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Abstract. A challenging problem in structural damage detection based on vibration data is the requirement of a
large number of sensors and the numerical difficulty in obtaining reasonably accurate results when the system is
large. To address this issue, the substructure identification approach may be used. Due to practical limitations, the
response data are not available at all degrees of freedom of the structure and the external excitations may not be
measured (or available). In this paper, an adaptive damage tracking technique, referred to as the sequential
nonlinear least-square estimation with unknown inputs and unknown outputs (SNLSE-UI-UO) and the sub-
structure approach are used to identify damages at critical locations (hot spots) of the complex structure. In our
approach, only a limited number of response data are needed and the external excitations may not be measured,
thus significantly reducing the number of sensors required and the corresponding computational efforts. The
accuracy of the proposed approach is illustrated using a long-span truss with finite-element formulation and an 8-
story nonlinear base-isolated building. Simulation results demonstrate that the proposed approach is capable of
tracking the local structural damages without the global information of the entire structure, and it is suitable for
local structural health monitoring. 

Keywords: local damage identification; local structural health monitoring; substructure technique; adap-
tive damage tracking.

1. Introduction

The development of a health monitoring system to ensure the reliability and safety of structures has

received considerable attention recently. In particular, the ability to detect structural damages, based on

measured vibration data, is of practical importance. Various analysis methodologies for structural

damage identifications have been proposed (e.g., Bernal & Beck 2004, Lin, et al. 2005, Zhou & Yan

2006). However, most of the methodologies available in the literature (e.g., Bernal & Beck 2004) deal

with linear structures and require both the reference data (the data without damage) and the data after

damage. In practice, however, the reference data may not be available or difficult to establish, since the

reference data are affected by the environments, such as temperature. After a severe event, such as a
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strong earthquake, it may not be feasible to conduct vibration tests to obtain meaningful data for

damage identifications. It would be desirable for a data analysis method to be capable of detecting the

structural damage based solely on the vibration data measured during a severe event, such as a strong

earthquake, without a prior knowledge of the undamaged structure. In this connection, several time-

domain damage identification methodologies have been developed recently, including the least-square

estimation (LSE) (e.g., Lin, et al. 2001, Yang and Lin 2004, 2005, 2007a), the extended Kalman filter

(EKF) (e.g., Yang, et al. 2006a, 2007b), the sequential nonlinear least-square estimation (Yang, et al.

2006b, 2007c), and others. Recently, a new technique, referred to as the sequential nonlinear least

squares estimation with unknown inputs (excitations) and unknown outputs (responses) (SNLSE-UI-

UO), has been developed (Yang and Huang 2006c, 2007c). In this approach, external excitations and

some acceleration responses are not needed, so that the number of sensors required in the health

monitoring system can be reduced. This technique is capable of tracking the structural damages on-line

or almost on-line. 

In practical applications, the modeling of engineering structures often involves a large number of

degrees of freedom (DOFs), leading to not only numerical and computational difficulties for an

accurate damage detection, but also the requirement of excessive number of sensors. It is highly

desirable to reduce the required number of sensors as much as possible due to economic considerations

and data management. Further, for a complex structure, there may only be a limited number of hot spots

or critical areas where damages may likely to occur, and hence the health monitoring can be restricted

to such critical areas, referred to as the local health monitoring. This will allow for a significant

reduction of the number of required sensors. Consequently, structures can be decomposed into smaller

subsystems for the purpose of local damage identification. In this connection, the so-called substructure

identification (SSI) approach (e.g. Koh, et al. 1991, 2003) can be used. 

In this paper, we present an approach using the SNLSE-UI-UO method and the sub-structure

technique to identify damages at critical locations of complex structures based on a limited

number of sensors and finite-element formulation. Our purpose is to demonstrate the feasibility of

the local health monitoring for critical areas without the global information of the structure, thus

reducing the required number of sensors and the burden of data management, such as the data

transmission and analyses. Simulation results using a long-span truss with finite-element

formulation and an 8-story nonlinear base-isolated building will be presented to demonstrate the

accuracy of the proposed approach in tracking the local damages without the global information of

the entire structure.

