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Abstract. A new algorithm is proposed to determine optimal accelerometer locations (OAL) when a structure
is identified by frequency domain system identification (SI) method. As a result, a guideline is presented for
selecting OAL which can reflect modal response of a structure properly. The guideline is to provide a minimum
number of necessary accelerometers with the variation in the number of measurable target modes. To determine
OAL for SI applications effectively, the modal sensitivity effective independence distribution vector (MS-EIDV)
is developed with the likelihood function of measurements. By maximizing the likelihood of the occurrence of the
measurements relative to the predictions, Fisher Information Matrix (FIM) is derived as a function of mode shape
sensitivity. This paper also proposes a statistical approach in determining the structural parameters with a presumed
parameter error which reflects the epistemic paradox between the determination of OAL and the application of a SI
scheme. Numerical simulations have been carried out to examine the proposed OAL algorithm. A two-span multi-
girder bridge and a two-span truss bridge were used for the simulation studies. To overcome a rank deficiency
frequently occurred in inverting a FIM, the singular value decomposition scheme has been applied.
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1. Introduction

Civil structures are large in size and complex so that analytical models require a large number of

degrees of freedom (DOF). Therefore, it has been acknowledged that the selection of measurement

locations may influence on the estimation of structural parameters. To estimate structural parameters by

using measured structural dynamic responses, system identification (SI) methods have been widely

developed and applied in the frequency-domain (EI-Borgi, et al. 2005, Hjelmstad and Shin 1996, Jang,

et al. 2002, Vestouni, et al. 2000) and in the time-domain (Ge and Soong 1998, Hjelmstad and Banan

1995, Huang 2001, Kang, et al. 2005). Since it is hard to measure rotational DOF and responses around

the supports in actual applications, the number of measurable DOF is generally limited. Therefore, it is
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essential to select optimal measuring DOF to introduce better parameter estimation by applying system

identification (SI) method. Especially when measurement noise is considered in the estimation, the

correctness of SI results may be more dependent on the selection of measuring DOF. In spite that the

influence of selecting optimal accelerometer locations (OAL) on the final parameter estimation cannot

be ignored, the problem of optimal sensor locations (OSL) has not been considered seriously so far.

To measure structural dynamic responses, various types of sensors are used in field tests. Among

them, accelerometers are mainly used to sense the global dynamic response of a structure. For an

ambient vibration test, the locations of accelerometers can be moved sequentially with a fixed reference

one to identify modal parameters of a whole bridge (Jung, et al. 2002). However, even in this case, the

number of measured DOF is still limited compared with the total DOF of an analytical model for a

bridge. Also, the sequential moving of the accelerometers does require working hours to install and

connect the equipments. For a long-term health monitoring of a bridge, durability of accelerometers

should be considered so that the number of permanently installed accelerometers is usually limited as

well. Conventionally measurement locations have been selected based on engineers’ instinct or

structural symmetry rather than based on a mechanical formulation for the structural behaviors. Even

when the number of accelerometers is limited, the priority of measurement locations could not be

determined through any theoretical background. Some available algorithms for selecting optimal

locations include ‘optimum sensor location problem’ (Kirkegaard and Brincker 1994, Udwadia 1994),

‘optimal sensor locations’ (Fadale, et al. 1995, Li and Yam 2001), ‘optimum measurement locations’

(Penny, et al. 1994) and ‘optimal sensor placement’ (Cherng 2003, Kammer 1996, Meo and Zumpano

2005, Tongco and Meldrum 1996).

Even though an OAL scheme is well-prepared, its application for SI is blocked by a paradox that an

OAL is determined by pre-defined structural parameters while a SI is to estimate unknown structural

parameters. These conflicting objectives cannot be resolved without additional information on the

structure. The current paper proposes a statistical approach using the designed values for the structure.

It determines OAL by assuming an error bound between the actual and known designed values of

parameters and by applying Monte Carlo iterations with random errors within the bound.

The paper proposes a new algorithm for determining OAL and examines it through simulation

studies. A frequency domain SI method has been utilized to verify its usefulness. A two-span multi-

girder bridge and a two-span truss bridge were used for the simulation studies.

2. Algorithm for determining OAL

2.1. Problem definition by maximum likelihood estimation

The maximum likelihood estimation method was introduced by Fisher (O’Connor and Robertson

2003) and has been widely applied to provide statistical backgrounds in solving engineering problems.

The main idea of the maximum likelihood estimation method is to obtain the best estimates of structural

parameters by maximizing the likelihood of the occurrence of the measurements relative to the predictions.

If noise of sensors are mutually independent and have a normal distribution with zero mean and

variance of σn
2, the optimal values of parameter x can be correctly estimated by maximizing the

probability density function of measurements  where  is modal displacement matrix

defined by Eq.(1) with limited nmm modes measured at limited DOF (Fadale, et al. 1995).

f Φ̃m x( ) Φ̃m
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(1)

where Nm = the number of measured DOF and nmm = the number of measured modes.

