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Abstract. Impact damage detection in composite structures has gained a considerable interest in many engineering
areas. The capability to detect damage at the early stages reduces any risk of catastrophic failure. This paper
compares two advanced signal processing methods for impact location in composite aircraft structures. The first
method is based on a modified triangulation procedure and Genetic Algorithms whereas the second technique
applies Artificial Neural Networks. A series of impacts is performed experimentally on a composite aircraft wing-
box structure instrumented with low-profile, bonded piezoceramic sensors. The strain data are used for learning in
the Neural Network approach. The triangulation procedure utilises the same data to establish impact velocities for
various angles of strain wave propagation. The study demonstrates that both approaches are capable of good
impact location estimates in this complex structure.
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1. Introduction

Composite materials have been widely used in many engineering applications due to their high

specific strength, light weight and flexibility in design. Good performance displayed by composites has

benefited many industries especially in the transportation area. Composite materials, apart from their

strength and light weight, also offer resistance to fatigue, corrosion and impact damage. This is particularly

important in aerospace engineering. 

The susceptibility of composite materials to incur impact damage is well known and creates a major

concern related to structural integrity. Low velocity impacts are often caused by bird strikes, tool drops

during servicing or runway stones during take off. Such impacts may result in various forms of damage

such as indentation, delamination or fibre/matrix cracking, leading to severe reduction in strength and

integrity of composite structures. Although structures designed with safe-life principles can withstand

in theory catastrophic failures, impact damage detection is an important problem in aircraft maintenance.

Visible damage can be clearly detected and remedial action taken to maintain structural integrity.

However, a major concern to end-users is the growth of undetected, hidden damage caused by low

velocity impacts and fatigue. This undetected, hidden damage is also known in aerospace applications
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as Barely Visible Impact Damage (BVID). Failure to detect BVIDs may result in a catastrophe. 

Impact detection is also important in space vehicles which are exposed to many unexpected impact

events caused by foreign objects such as falling vehicle’s elements, surface debris or micro-meteors. The

foam impact that caused the 2003 space shuttle tragedy is a good example. Therefore sensitive and

reliable damage detection methods in composite materials are needed to prevent possible damage

related problems.

Damage detection in composite materials can be divided into active and passive approaches. The

active approach is usually based on various NDT techniques utilising actuators and receivers; examples

include various techniques based on ultrasonic, acousto-ultrasonic waves or X-rays. In contrast passive

approaches do not involve any actuators; receivers are used to “sense and/or hear” any perturbations

caused by possible hidden damage. Various approaches are possible. For example, in impact damage

detection sensors are either embedded into or bonded onto structures in order to monitor (i.e. detect and

locate) impacts and analyse strain data. The energy of impacts is then estimated using advanced signal

processing techniques. It is assumed that certain energy levels can lead to structural damage. This

information is possible from material properties and design studies. 

Several research investigations related to passive impact damage detection have been performed.

Initial studies of acoustic waves produced by low-velocity impacts have been investigated in Gardiner

and Pearson (1985). The application of piezoelectric sensors for acoustic wave sensing used in impact

detection in impact damage detection has been reported in Weems, et al. (1991). Optical fibre sensors

have been used for impact damage detection in composite panels in Gunther, et al. (1992). Piezopolymer

sensors have also been used Hahn, et al. (1994) to detect the location and intensity of low-energy

impacts in composite panels. This study has involved the application of a binary pattern associator for

signal processing. Optical fibre sensors and Artificial Neural Networks (ANNs) have been used in

Sirkis, et al. (1994) for the position of space debris impacts and to quantify the strain energy absorbed

by the space structure as a result of these impacts. The method was validated using isotropic plates. The

last two references have initiated a number of studies based on advanced signal processing for impact

damage detection. The ANN analysis presented in Sirkis, et al. (1994) has been extended to impact

detection in composite panels (Schindler, et al. 1995). The Levenberg-Marquardt algorithm and the

generalisation method were applied within the ANN-based algorithm for impact detection in composite

laminates (Sung, et al. 2000). Genetic Algorithms (GAs) combined with ANNs have been used for

impact detection (Worden and Staszewski 2000). The Multi-Layer Perceptron (MLP) was used to locate

impacts positions and quantify their energy in an anisotropic composite panel in this investigation. A

similar approach has been applied for optimal sensor location studies in Staszewski, et al. (2000). The

method presented in Worden and Staszewski (2000), Staszewski, et al. (2000) has been automated for

impact detection in smart composite panels with embedded piezoceramic sensors (Haywodd, et al. 2001,

