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Abstract. In this paper, the time series based damage detection algorithms developed by Nair, et al. (2006)
and Nair and Kiremidjian (2007) are applied to the benchmark experimental data from the National Center
for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan. Both acceleration and strain data are
analyzed. The data are modeled as autoregressive (AR) processes, and damage sensitive features (DSF) and
feature vectors are defined in terms of the first three AR coefficients. In the first algorithm developed by
Nair, et al. (2006), hypothesis tests using the t-statistic are applied to evaluate the damaged state. A damage
measure (DM) is defined to measure the damage extent. The results show that the DSF’s from the
acceleration data can detect damage while the DSF from the strain data can be used to localize the damage.
The DM can be used for damage quantification. In the second algorithm developed by Nair and Kiremidjian
(2007) a Gaussian Mixture Model (GMM) is used to model the feature vector, and the Mahalanobis distance
is defined to measure damage extent. Additional distance measures are defined and applied in this paper to
quantify damage. The results show that damage measures can be used to detect, quantify, and localize the
damage for the high intensity and the bidirectional loading cases.

Keywords: structural health monitoring; damage diagnosis; autoregressive model; hypothesis test; Gauss-
ian mixture model.

1. Introduction

Over the past decade statistical pattern recognition methods for structural damage diagnosis have

been successfully applied to simulated and laboratory experimental data. The data that are available for

validation and calibration of these methods, however, have been very limited. Recognizing the need for

additional data from experiments whereby damage is introduced in a systematic and controlled way has

led to a series of laboratory test. In this paper, the time series based damage detection algorithms

developed by Nair, et al. (2006) and Nair and Kiremidjian (2007) are applied to the data obtained from

the benchmark experiment conducted at the National Center for Research on Earthquake Engineering
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(NCREE) in Taipei, Taiwan (Lynch, et al. 2006). The algorithm is based on the premise that structural

damage will change the vibration response of the structure. While previous validation and calibration

tests with this algorithm have involved only acceleration measurements, in this paper both acceleration

and strain data are used to evaluate the robustness of the algorithm. The algorithm involves the modeling of

vibration and strain signals as autoregressive (AR) processes. The first three AR coefficients of the model

are used to define the feature vector which serves as the diagnostic tool for damage identification. As

shown by Nair, et al. (2006) these coefficients are directly related to the mode shapes and frequencies

of the structure and thus can be used to capture changes in these structural properties. The feature

vectors are used in two different algorithms for damage diagnosis. In the first algorithm, which follows

Nair, et al. (2006), a damage sensitive feature (DSF) is defined as a function of the first three AR

coefficients. Hypothesis tests using the t-statistic are applied to discriminate a damaged state from an

undamaged one. A damage measure (DM) is defined in terms of the mean values and the standard

deviation of the DSF’s to measure the extent of the damage. In the second algorithm, which follows the

developments of Nair and Kiremidjian (2007) a Gaussian Mixture Model (GMM) is used to model the

feature vector. Damage diagnosis is achieved by determining the distance between mixtures. The

Mahalanobis distance, which is defined as the Euclidean distance between the mixtures weighted with

respect to the inverse covariance matrix, as well as various distance measures are used to detect damage

and measure damage extent. In the following sections, a description of the NCREE experimental

benchmark test is presented, and the data that are used in the application of the algorithm are described.

Then the two models are applied to the data. It is shown that the algorithms are able to identify damage

in majority of the cases. Damage extent and location, however, are not always well represented by these

measures.

2. Description of experiment

An experiment was designed and performed at the National Center for Research on Earthquake

Engineering (NCREE) in Taipei, Taiwan in order to provide information on a controlled damage

occurrence on a structure. For that purpose, a three story single bay steel frame (Fig. 1) was constructed

and various sensors were deployed at different locations on the benchmark structure. The inter story

height of the benchmark structure is 3 m. Floor dimensions at every story are 3 m × 2 m, and each floor

mass is 6 tons. H150 × 150 × 7 × 10 steel I-beams are used for the beams and the columns, and each

beam-column joint is designed as a bolted connection (Lynch, et al. 2006).

The excitation on the benchmark structure is applied through a shaking table representing ground

motions. Random excitations with maximum amplitudes of 60 gal intensity in the X-direction, 100 gal

intensity in the X-direction, and 50 gal intensity in the XY-direction were applied. In addition, selected

strong ground motions from the 1940 El Centro, California, 1995 Kobe, Japan, and the 1999 Chi-Chi,

Taiwan, records were applied to the structure. Both wired and wireless sensors were installed on the

structure. These included accelerometers and strain gauges. The data from only wired sensors are used

for analysis in this paper. Data were collected at 200 Hz sampling rate. Fig. 1 shows the location of the

deployed sensors on the benchmark structure. In this figure, A and S represent acceleration and strain

sensors, respectively. In this paper, we use the measurements from both sensors with the unidirectional

and bidirectional random excitations. Data from all locations were considered; however, not all data

could be used because some of the data were corrupted. For each excitation with 50 gal, 60 gal, and 100

gal intensities, acceleration data were collected from 12 different locations, and strain data were



Application of time series based damage detection algorithms to the benchmark experiment... 97

collected from 40 different locations for each damage state. Table 1 shows all the data that were

collected, identifies how many records were corrupted and how many were used in the analysis

presented in this paper. 

In order to compare the behavior of the structure from a normal condition to damaged conditions, two

damage cases were introduced during the experiment. In the first damage case the flanges at the lower

part of column 1 (Fig. 1) at the ground floor were reduced in width by 26.67% (Fig. 2). The second

damage case has the flanges of both columns 1 and 2 cut the same amount near the ground floor.

Hereafter we will refer to these as DP1 and DP2, respectively. Fig. 2 shows the damage that was

introduced to the base columns. 