2. Sequential nonlinear LSE with unknown inputs and unknown outputs

Let  and  be the displacement and velocity

vectors, respectively, of a m-DOF nonlinear structure to be considered. The acceleration vector

 is divided into two vectors, denoted by 

and , in which  (i = 1, 2, …, s) and 

are unknown (unmeasured) and known (measured) acceleration responses (outputs), respectively. In a

similar manner, the external excitations are divided into two vectors, 

and f(t) = [f1(t), f2(t),..., (t)]T, where (i = 1, 2,…, r) and fi(t) (i = 1, 2,…, ) are unknown

(unmeasured) and known (measured) excitations (inputs), respectively. The equation of motion of the m-

DOF nonlinear structure can be expressed as
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(1)

in which = [m×(m-s)] mass matrix corresponding to the (m-s)-known (measured) acceleration

response vector ; M* = (m×s) mass matrix corresponding to the s-unknown (unmeasured)

acceleration response vector (or unknown outputs); = m-damping force vector;

= m-stiffness force vector; η = m×m excitation influence matrix corresponding to

measured excitation vector f(t); η* = (m×r) excitation influence matrix corresponding to unmeasured

excitation vector f*(t); and θ = [θ1, θ2, ..., θn]
T is an n-unknown parametric vector with unknown

parameters θi (i = 1, 2, …, n), such as stiffness, damping and nonlinear parameters. For simplicity of

presentation, the argument t of all quantities above will be dropped in the following. Further, the bold-

face letter represents either a vector or a matrix.

The unknown quantities to be identified are the unknown excitation (input) vector f*, the unmeasured

acceleration response (output) vector , the state vector , including the displacement

and velocity vectors, and the parametric vector θ. Our objective is to determine not only all the

unknown quantities above but also the variation of the parametric vector θ due to structural damages,

such as the degradation of stiffness, etc. 

The observation equation associated with the equation of motion, Eq. (1), can be written as 

(2)

where X is the state vector defined above, ϕ(X)  is the observation matrix that is a function of X, y=ηf-

 is known,  is an unknown vector consisting of unknown inputs f* and unknown

outputs , , and ε(t) is the model noise. Eq.(2) can be discretized at t = tk = kΔt as 

(3)

in which , , , ,  and .

Note that Xk, θk and k in Eq. (3) are unknown quantities to be estimated. Hence, Eq. (3) is a nonlinear

vector equation for unknowns Xk, θk and k.

Instead of solving Xk, θk and k simultaneously by forming an extended composite unknown vector,

Xk, θk and k are solved in two steps. The first step is to determine θk and k by assuming (or under the

condition) that Xk is given, and the second step is to determine Xk through a nonlinear LSE approach,

referred to as the sequential nonlinear least square estimation with unknown inputs and unknown

outputs (SNLSE-UI-UO) (Yang and Huang 2007c).

Let , = ( ) and  be the estimations of Xk+1, θk+1 and ,

respectively, estimated at t = (k + 1)Δt. Further, let  and  be the estimations of

Xk+1 and θk+1 estimated at t = kΔt, respectively. Based on the adaptive SNLSE-UI-UO (Yang and Huang

2007c), if the number of DOFs, m, of the structure is greater than the total number, s+r, of unknown

inputs and unknown outputs, the recursive solution for  and  are

given by 

(4)

 (5)
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in which

(6)

(7)

(8)

In equations above,  is a diagonal matrix, referred to as the adaptive factor matrix, with diagonal

elements , ,…, , where  is referred to as the adaptive factor

associated with the jth unknown parameter of θk+1 at tk+1 = (k + 1)Δt. The determination of the adaptive

factor matrix Λk+1 has been described in Yang & Lin (2005), Yang and Huang (2007c). Further, the

estimation  is needed for the computation of ϕ  in Eqs. (4)-(8). The recursive

solution for  is given by 

 (9)

in which 

 (10)

(11)

 (12)

 (13)

(14)

In Eq. (10),  is the transition matrix for the state vector from k to k+1, and B1 and B2 are given by

(15)

in which β = 0.25 and γ = 0.5 are the Newmark-Beta numerical integration coefficients, and Im is a

(m×m) unit matrix. For those acceleration responses that are not measured (unknown outputs), , we

set γ = 0 and β = 0 for approximation. In Eq. (11), is obtained from Eqs. (4)-(8) in which

on the right hand sides are replaced by , and 

can be expressed analytically as a function of the partial derivative of the data matrix for computation

(Huang 2006). Thus, all the unknown quantities can be estimated from the recursive solutions above.