2005). The MLP-based approached used in (Worden and Staszewski 2000, Staszewski, et al. 2000,

Haywood, et al. 2001, 2005) has been validated in a complex wing-box structure from a commercial aircraft

using a regression approach (Le Clerc, et al. 2004). An ANN was trained to predict impact coordinates when

presented with various signal features. This work has been extended to a classification approach (Le Clerc,

et al. 2007) in which substructures has been represented by unique class labels. Another impact location

approach based on machine learning employs a Case-Based Reasoning (CBR) approach (Mujica, et al.

2005, 2006). This methodology creates an initial case-base with principal impact features as a reference. For

each impact test, data are diagnosed by analogy with a case base, i.e. reused or revised following the

initial knowledge stored in the case-base. Impact location is achieved when similar cases are retrieved.

Feature extraction and dimensionality reduction is important in ANN and CBR based techniques.
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Several studies have been performed to investigate this problem. A number of different features

obtained from time, spectrum and envelope signals were used as the input for the MLP network in Le

Clerc, et al. (2004, 2007). Wavelet analysis has also been used for feature extraction, as reported in

Sung, et al. (2000), Staszewski, et al. (1999, 2002), Meo, et al. (2005). The studies have allowed for

high-frequency features related to damage to be extracted from strain data. The work has involved

time-frequency wavelet maps, maximum amplitude from wavelet coefficients and kurtosis. The CBR

approach in Mujica, et al. (2005, 2006) has been extended in Mujica, et al. (2006) to the application of

multivariate statistical process control techniques for reducing dimensionality. The study involves linear

(principal component analysis) and non-linear (self organising maps and curvilinear distance analysis)

techniques.

A modified triangulation procedure was proposed for impact damage detection in composite structures

in Coverley and Staszewski (2002, 2003). The method uses experimental velocity characteristics and

applies GAs to locate impacts. In contrast to ANN-based approaches the method does not require significant

amount of data for training.

A vector-based triangulation procedure for impact location in orthotropic composite materials has

been used for impact location in Kessler and Raghavan (2008).

An approach based on system modelling has been proposed in Choi and Chang (1996), Seydel and

Chang (1999, 2001), Cardi, et al. (2006). The method utilises a structural model which is used to

obtained dynamic responses for simulated impact locations. Measured sensor outputs are then

compared with the estimated responses from the model. If the two responses are not identical, the

algorithm revises the model to characterise the response to a different impact location. This process is

iterated until the model response and the actual response of the structure converge. System modelling is

not easy for complex structures, and this is the major drawback of the method. Also, the results lead to

significant location errors even for simple structures such as beams and plates.

Previous work in this area demonstrates that machine learning techniques are capable of modelling

extremely complex relationships between input and output data and produce impressive impact location

results even in complex structures (Le Clerc, et al. 2004, 2007, Mujica, et al. 2005, 2006). However,

these methods require a significant amount of impact data for learning and this is not always possible.

The optimised triangulation procedure (Coverley and Staszewski 2002, 2003) produces very good results

for simple structures and does not require substantial data. 

The aim of the current paper is to compare both techniques using a complex composite structure with

bonded low-profile piezoceramic sensors. The focus of these investigations is on impact location. 

The methods used are briefly described in Sections 2 and 3. The experimental work performed on a

composite wing-box structure is presented in Section 4. This involves impact tests and strain wave

propagation analysis. Impact location results are presented and compared in Section 5. Finally, the paper is

concluded in Section 6.

2. Modified multilateration procedure for impact location

The impact location problem can be solved in isotropic materials using classical localisation

techniques, such as triangulation, trilateration and multilateration (Mahzan 2007), which require strain

data from a set of only three sensors. This approach is clearly not possible for composites which are

anisotropic materials. Different frequency components of strain waves propagate in composite materials in

different directions with different velocities. However, once velocity characteristics are obtained
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experimentally for various angles of wave propagation a simple triangulation procedure with a Genetic

Algorithm (GA) optimisation scheme can be used for impact location, as described in Coverley and

Staszewski (2002, 2003).