Fig. 1 Benchmark structure and sensor locations used at the NCREE test 



98 Hae Young Noh, K. Krishnan Nair, Anne S. Kiremidjian and C-H. Loh

3. Description of algorithm

The autoregressive (AR) model is used in this paper to define two algorithms for damage

identification, quantification, and localization. For this purpose AR coefficients are computed from the

data for the undamaged and damaged structure, and the two signals are analyzed. We briefly summarize

the two algorithms that will be used in the analysis of the data.

In the first algorithm a damage sensitive feature, DSF, is defined based on the AR coefficients. To

compare the two signals, the DSF is tracked as damage is incurred. Thus, the selection of the DSF is

very important and has to reflect the physical properties of the structure. A relationship between the

structural modes and frequencies and the first three AR coefficients was developed by Nair, et al.

(2006) demonstrating that indeed these coefficients are suitable for damage discrimination. The

algorithm developed by Nair, et al. (2006) consists of three steps (i) time series modeling of vibration

signal, (ii) damage sensitive feature extraction, and (iii) statistical classification using the t-test for

predicting damage. 

Modeling of the vibration signal includes the removal of trends, obtaining the optimal model order

and checking the assumptions of the residuals of the AR model. To extract the appropriate DSF, an AR

model is fitted to the data and different forms of the DSF based on the AR coefficients are considered.

Statistical analysis is performed on the DSF values for the pre and post damage signals as a tool for

change detection, and the significance of that change is tested by various statistical techniques. 

The algorithm is performed in the following steps assuming that all preprocessing has already been

completed:

• Obtain signals from an undamaged structure, from sensor i, denoted by xi(t) (i = 1,…, N), where N is

the number of sensors. Segment the signal xi into chunks of finite duration, xij(t) ( j = 1,…, M),

where M is the number of chunks. Populate a database with these baseline signals.

• Standardize and normalize the signal xij(t) to remove all trends and environmental conditions to

obtain . 

• Obtain signals from a potentially damaged structure for the same sensor, denoted by zi(t), (i = 1,…,

N). As in the previous steps, segment zi(t) into zij(t) ( j = 1,…, M) and then standardize and

normalize it to obtain .

• Fit an AR model to the signals  and  for all i and j. 

• For each sensor i, define and compute the statistics of the damage sensitive feature, DSF, for each

x̃ij t( )

z̃ij t( )
x̃ij t( ) z̃ij t( )

Fig. 2 Photograph of the cut flanges of the column
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chunk in the pre- and post-event signals. Compute the mean and pooled variance of the DSF for the

pre- and post-event signals. 

• Determine the statistical significance in the differences of mean values of the pre- and post- event

data using the t-test to report the damage decision at sensor i. 

• Calculate the damage measure DM for each sensor.

The second damage identification algorithm used in this paper was developed by Nair and

Kiremidjian (2007). The steps in this algorithm are as follows: (i) time series modeling of vibration

signal, (ii) modeling of feature vectors using Gaussian Mixture Models, GMMs, and (iii) using the

Mahalanobis distance to determine the damage extent.

In this algorithm, the first three AR coefficients of the signals are defined as the feature vectors. The

feature vectors are modeled as GMMs. The pre and post damage signals are assumed to be from

different Gaussian mixtures, and the parameters of the GMMs are calculated. The parameters of the

GMM are the mean value vector and covariance matrix of the variables. The Mahalanobis distance

between the mixtures is measured to determine the damage state. A brief summary of the formulations

for each model is presented in the following sections as they apply to the data obtained from the NTU

steel frame test. 

3.1. Time series modeling of vibration signal

The first step of the analysis is to examine the data and eliminate corrupted signals or those signals

that do not satisfy the requirements for AR modeling. The data could be corrupted due to faulty

instrumentation, changes in environmental conditions, faulty sensors, or faulty transmission via cabling

or via the wireless transmission, among the many possible alternatives. For example, signals that are

non-stationary, or that do not appear to correspond to structural behavior, or data that are erratic need to

be discarded. Figs. 3(a), and (b) show examples of corrupted signals. In Fig. 3(a) the signal is nonstationary

showing increasing amplitude. In Fig. 3(b) the signal is jumping up and down showing that the sensor

may be unstable or loose. Table 1 shows the total number of signals obtained from the test and the

number of signals used for analysis for each case. 

For the signals that appear to be appropriately collected by the sensors, the signals are segmented to

form chunks. Each of these chunks is standardized and normalized using the following expression:

Fig. 3 Examples of corrupted data
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(1)

where xij(t) is the signal (acceleration or strain) obtained from sensor i and chunk j, μ ij and σ ij are the

mean and standard deviation of the signal xij(t) respectively. The tilde in the notation has been dropped

for simplicity. Subtracting the mean value standardizes the signal to the same amplitudes and dividing

by the standard deviation normalizes the signal to reduce the effect of local variability. This procedure

is performed in order to compare signals (at a sensor location) that may have occurred due to different

loading conditions (i.e. different magnitudes and directions of loads) and/or different environmental

conditions.

After standardizing and normalizing the signal, time series models are fitted to these signals. Since

the input motion is available, the ARX model is applied to fit the data. In addition, the AR model is also

used as it is the simplest time series model available. The Burg and least squares algorithms are applied

to obtain the AR/ARX coefficients, respectively (Brockwell and Davis 2002). 

The ARX model is given by:

(2)

where xij(t) is the normalized acceleration signal, yij(t) is the normalized input signal, αk and βk are

the kth AR and exogenous input coefficient respectively; p and q are the model orders of the AR and

the exogenous input processes respectively and εij(t) is the residual term. Similarly the AR model is

given by:

(3)

Note that the AR model is an ARX model with the exogenous input model order q=0.

The optimal order of AR and ARX model is selected using the Akaike Information Criteria (AIC).