3. Identification of sub-structure

Consider a complex structure, such as the one shown in Fig. 1(a), and suppose we are interested in
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monitoring some critical areas where damages may occur. For simplicity of presentation, let us consider

only one critical area, consisting of 12 members as shown in Fig. 1(a) by dashed lines, for the

monitoring purpose. This critical area is referred to as the sub-structure as shown in Fig. 1(b). From Fig.

1(b), the sub-structure formed by these 12 critical members consists of 4 masses at nodes 6, 7, 17 and

18, referred to as the internal nodes, and 4 interface nodes at nodes 5, 8, 16 and 19. Let ur(t) be the

displacement vector of the internal nodes, and us(t) be the displacement vector of the interface nodes.

Then, the equation of motion of the sub-structure can be expressed as 

(16)

in which fr(t) is the external excitations to the sub-structure at the internal nodes, and the entire structure

has been assumed to be linear elastic for simplicity of presentation.

The interaction effects at the interface nodes can be considered as the inputs (excitations) and the

above equation can be expressed as

(17)

Now, some of the acceleration responses of the internal nodes may not be measured, referred to as the

unknown outputs  in Eq. (1), and some of the accelerations at the interface nodes may not be

measured, referred to as unknown inputs (excitations) f* in Eq. (1). When some acceleration responses

at the interface nodes are measured, their corresponding velocity and displacement responses are

obtained by the Newmark-β integration method and these terms on the right hand side of Eq. (17)

should be moved to the left hand side. Thus Eq. (17) can be cast appropriately into the form of Eq. (1),

and the SNLSE-UI-UO solution described previously can be used.
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Fig. 1 Long-span truss: (a) full structure with white noise excitation; and (b) substructure
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4. Simulation results

To demonstrate the accuracy of the sub-structure technique using adaptive SNLSE-UI-UO for

parametric identifications and damage detections at critical locations, a long-span truss with the finite

element formulation and an 8-story non-linear base-isolated building will be considered. For both

examples, the sampling frequency is 500 Hz for all measured responses.

4.1. Long-span truss with finite-element model

A planar long-span truss, consisting of 44 members (or elements) and a total of 41 DOFs as shown in

Fig. 1(a), will be considered (Bernal 2002, Gao and Spencer 2002). As observed from Fig. 1(a), the

truss is statically indeterminate. Now, only the substructure shown in Fig. 1(b) will be identified and

monitored. The finite-element substructure model consists of 12 members with uniform cross-section,

4 internal nodes, and 4 interface nodes, where each node has 2 DOFs (horizontal and vertical). Twelve

critical members (or elements) to be monitored in Fig. 1(b) are denoted as follows: member 1 (nodes 5-

6), member 2 (nodes 6-7), member 3 (nodes 7-8), member 4 (nodes 16-17), member 5 (nodes 17-18),

member 6 (nodes 18-19), member 7 (nodes 5-17), member 8 (nodes 6-18), member 9 (nodes 7-19),

member 10 (nodes 6-17), member 11 (nodes 7-18), member 12 (nodes 6-16).

Let Mi and Ki be the local mass matrix and the local stiffness matrix, respectively, of the ith element

(member) with an uniform cross-section in the local coordinate system,

 (18)

in which Li and  are the length and the mass per unit length of the ith element (or member) of the

sub-structure, respectively, and  is the equivalent stiffness parameter, where Ei and Ai are

the Young’s modulus and cross-sectional area of the ith element (or member), respectively. The local

element mass and element stiffness matrices Mi and Ki are transformed into  and , which are the

element matrices in the global coordinate system of the sub-structure, using the transformation matrix

T, i.e.,

(19)

in which T is a (4×4) matrix with its (i, j) element, Tij, as: T11=T22=T33=T44=cosφ, T12=T34=sinφ,

T21=T43= −sinφ, and Tij=0 for other i and j, where φ = the angle between the local and global coordinates.

Finally, the element mass and stiffness matrices  and  are expanded to (m×m) matrices denoted

by  and , and the global mass and stiffness matrices M and K of the sub-structure, Fig.1(b), are

obtained by summing up  and  for all the elements, i.e.

(20)

in which for simplicity of presentation  is expressed in terms of kiSi, where ki = EiAi/Li is the

equivalent stiffness parameter and Si is a (m×m) matrix of the ith element. In Eq. (20), p is the total
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number of elements (members).