2.1. Impact location algorithm

When an impact event occurs, the monitored structure is deflected and strain waves propagate

outwards in all possible directions. In other words, the impact is a source of flexural strain waves

propagating in the monitored structure and the task is to estimate the position of this source. Three

different transducers, namely S1, S2 and S3, can be used to sense the strain, as illustrated in Fig. 1. The

waves propagate from the unknown impact position towards these transducers. The procedure selects

randomly three different angles, namely α1, α2 and α3, for wave propagation directions. For every

transducer Si and assumed wave propagation angle, the distance di between the transducer and unknown

impact position can be calculated as

di = vi ti (i=1, 2, 3) (1)

where ti and vi are arrival times and velocities of the propagating strain waves. The arrival times can be

estimated from the experimental strain data for all relevant transducers. The major difficulty is the

velocity vi which depends on the wave propagation direction for anisotropic materials. However, the

velocity characteristics vi = f(αi) can be estimated a priori for monitored composite structures using

experimental analysis for all possible angles of wave propagation.

For the assumed wave propagation directions αi and estimated distance di, the analysis of strain data

from three different transducers results in three estimated impact positions, i.e. A1, A2 and A3. These

positions can be considered as the vertices of a triangle. The GA can be used to minimise the area of this

triangle. Finally, the estimate for x and y coordinates of the unknown impact position can be obtained as

and (2)

where  and  are the x and y coordinates for the Ai (i=1, 2, 3) vertices, respectively.

The entire procedure, presented graphically in Fig. 2, can be implemented for any configuration of

three sensors.
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Fig. 1 Illustration of modified triangulation impact location procedure
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2.2. Genetic algorithms

This section briefly describes the principles of genetic algorithm. GA is an optimisation algorithm

based on the principles of natural selection and natural genetic (Goldberg 1989). This algorithm was

developed in the 1970s by Holland (1975). GAs are designed to mimic natural biological evolution, i.e.

inheritance, mutation, reproduction and crossover. GAs offer an alternative way to find optimal solutions

close in performance to the global optimum (i.e. maximum or minimum) value. The algorithm is simple

and robust. GAs can be easily implemented in computer simulations and used for various optimisation

problems in order to achieve optimal solutions.

In general, GA operations should follow several steps such as encoding, evaluation, reproduction,

crossover and mutation (Goldberg 1989). The GA process starts with random selection over encoded

individuals, i.e. finite-length strings using some pre-defined alphabet. This generates an initial population

representing a set of possible solutions. There are several types of encoding, i.e. binary, integer, real-

values, character-based and list-based rules  (Goldberg 1989). However, the binary encoding is the most

commonly used due to its simplicity. The next step is the evaluation step, whereby an objective function

Fig. 2 Modified traingulation/multilateration with a GA optimisation scheme for impact location in composite structure
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(often called a fitness function in GAs) is applied to consecutive populations to evaluate its current best

solution in order to search for an optimal solution. Reproduction is a copying process to produce a new

generation according to the objective function. A modification of the initial population is then made in

the next step by introducing operations such as crossover and mutation. Crossover is a process in which

old individuals (parents) mate to produce new individuals (children). A mutation process is then

performed on child individuals created from the crossover process to prevent premature loss of genes at

a particular position. This process is performed by flipping a bit value at a certain position of an

individual based on a mutation probability, which decides how often parts of the individual being

mutated. The entire process is repeatedly iterated to produce the next population. Finally, after many

generations the optimum solution is obtained through this evolutionary process. 

3. Neural networks for impact location

The second algorithm used for impact location is a mapping procedure based on artificial neural

networks (ANNs). ANN is a computer algorithm that emulates the human brain in performing a

particular function, i.e. remembering, thinking or problem solving. ANN modelling is applied to predict

the system output from given input data. The ability to learn from its environment is one of the major

Fig. 3 MLP network procedure for impact location in a composite structure
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attributes of the ANN. Two types of learning paradigms are usually adopted in neural network, i.e.

supervised and unsupervised learning. The back-propagation algorithm is used to train ANNs in order

to produce a desired mapping relationship. The back-propagation learning algorithm involves a forward

propagation step followed by backward propagation step. At each training stage, a set of inputs is

passed forward through the network to produce a set of outputs. These outputs are then compared to the

desired outputs for an error calculation. If a minimum error criterion is not yet achieved, the error is

passed backward for connection weight adjustment. This process continues for some time until a

minimum error value is obtained.