Figure 4 shows the variation of the values of AIC with AR model order for different input orders, q, of

the ARX model for the data from the steel frame structure. It should be noted that when q is zero, the

ARX model reduces to the simple AR model. It is observed that as the input model orders vary from q

= 0 to 4, the AIC values are similar to those of AR model order p. Thus, the AR model is selected as the

simplest model that captures the characteristics of the signal. For this study, an optimal AR model order

of 7 is chosen for both acceleration and strain signals.

x̃ij t( )
xi j t( ) μi j–

σi j

------------------------=

xij t( ) αkxi j t k–( )
k 1=

p

∑ βkyij t k–( )
k 1=

q

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

εi j t( )+ +=

xij t( ) αkxi j t k–( )
k 1=

p

∑ εi j t( )+=

Table 1 Number of data obtained and used for the analysis

60 gal X-direction uni-
directional random exci-

tation

100 gal X-direction
unidirectional random 

excitation

50 gal XY-direction
bidirectional random 

excitation

Acceleration
Data

Direction X Y X Y X Y

Total 6 6 6 6 6 6

Uncorrupted* 4 4 0 5 5 6

Strain Data
(Z-direction)

Total 40 40 40

Uncorrupted* 35 38 39

*Only the uncorrupted data are used for the analysis.
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The stability of the AR coefficients with chunk size of the signals obtained from the test is examined

next. Each set of acceleration and strain data is divided into chunks of the same size for analysis. In

order to determine the optimal chunk size (number of points in a segment), several sets of data are

analyzed with different chunk sizes. For these data sets, the means and variances of the first AR

coefficients are calculated. Table 2 shows the result of the analysis of the strain signal obtained at sensor

1 as identified in Fig. 1. The chunk sizes are selected such that the coefficient of variation (COV) of the

AR coefficients is less than 0.1. Table 2 shows that a chunk size of 100 points has COV smaller than

0.1. Chunk sizes are varied by gradually increasing the number of points from 100 to 1500 and

computing the statistics for each set. From Table 2 it can be observed that the mean value changes very

slightly with increased chunk size, but the standard deviation as expected decreases. It is found,

however, that with chunk sizes larger than 200, the COV is less than 0.05 (or 5%) which is considered

to be an acceptable variation for the purposes of this analysis. Thus a chunk size of 200 points is used

for the analysis.

Following the fitting of the AR model, the residuals are examined to determine if they are independent and

identically distributed (iid) as required for AR modeling. For this purpose the variation with time, the

normal probability plot, and the variation of the autocorrelation function with lag of the residuals are

plotted for further examination. Figure 5(a) shows the variation of the residuals within a chunk of data

for one signal. We can see that there are no trends, thus indicating homoskedasticity in the residuals.

Figure 5(b) is the normal probability plot of the residuals. The residuals follow the straight line closely

and start deviating at the ends, indicating that there is a slight deviation from normality only at the tails.

Figure 5(c) shows the autocorrelation function (ACF) of the residuals. Since the ACF values are small

and decrease with lag, it can be concluded that the residuals are stationary. Thus, all conditions for

fitting an AR model have been satisfied.

Fig. 4 Variation of AIC with model order

Table 2 Stability of the first AR coefficient

Points. per chunk 100 200 500 1000 1500

Mean -1.5219 -1.5287 -1.5388 -1.5471 -1.5520

Std. deviation 0.0874 0.0811 0.0692 0.0578 0.0271

COV -0.0574 -0.0531 -0.0376 -0.0279 -0.0174
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3.2. Algorithm 1

3.2.1. Feature extraction

After extensive investigation of various combinations of AR coefficients as candidates for damage

measures, it was found that the first three coefficients can be used to define the damage sensitive feature

(DSF). As stated in the introduction, Nair, et al. (2006) have shown that these coefficients are functionally

related to the frequencies and mode shapes of a structure. Using the acceleration signal, two DSFacc are

defined as follows:

(4)

where, αi is the ith AR coefficient. The DSF using strain data, DSFstr, is defined as the first AR

coefficient α1.

The analysis for the DSF for the undamaged case, DP1, and DP2 at all sensor locations on the

structure and for all loading conditions is performed following the algorithm described above. The

mean DSF values are computed, and the t-test is used to determine the significance of the difference

between them. We first present the results for selected sensor locations to illustrate the model. Fig. 6

shows the variation of DSF for the AR model that has detected damage. Fig. 6(a) is the plot of DSFacc,2

for acceleration signal AY1b (as identified in Fig. 1) for random excitation in the X-direction having a

peak acceleration of 100 gal. Fig. 6(b) illustrates the result for strain sensor S3 (as shown in Fig. 1) for

random bidirectional excitation. In both cases, it is observed that the mean of the DSF’s for the

undamaged case is less than that of DP1, which is in turn smaller than that of DP2. 

A damage measure, DM, is defined in terms of the mean values and the standard deviation of the

DSF’s as follows: 

(5)

DM is used to quantify the difference between the DSF’s for the undamaged case and those for the

damaged case.

DSFacc 1,

α1

α1

2
α2

2
α3

2
+ +

----------------------------------=

DSFacc 2, α1=

DM
μDSF u, μDSF d,–( )2

σ DSF u,

2
-------------------------------------------=

Fig. 5 Residuals diagnostics: (a) Variation of residuals with time; (b) Normal probability plot of the residuals;
(c) Variation of ACF with lag
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3.2.2. Classification using the t-statistic

Fig. 6 shows the AR coefficients for the undamaged, DP1 and DP2 for the acceleration and the strain

signals. In the same figure the mean values of the DSF’s obtained from the damaged and undamaged

cases are also shown. Denoting μDSF, d and μDSF, u as the mean values of the DSF’s obtained from the

damaged and undamaged case, respectively, the hypothesis test for the significance in their values is set

up as follows:

(6)

where H0 and H1 are the null and alternate hypotheses, respectively. H0 represents the undamaged

condition and H1 represents the damaged condition. The significance level of the test is set at 0.05. The

hypothesis used in Eq. (6) is called a two-sided alternative. 