In the literature, the Rayleigh damping is usually assumed and the damping matrix C is expressed as:

C = αM + βK (21)

in which α and β are the mass-proportional and the stiffness-proportional damping coefficients. All the

truss members are made of steel (with E = 200 Gpa) with an area of 64.5 cm2. For simplicity of

computation, the element mass matrix Mi is approximated by a diagonal matrix with diagonal element

1.75×105 kg (Bernal 2002), and hence the global mass matrix M is diagonal after transformation. The

structural parameters are: ki = 430 MN/m (i = 1,2,...,6), ki = 238.52 MN/m (i = 7,8,9, 12), ki = 286.67 MN/m

(i = 10, 11), α = 0.1064 s-1 and β = 3.4×10-3 s. With the structural properties above, the first three natural

frequencies and the corresponding modal damping ratios are: ωi = 0.64, 1.19 and 1.54 Hz, and ζi = 2%,

1.99% and 2.2%.

Suppose the truss shown in Fig. 1(a) is subject to two vertical white noise excitations applied

vertically at nodes 5 and 7. The measured responses include: (i) the horizontal and vertical

accelerations at all interface nodes and internal node 18, (ii) the horizontal acceleration of internal

node 6, and (iii) the vertical accelerations of internal nodes 7 and 17. Note that the horizontal

accelerations of internal nodes 7 and 17, the vertical acceleration of internal node 6, and all external

white noise excitations f*(t) at nodes 5 and 7 are not measured (unknown). All the measured

quantities are simulated by superimposing the theoretically computed quantities with the

corresponding stationary white noise with a 2% noise to signal ratio. The sampling frequency is

500Hz. The unknown quantities to be identified include: α, β, ki (i = 1, 2,…, 12), the state vector, and

the unknown white noise excitation f*(t) at node 7.

The initial guesses for α, β and ki are α0 = 0.2 s-1, β0 = 6×10-3 s, ki,0 = 300 MN/m (i = 1, 2, …, 12),

respectively. The initial values for the state vector and the unknown excitation are zero, and the initial

gain matrices Pθ,0 and  are taken to be Pθ,0 = 10-2 I25 and = 106I16.

Two damage patters are considered. For damage pattern 1, a damage occurs at t = 5 sec, at which time

the equivalent stiffness k2 of member 2 in Fig. 1(b) is reduced linearly from 430 MN/m to 344 MN/m

(20% reduction) within 2 seconds. Based on the adaptive SNLSE-UI-UO and sub-structure techniques,

the identified structural parameters are presented in Fig. 2 as solid curves. Also shown in Fig. 2 as

dashed curves are the theoretical results for comparison. 

For damage pattern 2, a damage occurs at t = 5 sec, at which time the equivalent stiffness k2 of

member 2 is reduced abruptly from 430 MN/m to 301 MN/m, then another damage occurs at t = 7 sec,

at which time the equivalent stiffness k6 of member 6 is reduced abruptly from 430 MN/m to 365.5

MN/m. Based on the adaptive SNLSE-UI-UO technique, the identified structural parameters are

presented in Fig. 3 as solid curves, whereas the theoretical results are shown as dashed curves for

comparison. The identified white noise excitation f*(t) at node 7 for a segment from 2 to 2.2 seconds is

presented in Fig. 4 as a solid curve, whereas the dashed curve in the same figure is the theoretical result.

It is observed from Figs. 2-4 that the adaptive SNLSE-UI-UO technique tracks the substructural

parameters, their variations due to damage, and the unknown excitation very well.

Simulation studies for a long-span bridge similar to that shown in Fig. 1(a) and subject to earthquake

excitations have been conducted. Numerical results also indicate that the adaptive SNLSE-UI-UO along

with the sub-structural technique is capable of identifying local structural damages with impressive accuracy

without the information of the global structure (Yang & Huang 2006d). Due to space limitation, these

simulation results are not presented herein. 

P0|0 P0|0
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4.2. 8-story non-linear base-isolated building

Consider an eight-story non-linear hysteretic shear-beam building subject to an earthquake ground

acceleration , as shown in Fig. 5(a). The properties of the building are as follows: (i) the mass of

each floor is identical with mi = 345.6 metric tons; (ii) the stiffness ki (i = 1,2,...,8) of eight-story units

are: 340.4, 325.7, 284.9, 268.6, 243, 207.3, 168.7 and 136.6 MN/m, respectively; (iii) the linear viscous

damping coefficients ci (i = 1,2,...,8) for each story unit are 490, 467, 410, 386, 348, 298, 243 and 196

kN⋅sec/m, respectively. A lead-core rubber bearing isolation system is used to reduce the response of

the building. The stiffness restoring force of the lead-core rubber-bearing is model by the Bouc-Wen

model (Wen (1989).