In this paper, the Multi-Layer Perceptron (MLP) network is chosen to perform regression analysis.

The entire algorithm is very straightforward. The MLP works in a multi-layer, feed-forward structure

and consists of a series of connected nodes arranged in layers; i.e. input, hidden and output layers. The

MLP process starts as the input patterns enter at the input layers (x1, x2…, xn) units. These input patterns

progress forward through the hidden layers and the results emerge at the output layer as an output

pattern. The hyperbolic tangent was used as the activation function in the entire neural network.

For a given impact the network inputs are signal features obtained from impact strain data whereas

the network outputs are estimated x and y coordinates of the impact. The signal features used in the

current work are the maximum, minimum, peak-to-peak and variance values calculated in the time

domain and the arithmetic mean values for the absolute, real and imaginary spectra calculated in the

frequency domain. These parameters were successfully selected following rigorous investigations

described in Mahzan (2007). Flexural strain waves, resulting from impact events, were captured by a

network of sensors.Three different sets of strain data were collected for the MLP procedure. 

The MLP network started with a training stage. At this stage, the architecture of the network was also

established to determine the optimum number of hidden units with the corresponding sets of connection

weights. This stage utilised data features from the training set and corresponding target output values.

The connection weights are iteratively adjusted until the network produces the best match for the actual

impact positions. Several training sessions with different initial weights are required for each given

network architecture. Once the network was established after the training stage, the next step was

applied to validate the network. At this stage, a point at which the training stage should stop was

determined. It is because networks which are over-trained learn details of the training data rather than

the underlying input-output mapping. Once the optimal network was constructed and validated, the

testing data feature set was used to estimate the impact locations.

4. Experimental tests

4.1. Aircraft wing-box structure

The test specimen used in the experimental work performed for impact location was a substantial

composite wing-box structure. Figs. 4 and 5 give photographs of the entire structure together with a

schematic diagram of its cross-section.The structure was a section of one of the flaps taken from a

commercial aircraft. The width and length of the structure were equal approximately to 960 and 660 mm,

respectively. 

The structure had a complex geometry and was manufactured from different materials. The composite

skin of the wing-box was curved at the top. The interior of the component below the leading and

trailing edges were filled with aramid fibre and aluminium honeycombs, respectively.The underside of
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the central area had numerous stringers attached.Vertical and horizontal lines of rivets can be observed

at the top curved surface of the structure in Fig. 4. These lines also indicate positions where underside

ribs and spars were attached.

The composite structure was instrumented with nine Sonox-P5 piezoceramic sensors bonded on the

top surface. The diameter and thickness of each sensor was equal to 6.5 and 0.25 mm, respectively. The

sensors positions, indicated as S1, S2,…, S9 in Fig. 4, are given in Table 1; two sensors were bonded on

the leading edge; two on the trailing edge and five in the central area.

4.2. Strain wave velocity characteristics

The first test performed was the experimental analysis of impact strain waves for various wave

propagation directions in the composite structure. The objective was to obtain wave velocity characteristics

for impact location based on the modified triangulation procedure.The structure, positioned on foam,

was divided into four different zones and impact tests were performed separately within each zone. 

The analysed zones were: the upper part of the central area (zone 1), the lower part of the central area

(zone 2), the trailing edge (zone 3) and the leading edge (zone 4), as illustrated in Fig. 6. It is clear that

wave propagation within this zone is different due to variety of material and geometric properties. The

Fig. 4 Composite aircraft wing-box structure used for impact damage location

Fig. 5 Cross-section of the composite aircraft wing-box structure 
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surfaces of zones 1, 2 and 4 are relatively flat when compared with zone 3 which follows the curvature

of the leading edge. It is also expected that the level of wave attenuation in zones 3 and 4 is larger if

compared with zones 1 and 2 due to honeycomb inserts in the leading and trailing edges.

A series of 41 low-velocities, low-energy impacts were performed at potions indicated in Fig. 6. The

resulting strain waves of 2 s were acquired by sensors S4 and S7 in zone 1, sensors S3 and S6 in zone 2,

sensors S1 and S2 in zone 3 and finally sensors S8 and S9 in zone 4. The impact strain data were

acquired using the Waverunner LeCroy LT-264 oscilloscope. The sampling frequency used was equal to

5 kHz. The strain data were stored on a PC’s hard disc for further analysis. Fig. 7 gives examples of

impact strain data from sensors S3 and S7 in response to the impact at x=365 mm and y=505 mm. 