For testing the above hypothesis, the t-statistic is used (Rice 1999). The damage decision is made by

examining the point estimate and the confidence interval of the difference in the values of μDSF, d and

μDSF,u. The t-statistic is defined as follows:

(7)

where m and n are the number of samples obtained from DSFd and DSFu, respectively; and s is the

pooled sample variance, given as:

(8)

where S2 is the sample variance. The confidence interval for the difference in μDSF,u and μDSF,d is given

as:

(9)

H0:μDSF u, μDSF d,=

H0:μDSF u, μDSF d,≠

t
μ̂DSF u, μ̂DSF d,–

s
1

n
---

1

m
----+

------------------------------------=

s
2 n 1–( )SDSF u,

2
m 1–( )SDSF d,

2
+

m n 2–+
-----------------------------------------------------------------------=

CI μ̂DSF u, μ̂DSF d,–( ) tm n 2–+

α

2
---⎝ ⎠
⎛ ⎞ s

1

n
---

1

m
----+±=

Fig. 6 Variation of DSF with damage: (a) Variation of DSFacc,2 with acceleration samples; (b) Variation of DSFstr

with strain samples. DP1 and DP2 correspond to Damage Case 1 and Damage Case 2, respectively
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where tn+m-2(α/2) is the value of the t-distribution with n+m−2 degrees of freedom obtained at α/2.

3.3. Algorithm 2

3.3.1. Feature extraction

In this algorithm, the first three AR coefficients are defined as the feature vector as following: 

Feature Vector = (10)

where αi is the ith AR coefficient. The first three AR coefficients are chosen because they contain most

of the information in the signals. 

The feature vectors of the pre and post damage signals are modeled as separate Gaussian mixtures. A

GMM with K classes (or mixtures) has the following form:

(11)

where X is the collection of L training feature vectors, ϕi ~ N(µi, Σi) is a Gaussian vector with mean

vector µi and covariance matrix Σi and πi is the non-negative mixture weight for each class (Nair, et al.

2006). By the assumption that the feature vectors of the pre and post damage signals are from different

Gaussian mixtures, the number of classes and the mixture weights for each class are also determined.

The rest of the unknown parameters of GMM, µi and Σi, can be calculated in the following way:

µi =

(12)

where l is the number of the feature vectors in the mixture i, and xj is the feature vector j in the mixture.

The Gaussian mixture of the pre-damage signal is used as a baseline, and that of the post-damage signal

is compared with the baseline using the Mahalanobis distance in order to determine the damage status.

3.3.2. Classification using Mahalanobis distance

In general, the Mahalanobis distance is a distance measure between two random vectors of the same

distribution. It represents the dissimilarity between the two vectors considering the correlations between

the components of the random vectors, and can be quantified as following:

(13)

where Σ is a covariance matrix. In this paper, the vectors x and y correspond to the mean values of the

α1

α2

α3

f x1:L( ) πi

i 1=

K

∑ ϕi X;θi( )=

xj

j 1=

l

∑

l
------------

Σi

xj µi–( ) xj µi–( )T

j 1=

l

∑

l 1–
--------------------------------------------------=

Δ x y;Σ,( ) x y–( )TΣ 1–
x y–( )=
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feature vectors obtained from the baseline and the damaged signals, µu and µd respectively.

We define distance measures similar to the Mahalanobis distance, but the feature vectors of the pre

and post damage signals are assumed to be from two different distributions. The Mahalanobis distance

assumes that both feature vectors obtained from pre and post damage signals share the same covariance

matrix, which is not true in practice. Thus, several different distance measures are defined utilizing

different covariance matrix and used to determine their correlation to the various damage levels. They

are defined as follows:

(14a)

(14b)

(14c)

(14d)

(14e)

where , 

,  , 

is the number of the feature vectors in the mixture, and xj and yj are the feature vectors j of the

undamaged and damaged data, respectively. Δ1 follows the fundamental definition of the Mahalanobis

distance and is defined under the assumption that the distribution of the post damage feature vectors y is

similar to that of the pre damage feature vectors x and the covariance matrix of the pre-damage state is

used to weigh the distance between two vectors. Δ2 uses the covariance matrix of x and y as the

representative covariance matrix of the distributions of x and y. Thus, it includes the uncertainty of both

the pre and post damage singals. Δ3 uses the covariance matrix of the difference between the mean

values of the pre damage feature vector x and the post damage feature vector y to weigh the distance. Δ4

is derived from the definition of the Mahalanobis distance with the assumption that the covariance

matrix of x and y are different. Δ5 is the distance measure used by Nair and Kiremidjian (2007), which

is the normalized Mahalanobis distance. Using the definitions above, the distances between the pre and

post damage feature vectors are computed. For reference, the distance measures between the pre damage

feature vectors are also computed. In order to compute them, the feature vectors for the undamaged

case are divided into two groups by separating the even samples and the odd samples. The distance

between the two groups is supposed to be theoretically zero. The results are discussed in the following

section.