(22)

in which the subscript b stands for the base-isolation system, xb is the drift of the isolator, kb is the

stiffness, αb is the ratio of the post yielding stiffness to the pre-yielding stiffness, Dyb is the yielding

deformation, and vb is the hysteretic component. The hysteretic component, vb, is modeled by

x··0 t( )

Fsb αbkbxb 1 αb–( )kbDybvb+=

Fig. 2 Identified parameters for a substructure of a
long span truss (Case 1); (damage pattern 1) ki
in MN/m, α in s-1 and β in 10-3 sec

Fig. 3 Identified parameters for a substructure of a
long span truss (Case 1); (damage pattern 2) ki
in MN/m, α in s-1 and β in 10-3 sec
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(23)

in which Ab, βb, nb and γb are parameters characterizing the hysteresis loop. Properties of the base-

isolation system are: mb = 450 metric tons, kb = 180.5 MN/m, linear viscous damping cb = 26.17

kN.sec/m, αb = 0.6, Dyb = 4 cm, Ab = 1.0, βb = 0.5, nb = 3 and γb = 0.5. For a small amplitude vibration

(linear), the first natural frequency is ω1 = 5.24 rad/sec. The El Centro earthquake  with a peak

ground acceleration of 0.3 g (PGA = 0.3 g) is considered as the external excitation. 

A substructure, consisting of the rubber bearing and the first story as shown in Fig. 5(b), is considered

as critical location for damage identification. In this example, the equation of motion is expressed in

terms of the coordinate xi representing the inter-story drift of the ith story. Two different cases will be

considered.

4.2.1. Case 1: Earthquake excitation is measured

The absolute accelerations of the isolator and the first floor, ba and 1a, and the El Centro earthquake

ground acceleration, , are measured. All measured quantities are simulated by superimposing the

theoretically computed quantities with the corresponding stationary white noise with a 2% noise to

signal ratio. In this case, the RMS of a particular response signal is computed from the temporal

average over 30 seconds. The sampling frequency is 500Hz. Parameters αb, Dyb, Ab and nb are assumed

to be known constants. The unknown quantities to be identified are: c1, k1, c2, k2, cb, kb βb and γb, as well

as the state vector of the substructure.

Suppose a damage occurs at t = 15 sec, at which time the equivalent stiffness kb is reduced abruptly

from 180.5 MN/m to 144.4 MN/m (20% reduction). The initial guesses for ci, ki, cb, kb, βb and γb are: ci,0

v·b Dyb

1–
Abx

·
b βb x·b vb

n
b 1–

vb– γbx
·
b vb

n
b

–+[ ] fb xb vb,( )= =

x··0 t( )

x·· x··

x··0 t( )

Fig. 4 Identified unknown white noise excitation for long-span truss; unit of f*(t) in 104 N

Fig. 5 An 8-story non-linear base-isolated building: (a) full structure; (b) substructure



804 Hongwei Huang and Jann N. Yang

= 300 kN⋅sec/m, ki,0 = 100 MN/m (i = 1, 2), cb,0 = 10 kN⋅sec/m, kb,0 = 10 MN/m, βb,0 = 1, and γb,0 = 1,

respectively. The initial values for the state variables are zero, and the initial gain matrices Pθ,0 and 

are taken to be Pθ,0 = 1010 I6 and = I4. Based on the adaptive SNLSE-UI-UO technique, the

identified parameters for the sub-structure are presented in Fig. 6 as solid curves. Since the predictive

results for c2 and k2 are similar to that for c1 and k1, they are not presented in the figure. Also shown in

Fig. 6 as dashed curves are the theoretical results for comparison. It is observed from Fig. 6 that the

proposed approach is able to track the sub-structural parameters and their variations due to damage.

4.2.2. Case 2: Earthquake excitation is not measured

In this case, inter-story drifts xb, x1 and x2 are measured. The earthquake ground acceleration  is

not measured and hence it is unknown. The measured drifts were simulated by superimposing the

theoretically computed quantities with the corresponding stationary white noise with a 2% noise to

signal ratio. Finally, the inter-story accelerations b, 1 and 2 were computed by differentiations.