The strain data were used to obtain the wave velocity characteristics. Firstly, the arrival time was

estimated for all recorded signals. Then, for known distances between impact and sensor positions, the

velocity was calculated from Eq. (1) for the 0-1800 range of wave propagation angles. Fig. 8 shows the

strain wave velocity characteristics for all four analysed zones of the aircraft wing-box structure. 

Table 1 Sensor location coordinates on the composite wing-box structure

Sensors x-coordinate [mm] y-coordinate [mm]

S1 868 470

S2 868 150

S3 667 577

S4 670 58

S5 485 325

S6 317 588

S7 305 70

S8 115 494

S9 105 182

Fig. 6 A schematic diagram showing 4 zones used for impact location investigations in the aircraft composite
structure. All dimensions are given in mm. × - impact positions; Si (i=1,2,…,8) - sensor locations



156 Shahruddin Mahzan, Wieslaw J. Staszewski and Keith Worden

A curve fitting procedure was applied to the experimental velocity characteristics. Five different

analytical functions were used for the curve-fitting. Table 2 shows the examples of relevant functions

defined for zone 1. For zone 1 and 2, 4th order polynomials were fitted to the experimental curve for the

0o-90o and 90o-180o angles. For zone 3, the 4th order polynomial was fitted to the experimental curve

between 20o and 160o and a straight line was fitted for the remaining part of the curve (i.e. for 0-20o and

160-180o). For zone 4, the 4th order polynomial was fitted to the experimental curve between 35o and

Fig. 7 Examples of strain wave signals acquired by sensors S3 and S7 for impact performed at x=365 mm and
y=505 mm

Fig. 8 Wave velocity characteristics for the aircraft wing-box structure produced for the 0o-180o angle range
in: (a) zone 1 (b) zone 2 (c) zone 3 (d) zone 4
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145o and the straight line was fitted for the remaining part of the curve (i.e. for 0-35o and 145-180o).

The Mean Square Error (MSE) was used to assess the performance of the functions used for curve

fitting. The MSE was defined as

 (3)

where ui are experimentaldata points,  are theoretical data points given by the functions used for

curve fitting, σu is the standard deviation of the experimental data and N is the total number of points in

the data sets used. The MSE was smaller than 1.4% for all four analysed zones.

Finally, the wave velocity characteristics for the 0-1800 angle range were mirrored (due to the symmetry of

the structural layout) to produce the final characteristics for the 0-360o angle range. The final results,

presented in Fig. 9 for all analysed zones, were used for further impact location studies based on the

modified triangulation procedure. The experimental results show that the wave velocity characteristics

are similar for zone 1 and 2, as expected.

4.3. Impact tests

The second series of impacts was performed on the aircraft composite structure to collect the data for

the ANN-based impact location procedure. The experimental equipment, set-up, procedure and data
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Fig. 9 Wave velocity characteristics for the composite aircraft structure produced for the 0-360o angle range
and four analysed zones

Table 2 Analytical functions used for curve-fitting the zone 1 wave velocity characteristics

Function Equation a1 a2 a3 a4 a5 Remarks

1 1.473 -16.16 -4.185 52.73 - -

2 10.43 1.352 -43.2 -3.94 60.59 -

3 39.95 22.56 0.450 0.119 - -

4
1.82 4.435 -19.92 31.46 - For angles 0o-90o

-4.009 3.921 24.51 36.36 - For angles 90o-180o

5
-1.234 2.113 7.436 -20.23 30.58 For angles 0o-90o

-3.677 -4.879 12.2 25.45 33.65 For angles 90o-180o
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acquisition parameters were the same as described in Section 5.2. Strain signals were collected for

impacts performed on a regular grid and at random positions on the structure. Fig. 10 shows sensor

locations and impact positions. Impact positions were characterised using x and y coordinates. For zone

1, impacts were performed on a regular 30×60 mm grid. The total number of impacts was equal to 425

of which 255 events were from the regular grid and the remaining events were from random positions.