Δ1 µu µd;Σ,( ) µu µd–( )TΣu

1–
µu µd–( )=

Δ2 µu µd;Σ,( ) µu µd–( )TΣud
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4. Damage diagnosis results

4.1. Algorithm 1

4.1.1. Acceleration data analysis

Tables 3 to 14 show the results of the t-test for the AR model and the confidence intervals for the

difference in the mean values of the damaged and undamaged cases. The two DSFacc defined by Eq. (4)

were considered first for analysis of the acceleration data. It was found that DSFacc,2 works well for

damage detection, but does not effectively distinguish between DP1 and DP2. DSFacc,1 results in

smaller confidence intervals, but is able to distinguish DP1 from DP2. Tables 3 and 4 show the damage

detection results using DSFacc,1 for the unidirectional excitation with a peak amplitude of 60 gals, Tables

Table 3 Results of damage detection using DSFacc,1 for 60 gal unidirectional random excitation for DP1 using
the point estimate and CI of µDSF,undamaged - µDSF,DP1

Sensor no. Damage decision Point estimate Confidence interval

A1a H0 0.0010 [-0.0107, 0.0127]

A3a H0 -0.0010 [-0.0141, 0.0121]

A1b H0 0.0092 [-0.0013, 0.0196]

A3b H0 0.0011 [-0.0105, 0.0126]

AY3a H0 0.0108 [-0.0185, 0.0400]

AY1b H0 -0.0014 [-0.0095, 0.0068]

AY2b H0 0.0257 [-0.0039, 0.0553]

AY3b H0 0.0114 [-0.0188, 0.0416]

Table 4 Results of damage detection using DSFacc,1 for 60 gal unidirectional random excitation for DP2 using
the point estimate and CI of µDSF, undamaged - µDSF, DP1

Sensor no. Damage decision Point estimate Confidence interval

A1a H1 0.0223 [0.0105, 0.0340]

A3a H0 0.0002 [-0.0137, 0.0141]

A1b H1 0.0196 [0.0102, 0.0289]

A3b H0 0.0101 [-0.0010, 0.0211]

AY3a H1 -0.0433 [-0.0755, -0.0111]

AY1b H1 0.0203 [0.0115, 0.0290]

AY2b H0 -0.0300 [-0.0603, 0.0004]

AY3b H0 -0.0227 [-0.0552, 0.0098]

Table 5 Results of damage detection using DSFacc,1 for 100 gal unidirectional random excitation for DP1 using
the point estimate and CI of µDSF,undamaged - µDSF,DP1

Sensor no. Damage decision Point estimate Confidence interval

AY2a H1 -0.0224 [-0.0329, -0.0118]

AY3a H1 -0.0428 [-0.0622, -0.0234]

AY1b H1 0.0185 [0.0120, 0.0249]

AY2b H1 -0.0253 [-0.0345, -0.0160]

AY3b H1 -0.0554 [-0.0773, -0.0334]
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5 and 6 show the damage detection results for the unidirectional excitation with a peak amplitude of 100

gals, and Tables 7 and 8 show the results for the bi-directional excitation with a peak amplitude of

50 gals. Tables 9 through 14 show the results using DSFacc,2 for the unidirectional excitation with a peak

amplitude of 60 gals and 100 gals and for the bi-directional excitation with a peak amplitude of 50 gals.

The sensor locations are listed in the first column of the tables. Fig. 7 shows the point estimates of

Table 6 Results of damage detection using DSFacc,1 for 100 gal unidirectional random excitation for DP2 using
the point estimate and CI of µDSF,undamaged - µDSF,DP2

Sensor no. Damage decision Point estimate Confidence interval

AY2a H1 -0.0538 [-0.0687, -0.0388]

AY3a H1 -0.0668 [-0.0877, -0.0458]

AY1b H1 0.0429 [0.0367, 0.0491]

AY2b H1 -0.0665 [-0.0825, -0.0505]

AY3b H1 -0.1038 [-0.1288, -0.0787]

Table 7 Results of damage detection using DSFacc,1 for 50 gal bi-directional random excitation for DP1 using
the point estimate and CI of µDSF, undamaged - µDSF,DP1

Sensor no. Damage decision Point estimate Confidence interval

A1a H1 0.0299 [0.0211, 0.0387]

A2a H1 0.0079 [0.0020, 0.0137]

A3a H1 -0.0134 [-0.0218, -0.0050]

A1b H1 0.0223 [0.0123, 0.0322]

A3b H0 -0.0050 [-0.0137, 0.0038]

AY1a H1 0.0206 [0.0134, 0.0278]

AY2a H1 0.0102 [0.0041, 0.0163]

AY3a H0 0.0048 [-0.0015, 0.0111]

AY1b H1 0.0315 [0.0238, 0.0392]

AY2b H0 0.0041 [-0.0025, 0.0107]

AY3b H0 0.0001 [-0.0058, 0.0060]

Table 8 Results of damage detection using DSFacc,1 for 50 gal bi-directional random excitation for DP2 using
the point estimate and CI of µDSF,undamaged - µDSF,DP2

Sensor no. Damage decision Point estimate Confidence interval

A1a H1 0.0452 [0.0364, 0.0540]

A2a H0 0.0045 [-0.0016, 0.0105]

A3a H0 -0.0079 [-0.0164, 0.0006]

A1b H1 0.0445 [0.0341, 0.0549]

A3b H0 -0.0058 [-0.0138, 0.0023]

AY1a H1 0.0257 [0.0182, 0.0331]

AY2a H1 0.0180 [0.0118, 0.0241]

AY3a H0 0.0051 [-0.0016, 0.0118]

AY1b H1 0.0441 [0.0353, 0.0529]

AY2b H0 0.0053 [-0.0018, 0.0123]

AY3b H0 0.0034 [-0.0031, 0.0098]
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 using DSFacc,1, and Fig. 8 shows those using DSFacc,2.

