following

equation

(18)

or

(19)

We notice that the error stability is clearly affected by the damping and anisoelasticity coupling terms

δD and δK. Therefore, to reduce the effect of these imperfections, a control technique should be

synthesized. However, if the error dynamics is stabilized via the feedback gains, it may not be possible

to drive it to the zero steady state because of the effects of damping and anisoelasticity. Consequently,

the task of the optimal control design is to guarantee both stability and tracking in the presence of

micro-fabrication imperfections where δD and δK are considered as parameter uncertainties affecting

gyroscope damping and stiffness. 

Since MEMS-based gyroscopes operate at high frequency (in the order of some KHz), one may be

faced with numerical problems using modern softwares, such as Matlab and Mathematica, to calculate the

feedback gains. It is then necessary to introduce a scaling factor α for the time variable. It is given by

t = ατ (20)

Substitution of Eq. (20) in (18) leads to

(21)

where the prime denotes d·/dτ and 

(22)

The optimal control gains are determined from the following dynamics (characterizing the ideal

dynamics)

(23)
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The control force vector F = K  minimizes the performance index

the solution of which is obtained by solving the following algebraic Riccati equation

(24)

Thus, the gain matrix K is determined from

(25)

Therefore, the resulting feedback control force can be put in the following form

(26)

Using the time variable t, the feedback control law (26) can be rewritten as

(27)

At this stage, a practical issue of importance is the number of actuators employed in the control design.

Of course, reducing the number of actuators is preferred at the implementation phase. We shall consider

three design cases. In the first case, a set of four forces are applied to both masses (two actuators

assigned to each in the x and y directions). The second case assumes two forces applied to the outer

gimbal in both x and y directions. Finally, a third case considers the application of a single force to the

outer gimbal in the x direction only. All cases aim at reducing the sensitivity of the dual gyroscope to

micro-fabrication imperfections. In others words the three design cases are defined as follows

 

(i) four actuators 

(ii) two actuators 

(iii) one actuator F = Fx1

2.4.1 Optimal control with four actuators
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dynamics. The actuator distribution is as shown in Fig. 9.

In this case, at each mass, two control forces are applied along the drive and sense directions. Therefore,

the optimal control strategy yields the system performance displayed in Figs. 10 and 11. It can be seen that

the controlled error of the dual mass rate integrating gyroscope is reduced, and thus, the actual gyroscope

tracks the ideal dynamics.

Though the employment of the optimal control method using four actuators yields satisfactory results,

the implemented algorithm seems to be costly. Therefore, investigation of an optimal control using two

actuators is sought in the following section.

Fig. 9 Distribution of 4 actuators

Fig. 10 Controlled motion of both the outer and the inner mass the actual gyroscope



806 S. Choura, N. Aouni and S. El-Borgi

2.4.2 Optimal control with two actuators

In this section case, two actuators are applied to the driving gimbal as shown in Fig. 12. 

The applied optimal control leads to the time response shown in Figs. 13 and 14. As compared to the

first case, two actuators led to a slightly larger error. However, the global response of the gyroscope tracks

well the ideal dynamics. It can be seen that two actuators suffice to control the dual-mass system, and

therefore, represents a solution to the problem of reducing the number of actuators in the gyroscope

design.

2.4.3 Optimal control with a single actuator

Finally, this study seeks the possibility of using a single actuator applied to the driving gimbal along the

x direction as depicted in Fig. 15. 

Fig. 11 Controlled error of the actual gyroscope

Fig. 12 Distribution of 2 actuators
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Fig. 13 Controlled motion of the outer mass and inner mass of the actual gyroscope

Fig. 14 Controlled error of the actual gyroscope

Fig. 15 The use of a single actuator
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The resulting performance of the dual-mass gyroscope is shown in Figs. 16 and 17. Though, the error in

the drive direction is drastically reduced, a single actuator fails to reduce effectively the error in the y

direction. 

Fig. 16 Response of the actual gyroscope to a single actuator

Fig. 17 Error response of the actual gyroscope to a single actuator
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3. Conclusions

This paper presented the control design of vibratory dual-mass MEMS-based gyroscopes. Due to micro-

fabrication imperfections, including anisoelasticity and damping effects, these gyroscopes do not allow

accurate measurements of the angular velocity and displacement. For this, feedback controllers were

devised to reduce the effects of such imperfections. The design consisted of two steps. First, an ideal

gyroscope was designed to meet certain performance specifications. Second, two feedback control

strategies were synthesized to reduce the error dynamics between the actual and ideal gyroscopes. Using

both strategies, it was shown that the error dynamics of dual-mass gyroscopes was remarkably decreased

with the application of four actuators applied to both masses in the drive and sense directions. It was also

demonstrated that, using the second control strategy, it was possible to reduce the error dynamics with

only two actuators applied to the outer mass only. Simulation results were presented to prove the

efficiency of the proposed control designs.
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