For zone 2, a regular 25×40 mm grid was used and resulted in the total number of 420 impacts; 280

impact events were performed on the regular grid. For zone 3, a grid size of 30 × 40 mm was applied. In

total 420 impacts were introduced, of which 252 events were produced on the regular grid. For zone 4,

the size of the regular grid was set to 25×25 mm. The regular grid marking produced 312 impacts from

a total of 468 impact events. All these figures are summarised in Table 3. Altogether 1733 strain wave

Fig. 10 Impact positions (indicated by crosses) for the aircraft composite wing-box structure: (a) regular grid
(b) random grid. Sensors indicated by black filled circles

Table 3 Summary of impact events applied to analysed zone of the aircraft composite wing-box structure

Zone
Regular Grid Size 

(in mm)
Total number of

impacts
Impacts

(Regular Grid)
Impacts

(Random)

1 30 × 60 425 255 170

2 25 × 40 420 280 140

3 30 × 40 420 252 168

4 25 × 25 468 312 156
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signals were collected. The mean value was removed from all signals. The data was low-pass filtered to

remove undesired noise. The cut-off frequency was equal to 1 kHz.

5. Impact location results

5.1. Modified triangulation procedure 

The first method used followed the algorithm described in Section 3. This algorithm requires the GA

optimisation scheme for impact location. The GA used for impact location required encoding of impact

coordinates and selection of genetic parameters. The binary and integer encoding (Coverley and

Staszewski 2002, 2003, Mahzan 2007) were used to represent three unknown values of wave propagation

angles. Three random numbers were chosen to represent angle values. For i=1 (sensor S1) and i=3

(sensor S3) the actual angle values from the velocity characteristics were taken as α = α1+1800 and α =

α3+2700, respectively (see Fig. 1). For the binary encoding GA one chromosome consisted of 21 genes.

The first seven genes gave the first angle α1, the next seven genes gave the second angle α2 and the last

seven genes gave the third angle α3. Seven 0, 1 genes can give a maximum integer number equal to 127

whereas the maximum angle required was between 0 and 90. Therefore, if a random number was

greater than 90 the software mapped numbers between 91 and 127 into the set between 0 and 90.

Once a population of chromosomes was selected randomly, the experimental wave velocity characteristics

were used to estimate impact positions. The GA was then performed to evolve the initial population and

optimise the final impact positions. The entire procedure was coded in C and run under Solaris v.8

operational system. A Sun grid computer was used in all calculations. Since there is very little guidance

in the literature regarding the choice of GA parameters, a trial and error approach was used for selection.

The parameters selected are summarised in Table 4. 

The performance of the GA operation was monitored through the maximum and mean fitness values.

The natural fitness measure was introduced as the inverse of the total length comprising of lengths

A1A2, A1A3 and A2A3 (see Fig. 1).

(4)

Although the GA procedure was run for 500 generations, Fig. 11 demonstrates that both parameters

converged after 20 generations for zones 1-2 and 40 generations for zones 3-4 when binary encoding

was used. A similar convergence was observed for the integer encoding. This fast convergence was

concurrent with the good predictions in impact locations.

 f
1

A1A2 A1A3 A2A3+ +
---------------------------------------------=

Table 4 Summary of GA parameters used for the optimisation scheme

Parameter name Binary encoding Integer encoding

No of chromosomes per population 40 16

No of generations 500 800

No of genes per chromosome 21 3

Probability of crossover 0.7 0.6

Probability of mutation 0.05 0.01

No of elite chromosomes 4 3

No of new blood chromosomes 8 5
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Fig. 12 gives an example of impact location results for the analysed zones when binary encoding was

used. The results present the comparison between the actual and estimated impact locations. The results

show that although the overall trends of the actual location curves are followed by the estimated

location curves, there exist discrepancies in x and y coordinate estimates. Table 5 gives a summary of

impact estimation errors for the binary and integer encoding used. This illustrates that the type of

encoding had very little influence on the results. Altogether, the errors obtained were smaller than 2%

for all analysed structural zones. Zone 1 and 3 gave the best results. 

5.2. Neural networks

The second method used was based on the ANN algorithm. The NETLAB software (Nabney 2002,

website:http://www.ncrg.aston.ac.uk/netlab), run on a PC, was used for the MLP modelling procedure.