The following conclusions are drawn from the analyses of the DSFacc,1:

μ̂DSF u, μ̂DSF d,–

Table 9 Results of damage detection using DSFacc,2 for 60 gal unidirectional random excitation for DP1 using
the point estimate and CI of µDSF, undamaged - µDSF, DP1

Sensor no. Damage decision Point estimate Confidence interval

A1a H1 0.0569 [0.0029, 0.1109]

A3a H0 0.0123 [-0.0218, 0.0463]

A1b H0 -0.0111 [-0.0582, 0.0361]

A3b H0 -0.0019 [-0.0369, 0.0331]

AY3a H1 0.0590 [0.0129, 0.1050]

AY1b H1 0.0730 [0.0192, 0.1268]

AY2b H1 0.0636 [0.0076, 0.1195]

AY3b H1 0.0490 [0.0028, 0.0951]

Table 10 Results of damage detection using DSFacc,2 for 60 gal unidirectional random excitation for DP2 using
the point estimate and CI of µDSF,undamaged - µDSF,DP1

Sensor no. Damage decision Point estimate Confidence interval

A1a H0 -0.0481 [-0.1008, 0.0046]

A3a H0 0.0143 [-0.0220, 0.0506]

A1b H1 -0.0725 [-0.1157, -0.0292]

A3b H0 0.0159 [-0.0191, 0.0509]

AY3a H0 -0.0227 [-0.0653, 0.02]

AY1b H1 -0.0857 [-0.1371, -0.0342]

AY2b H1 -0.0607 [-0.1118, -0.0096]

AY3b H0 -0.0386 [-0.0800, 0.0029]

Table 11 Results of damage detection using DSFacc,2 for 100 gal unidirectional random excitation for DP1 using
the point estimate and CI of µDSF, undamaged - µDSF, DP1

Sensor no. Damage decision Point estimate Confidence interval

AY2a H1 0.1665 [0.1301, 0.2030]

AY3a H1 0.1234 [0.0842, 0.1626]

AY1b H1 0.1603 [0.1268, 0.1937]

AY2b H1 0.1301 [0.0925, 0.1676]

AY3b H1 0.1532 [0.1133, 0.1932]

Table 12 Results of damage detection using DSFacc,2 for 100 gal unidirectional random excitation for DP2
using the point estimate and CI of µDSF, undamaged - µDSF, DP2

Sensor no. Damage decision Point estimate Confidence interval

AY2a H1 0.2989 [0.2578, 0.3400]

AY3a H1 0.2093 [0.1713, 0.2473]

AY1b H1 0.2926 [0.2566, 0.3287]

AY2b H1 0.2379 [0.1962, 0.2797]

AY3b H1 0.2645 [0.2275, 0.3016]
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• In the case of unidirectional random excitation with a peak amplitude of 60 gals, DP1 is not

detected at any of the sensor locations while DP2 is detected at 4 out of 8 sensor locations using the t-

statistic. As shown in Fig. 7 (a) and (b), the point estimates of  for DP2 are larger than

those for DP1 except at 1 out of 8 sensor locations. 

• When the 100 gal unidirectional random excitation is applied, both DP1 and DP2 are detected at all

of the sensor locations using t-statistic. Also, the point estimates of  for DP2 are larger

than those for DP1 as shown in Fig. 7(c). Thus, DSFacc,1 could potentially be used for developing a

damage extent measure, however, testing with additional data will be needed before it can be applied

widely.

• In the case of bidirectional random excitation with a peak amplitude of 50 gals, DP1 is detected at 7

out of 11 sensor locations, and DP2 is detected at 5 out of 11 sensor locations. As shown in Fig. 7(d)

and (e), the point estimates of  for DP2 are larger than those for DP1 except at 2 out of

11 sensor locations. Furthermore, the analysis shows the largest point estimates to be closest to the

damaged area. 

μ̂DSF u, μ̂DSF d,–

μ̂DSF u, μ̂DSF d,–

μ̂DSF u, μ̂DSF d,–

Table 13 Results of damage detection using DSFacc,2 for 50 gal bi-directional random excitation for DP1 using
the point estimate and CI of µDSF,undamaged - µDSF,DP1

Sensor no. Damage decision Point estimate Confidence interval

A1a H0 0.0119 [-0.0193, 0.0432]

A2a H1 -0.1111 [-0.1465, -0.0758]

A3a H0 -0.0181 [-0.0473, 0.0109]

A1b H0 0.0248 [-0.0093, 0.0588]

A3b H0 0.0078 [-0.0224, 0.0381]

AY1a H0 -0.0307 [-0.0624, 0.0009]

AY2a H1 -0.0601 [-0.0925, -0.0277]

AY3a H0 -0.0334 [-0.0713, 0.0034]

AY1b H1 -0.0434 [-0.0736, -0.0131]

AY2b H1 -0.0429 [-0.0751, -0.0107]

AY3b H0 -0.0041 [-0.0394, 0.0311]

Table 14 Results of damage detection using DSFacc,2 for 50 gal bi-directional random excitation for DP2 using
the point estimate and CI of µDSF,undamaged - µDSF,DP2

Sensor no. Damage decision Point estimate Confidence interval

A1a H1 -0.0745 [-0.1042, -0.0448]

A2a H1 -0.12843 [-0.1623, -0.0946]

A3a H1 -0.0489 [-0.0786, -0.0193]

A1b H1 -0.0742 [-0.1059, -0.0424]

A3b H1 -0.0285 [-0.0566, -0.0003]

AY1a H1 -0.0872 [-0.1214, -0.0529]

AY2a H1 -0.1412 [-0.1744, -0.1079]

AY3a H1 -0.0497 [-0.0890, -0.0103]

AY1b H1 -0.1107 [-0.1464, -0.0749]

AY2b H1 -0.0804 [-0.1171, -0.0437]

AY3b H0 -0.0166 [-0.0523, 0.0190]
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For DSFacc,2, the following observations are made:

• When the unidirectional random excitation with peak acceleration of 60 gal is applied to the structure,

DP1 is detected at 5 out of 8 sensor locations while DP2 is detected at 3 out of 8 sensor locations using

t-statistic. 

• For the unidirectional random excitation with peak acceleration of 100 gal, damage was detected at

all sensor locations. While this observation is encouraging that it enables us to identify damage, this

DSF appears to be non-informative for damage localization purposes. As shown in Fig. 8(c) the point

estimates of  for DP2 are larger than those for DP1.

• When the 50 gal bidirectional random excitation is applied, DP1 is detected at 4 out of 11 sensor

locations, and DP2 is detected at 10 out of 11 sensor locations. As shown in Fig. 8(d) and (e), the point

estimates of  for DP2 are larger than those for DP1. 