Similar to Case 1, parameters αb, Dyb, Ab and nb are assumed to be known constants. The unknown

parameters to be identified are: c1, k1, c2, k2, cb, kb βb, γb, the unknown earthquake excitation , and

the state vector of the substructure.

Suppose a damage occurs at t = 15 sec, at which time the equivalent stiffness kb is reduced abruptly

from 180.5 MN/m to 144.4 MN/m (20% reduction). The initial unknown excitation is zero, and the

following assumed initial values and matrices are identical to that of Case 1 above: (i) initial state

variables, (ii) initial parametric values c1, k1, c2, k2, cb, kb βb and γb, and (iiii) Pθ,0 and . Based on the

adaptive SNLSE-UI-UO technique, the identified parameters are presented in Fig. 7 as solid curves.

Also shown in Fig. 7 as dashed curves are the theoretical results for comparison. Again, the predicted

results for c2 and k2 are not presented, since these results are similar to that of c1 and k1 shown in Fig. 7.

The identified earthquake ground acceleration  for a segment from 2 to 5 seconds is presented in

Fig. 8 as a solid curve, whereas the dashed curve is the theoretical result. It is observed from Figs. 7 and

8 that the adaptive SNLSE-UI-UO is able to track both the structural parameters and their variations

due to damage, as well as the unknown earthquake excitation. Finally, the predicted hysteresis loops for

the stiffness restoring force Fsb versus the drift xb of the base isolator are presented in Fig. 9 as solid

curves, whereas the dotted curves represent the theoretical results. As shown in Fig. 9, the predictive

capability of our approach is quite reasonable. 

P0|0

P0|0

x··0 t( )

x·· x·· x··

x··0 t( )

P0|0

x··0 t( )

Fig. 6 Identified parameters for a substructure of a 8-
story base-isolated building (Case 1); kb in 104

kN/m, k1 in 105 kN/m, cb and c1 in kN.s/m

Fig. 7 Identified parameters for a substructure of a 8-
story base-isolated building (Case 2); kb in 104

kN/m, k1 in 105 kN/m, cb and c1 in kN.s/m
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Similar to other time-domain analysis methods [e.g., Lin, et al. (2001)], the use of the adaptive

SNLSE requires the initial estimates of unknown parameters and covariance matrices to initiate the

recursive solution. To guarantee the convergence of the solution, these initial values should be

physically reasonable, for instance the initial estimates for the damping coefficients and stiffness should

be positive values. Then, as long as the initial estimates are in the same order of magnitude as the true

values, the solution should converge. Further, matrices Pθ,0 and  are covariance matrices of

estimation errors, and their orders of magnitude can be estimates based on the estimated response

quantities (Yang & Huang (2007c).

5. Conclusions

In this paper, the recently proposed adaptive sequential nonlinear least-square estimation with

unknown inputs and unknown outputs (SNLSE-UI-UO) (Yang, et al. (2007c) along with the sub-

structure approach have been used to identify structural damages at critical locations of a complex

structure. This approach allows for the damage monitoring of critical sub-structures without the need of

information for the global complex structure, thus reducing significantly the total number of sensors

required. Even for the critical sub-structure, the external excitations (inputs) and some acceleration

responses (outputs) are not required to be measured, again reducing the required number of sensors.

P0|0

Fig. 8 Identified unknown earthquake ground acceleration for 8-story base-isolated building; unit of earthquake
acceleration  in m/s2x··0 t( )

Fig. 9 Identified hysteresis loops for the rubber-bearing of 8-story base-isolated building
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Simulation results using a long-span truss with finite-element formulation and an 8-story hysteretic

base-isolated building demonstrate that the proposed approach is: (1) capable of identifying local

structural damages using a limited number of sensors, and (2) suitable for local health monitoring

without the global information of the complex structure. 

Experimental verifications for the proposed local damage detection technique are important for

practical applications. Experimental tests using a small-scaled building model have been conducted to

verify the capability of the SNLSE-UI-UO approach (Yang & Huang (2007d). Currently, experimental

tests are being conducted to verify the validity of the local damage tracking technique proposed herein.

Finally, the sensitivity of the damage detection capability is related to the number of sensor measurements.

The problem of determining the minimum number of sensors and their optimal locations for the

satisfactory damage detection is a challenging problem of current research. 
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