The network was designed and trained following the regression algorithm described in Section 4. The

back-propagation algorithm was used for training. One hidden layer of 25 elements was used in the

computations. The output of the network gave x and y impact coordinates. Seven different networks

were designed initially for seven different signal features, described in Section 4. Thus all networks

were fed initially with 7 parameters. In the second step the network was fed with all 63 parameters

(seven features for strain data from nine sensors). Once the structure of the network was established,

validation and testing was performed. This led to the final estimated results which were compared with

the actual impact coordinates. Fig. 13 gives an example of impact location results for analysed zones

when the network trained on peak-to-peak values. The results show that the overall trend for x and y

estimated coordinates is kept if compared with the relevant actual coordinates. However, numerous

discrepancies can be observed. These were analysed using the same error parameters as in Section 5.1.

A summary of estimation errors for all signal features used is given in Table 6.

Fig. 11 Maximum and mean fitness values for all analysed zones and binary encoding used
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Altogether, the ANN-based algorithm resulted in impact estimation errors were smaller than 4.3% for

all analysed structural features and zones. The study shows that when the network was trained on a

single feature, the peak-to-peak value outperformed the other parameters. When the network was

trained with all features, the results were improved significantly only for zone 2. The error for all

Fig. 12 Modified triangulation procedure with the GA optimisation - examples of impact location estimates for
all analysed zones
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Table 5 Impact estimation percentage error for the modified triangulation procedure with the GA optimisation

Zone Binary encoding Integer encoding

Zone 1 0.42 0.45

Zone 2 1.48 1.48

Zone 3 0.85 1.32

Zone 4 2.00 1.97

Fig. 13 ANN analysis - examples of impact location estimates when peak-to-peak value is used for analysed zones
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features was less than 2.4% for all zones analysed. Zone 1 and 2 gave the best results and the errors

were equal to 0.69% and 0.51%, respectively when all features were used for training.

6. Conclusions

The experimental study on impact location in the aircraft composite structure was performed using

the modified triangulation procedure with the GA optimisation scheme and the ANN-based procedure.

Both procedures resulted in good impact location estimates. The estimation errors are of the same order

and smaller than 2% for the modified triangulation procedure with the GA optimisation scheme and

smaller than 2.4% for the ANN-based procedure with all features used for training. There is very little

difference between the binary and integer encoding used in the modified triangulation procedure. When

the ANN-based procedure is used, the results are improved significantly only for zone 3 when all

features are used for training.The ANN-based procedure has produced the best results (impact

estimation errors smaller than 0.7% when peak-to-peak values or all features used for training) for the

central zones (1 and 2) of the composite structure. This result was expected since these zones were not

filled with core inserts which cause significant wave attenuation. In contrast, the modified triangulation

procedure has produced the best results (impact estimation errors smaller than 0.9% when the binary

encoding used) for zones 1 and 3. This needs further investigations, as the result for zone 2 was

expected to be better than for zone 3, as explained above.

In summary, the modified triangulation procedure with the GA optimisation scheme produces similar

results as the ANN-based procedure. The advantage of the modified triangulation procedure is that it

does not require substantial data. However, it is more computationally expensive when tested for

impact location. Once the network is learned and validated, the ANN-based procedure is very fast and

produces immediate impact location results. Although both methods offer a good solution to the impact

detection problem further comparative tests are required to confirm the findings in this paper. This work

should investigate higher energy impacts which damage analysed structures.

The question remains whether simulation data (i.e. wave velocity characteristics in the modified

triangulation procedure and impact strain data used for training and validation in the ANN-based

procedure) could be used in practical application. The study should also address the problem of

different signal features in the ANN-based algorithm. All these elements will be the subject of future

investigations.

Table 6 Impact estimation percentage error for the ANN-based procedure

Feature Zone 1 Zone 2 Zone 3 Zone 4

Maximum peak 0.81 0.81 3.51 1.35

Minimum peak 0.81 0.71 3.72 1.73

Peak-to-peak 0.67 0.38 3.00 1.21

Variance 1.87 1.57 4.30 2.04

Arithmetic mean (absolute spectrum) 1.06 0.34 3.11 1.91

Arithmetic mean (real spectrum) 0.72 0.42 2.71 1.70

Arithmetic mean (imaginary spectrum) 1.29 1.14 3.59 1.92

All features 0.69 0.51 2.39 1.27
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