Fig. 9 shows the damage measure DM, using DSFacc,1, at each sensor for DP1 and DP2. The values of

DM for DP2 are higher than that of DP1 demonstrating that this definition of DM appears to be sufficient to

identify the relative magnitude of damage and can enable tracking of damage growth. Additional

testing and analysis, however, is necessary to fully support this claim.

From the analysis described in this section, we can conclude that the difference between the mean of

DSF’s for the undamaged and damaged structure increases when base excitation with larger peak

acceleration is applied and more severe damage is introduced to the structure. For low intensity excitation,

μ̂DSF u, μ̂DSF d,–

μ̂DSF u, μ̂DSF d,–

Fig. 7 point estimates of  using DSFacc,1: (a) 60 gal unidirectional random excitation, X direction
data result; (b) 60 gal unidirectional random excitation, Y direction data result; (c) 100 gal unidirectional
random excitation, Y direction data result; (d) 50 gal bidirectional random excitation, X direction data
result; (e) 50 gal bidirectional random excitation, Y direction data result

µ̂DSF u, µ̂DSF d,–
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such as the 60 gal unidirectional and 50 gal bi-directional input motions, damage is identified near the

lower floors in close proximity to where indeed damage was introduced. However, testing with various

minor damage patterns and real data has to be carried out and need to be pursued to further validate the

algorithm.

Fig. 8 point estimates of  using DSFacc,2: (a) 60 gal unidirectional random excitation, X direction
data result; (b) 60 gal unidirectional random excitation, Y direction data result; (c) 100 gal unidirectional
random excitation, Y direction data result; (d) 50 gal bidirectional random excitation, X direction data
result; (e) 50 gal bidirectional random excitation, Y direction data result

µ̂DSF u, µ̂DSF d,–

Fig. 9 DM of acceleration for bidirectional random
excitation at each sensor location

Fig. 10 Confidence intervals of the DSFstr for 50 gal
bidirectional random excitation
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4.2. Strain data analysis
Fig. 10 shows the values of the confidence intervals CI of the difference between the mean values of

DSF of the strain data for the bidirectional random excitation with a peak acceleration of 50 gals.

As observed in Fig. 1, strain sensors S1-S6 are at the location of the cut on column 1 for DP1.

Similarly for DP2, strain sensors S1-S6 and S13-S18 are at the location of the cut on columns 1 and 2

respectively. 

From the analysis of strain data, the following observations are made:

• In the case of DP1, strain sensors S1 and S3 to S6 have larger values of CI’s as compared to other

sensors. These sensors are close to the damaged area correctly pointing to the damage occurrence and

its location.

• High values of CI are also observed for strain sensors S1, S3-S6 and S13-S18 in the case of DP2.

Again these sensors are close to the damaged region on the structure. 

• The CI’s for the higher floors are consistently lower than those at lower floors (Fig. 10). Thus

localization of damage could potentially be achieved using the strain measurements. Again, additional

studies and test cases need to be investigated to further reinforce this observation. 

4.3. Algorithm 2

4.3.1. Acceleration signals

Fig. 11 shows Δ1 of the acceleration data for the unidirectional random excitation (60 gal) for

damaged and undamaged cases. It is observed that the undamaged cases and the damaged cases are

hardly distinguishable. The magnitudes of the distance measure for pre and post damage signals are

very close to one another, which indicate that the change in vibration response due to the damage is not

significant. It is possible that unidirectional random excitation with the peak acceleration of 60 gal is

not strong enough for us to detect the damage. An examination of the root mean square value of the

response data resulted in values as high as 0.7 mg while the noise level of the recording instrument was

0.4 mg. Consequently, we feel that the instrument noise level was too high for reliable damage analysis.

When applying the second algorithm to the acceleration data for the unidirectional random excitation

(100 gal), it is found that Δ1, Δ2, Δ3, and Δ5 have larger quantities at all the sensor locations for DP2 than

Fig. 11 Δ1 of the acceleration data for 60 gal
unidirectional random excitation X direction
result at column (a)

Fig. 12 Δ1 of the acceleration data for 100 gal
unidirectional random excitation Y direction
result at column (b)
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for DP1, which are in turn larger than for the undamaged case. Δ4 has larger quantities for DP2 than for

DP1, but those for the undamaged case are not always less than the damaged cases. Of all the measures

listed in Eq. (14) Δ4 least resembles a distance measure between the damaged and undamaged

coefficients. As a result Δ4 is not considered to be a suitable measure of damage. The distance measures

are maximum on the first floor which is the closest floor from the damage and minimum on the second

floor. The reason why the distance measure on the third floor is higher than the second floor might be

due to the influence of higher modes that may be excited because of the asymmetry introduced by the

damage at the base of the structure. Fig. 12 illustrates the distance measure Δ1 of the acceleration data

for the unidirectional random excitation (100 gal) for the damaged and undamaged cases. 

Fig. 13 shows the distance measure Δ1 of the acceleration data for the bidirectional random excitation

(50 gal) for the damaged and undamaged cases. It is observed that the damaged cases have higher

distance measures than the undamaged cases, but it is hard to distinguish between DP1 and DP2. It is

possible that bidirectional random excitation with the peak acceleration of 50 gal is not strong enough

for us to distinguish the two different damage patterns using this algorithm.

4.3.2. Strain signals

Tables 15 to 17 show the mean values of the distance measures of the strain data. Table 15 shows that

the distance measures for the strain data for the unidirectional random excitation of 60 gal can

distinguish the damaged cases from the undamaged case. It also shows that DP1 has higher distance

measures than DP2 although DP2 is more severe damage case. These results again point to possible

excessive noise in the response motions. Furthermore, the response motions are in the z-direction and

would be most affected by input motions that are in the y-direction. The 60 gal motion is applied in the

x-direction causing very small strains and consequently the values may be masked by possible noise in

Fig. 13 Δ1 of the acceleration data for 50 gal bidirectional random excitation Y direction result at column (b)

Table 15 Results of mean values of various distance measures from the strain data for 60 gal uni-directional
random excitation for undamaged and damaged cases

Mean(Δ1) Mean(Δ2) Mean(Δ3) Mean(Δ4) Mean(Δ5)

Undamaged 0.3003 0.7963 0.2653 3.4532 0.0114

DP1 1.9740 6.6970 1.5145 5.2080 0.0751

DP2 1.0650 3.3727 0.8110 4.5245 0.0413
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the sensors. 

Tables 16 and 17 show that the distance measures for the strain data for the unidirectional random

excitation of 100 gal and those for the bidirectional random excitation of 50 gal have smaller values for

the undamaged cases than DP1, which are in tern smaller than DP2. Figures 14 to 16 show the mean

values of the distance measure Δ1 of the strain data at each location. The following observations are

made from these figures:

• For the 100 gal and 50 gal peak acceleration excitation, the distance measure for DP2 has higher

values than that for DP1.

• For the 100 gal and 50 gal peak acceleration excitation, the distance measure for DP1 has the

maximum value at the damage location.

• For the 100 gal and 50 gal peak acceleration excitation, the distance measure for DP2 is higher for

the higher floors.

• For the 60 gal peak acceleration excitation, the distance measure for DP1 is higher than that for DP2.

Table 16 Results of mean values of various distance measures from the strain data for 100 gal uni-directional
random excitation for undamaged and damaged cases 

Mean(Δ1) Mean(Δ2) Mean(Δ3) Mean(Δ4) Mean(Δ5)

Undamaged 0.3468 0.8944 0.2632 8.8976 0.0095

DP1 0.9205 1.7466 0.9628 6.7689 0.0254

DP2 1.9404 6.8201 1.5201 10.1990 0.0502

Table 17 Results of mean values of various distance measures from the strain data for 50 gal bi-directional
random excitation for undamaged and damaged cases 

Mean(Δ1) Mean(Δ2) Mean(Δ3) Mean(Δ4) Mean(Δ5)

Undamaged 0.3559 0.8911 0.2477 8.6000 0.0074

DP1 0.7098 1.3376 0.7450 18.4979 0.0143

DP2 2.0007 6.2339 1.5005 15.6551 0.0391

Fig. 14 Mean values of Δ1 of the strain data for 60 gal unidirectional random excitation shown in darker colors
along the data
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• For the 60 gal peak acceleration excitation, the distance measure for DP1 is higher for the higher floors.

5. Conclusions

This paper presents the results of the application of two time series-based damage detection

algorithms (Nair, et al. 2006, Nair and Kiremidjian 2007) to the experimental data obtained from the

Benchmark Structure of the National Taiwan University. Both acceleration and strain data from the

wired system are analyzed. The vibration and strain signals are modeled as autoregressive (AR) and

autoregressive time series with exogenous input (ARX). It is found that the AR model is sufficient to

Fig. 15 Δ1 of the strain data for 100 gal unidirectional random excitation

Fig. 16 Δ1 of the strain data for 50 gal bidirectional random excitation
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capture the characteristics of both the acceleration and strain measurements and is thus adopted for

damage discrimination. The data were tested to check the stability of the AR coefficients and it was

found that the first AR coefficient changes by less than or about 5% with data samples of 200 or more.

In addition, the time series were checked for stationarity and Gaussianity. These tests were performed

only to measurements that were not corrupted. It was found in each of these tests that both the acceleration

and the strain data are stationary and Gaussian. These data were then used in the subsequent damage

analyses. 

Several damage sensitive features were investigated, and the first three AR coefficients of the model

are used to define the feature vector. In the first algorithm, which follows Nair, et al. (2006), a damage

sensitive feature (DSF) is defined as a function of the first three AR coefficients for the acceleration,

and the first AR coefficient is used for the strain data. Differences in the mean values of the DSF before

and after damage indicate that there is damage in the structure and the t-test is used to evaluate the

statistical significance of that difference. A damage measure DM is introduced based on the mean and

variances of the DSF’s, and it is found that the DM can be directly correlated to the amount of damage

in this simple application. In the second algorithm, which follows the developments of Nair and

Kiremidjian (2007) a Gaussian Mixture Model (GMM) is used to characterize the feature vector.

Damage diagnosis is achieved by determining the distance between the mixtures. The Mahalanobis

distance, which is defined as the Euclidean distance between the mixtures weighted with respect to the

inverse covariance matrix, as well as various other distance measures are used to quantify damage

extent.

The results from the first algorithm presented in this paper show that the DSFacc,2 can be used for

damage detection; DSFacc,1 and/or DM can be used for damage extent, and DSFstr can be used for

damage localization. The results from the second algorithm show that the Mahalanobis distances for

acceleration data and strain data can detect damage for 100 gal and 50 gal peak acceleration excitation,

but not for 60 gal peak acceleration excitation. It is likely that unidirectional random excitation with the

peak acceleration of 60 gal is not strong enough for us to detect the damage. It is found that the

accelerometers used to measure structural response have a noise level that is of the same order as the

root mean square of the measurements. Also, the Mahalanobis distances for acceleration data can be

used to localize damage while the mean values of the distance measures of the strain data appears to be

well correlated to damage extent.

Although the initial results of the analysis are promising, more testing needs to be performed. These

should be for varying degrees of damage, loading conditions, environmental conditions such as temperature

and humidity, as well as different sequences of damage occurrences. Different damage locations on the

structure should be considered and damage sequences should also be investigated. It is only after

extensive experimentation and field testing with calibration that these models can be widely applied.

Never-the-less, the results presented in this paper are encouraging and represent good initial step

towards achieving this goal.
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