If statistical parameters are defined, the probability density function of measurements  can

be defined by Eq. (2) as a likelihood function.

= ×exp (2)

where = unknown structural parameter vector,  = the computed i-th mode shape

vector at the limited Nm DOF, = measured i-th mode shape vector at Nm DOF,  = the

covariance matrix of the measurements of the i-th mode, and Np = number of unknown parameters,

respectively.

If Eq. (2) is modified in the log scale, the following expression of Eq. (3) can be obtained.

(3)

Since the first and the second terms of the right-hand-side of Eq.(3) are independent of the parameters

x and can be constant if noise in measurements can be considered as mutually independent, Eq. (3) can

be simplified to Eq. (4).

 (4)

Also, if measurement noise and structural parameters x are mutually independent and the variance

 is identical regardless of the measurement DOF, the covariance matrix C can be expressed by

 so that Eq. (5) can be formulated as the final minimization problem in estimating the

structural parameters x instead of the maximization of the probability density function of Eq. (2).

L= σn
-2 (5)

In solving the structural parameters x through the minimization of the least-squared error, nmm ×

Nm ≥ Np should be satisfied as an identifiability criterion to escape from multiple solutions with under-

determined systems of equations.

2.2. Formulation of Fisher information matrix

To estimate unknown structural parameters, the information provided by experiments should be

maximized. Since the test plans are determined by considering allowable test environments, it is

necessary to set up the basis in comparing the quality of different experiments. To define such an optimal

basis, most available methods are usually estimating structural parameters through the minimization of

estimation error. Among those methods, by applying the Cramer-Rao inequality, the estimation error
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has a lower bound of F-1, where F = Fisher information matrix (FIM) defined by Eq. (6) (Goodwin and

Payne 1977).

 (6)

By substituting Eq. (2) into Eq. (6), the following equation of Eq. (7) can be derived.

(Np×Np) (7)

where Θi is defined by Eq.(8) as a sensitivity matrix for mode i each column of which is the mode shape

sensitivity with respect to each unknown parameter and Ψi is a function defined by Eq. (9).

  k = 1, 2,…, Nm l = 1, 2,…, Np  i = 1, 2,…, nmm (8)

  i = 1, 2,…, nmm l, m = 1, 2, … , Np  (9)

If we can use the same assumption on the covariance matrix C of , ∂Ci/∂xj = 0 can be

concluded. Also, if the sensors are exposed to the same type of measurement noise as assumed, the

measurement noise is independent of the structural parameters x. Then the FIM can be simplified to Eq.

(10).

 (Np×Np) (10)

2.3. Computation of mode shape sensitivity

The mode shape sensitivity of Eq. (8) can be computed directly by solving Eq. (11) when only

distinct eigenvalues are considered. For a case of multiple eigenvalues, a similar direct computation is

also proposed by Lee and Jung (1997).

 (11)

where K(N×N), M(N×N) = stiffness and mass matrix, li = eigenvalue of mode i, xj = the j-th structural

parameter, and Gj(N×N) = ∂K(x)/∂xj = the j-th kernel matrix composed of constant coefficients.

In case M can be assumed as known and K and φi can be considered as given with estimated

parameters x at an iteration step during the estimation process, the mode shape sensitivity can be

expressed by

(12)
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where  = a constant coefficient matrix as a function of (λi, x, φi, K(x), M, Gj).

Depending on the computed Gj, the linear independence of the column vectors in  may not be

guaranteed so that a rank deficiency problem can occur. For a critical case that G is constant for all the

members, rank( )= 1 can be possibly occurred. To resolve such a rank deficiency problem involved in

the sensitivity matrix, the singular value decomposition scheme has been applied. The sensitivity

matrix can be decomposed with singular values as

= UiWiVi
T  (13)

where , , = column orthogonal matrix, diagonal matrix, and row orthogonal

matrix of mode i, respectively, where UT
U = VT

V = . The diagonal matrix Wi is defined with

singular values at the diagonal terms as

Wi =  j = 1, … , Np  (14)

where ωj
(i) = positive or zero singular value of  with ω1 ≥ ω2 ≥ … ≥ ωNp ≥ 0 (Press, et al. 1989).

The sensitivity matrix  is singular if the condition number is infinite and is ill-conditioned if the

condition number is too large. In determining OAL, only limited number of DOF are selected with

relatively large singular values in computing the sensitivity matrix. Therefore, the selection of OAL is

not so much influenced by truncating the terms with singular values less than a pre-defined tolerance.

2.4. Modal sensitivity effective independence distribution vector (MS-EIDV)

A usual approach to determine OAL is to maximize characteristic properties of FIM of Eq. (10). One

of the methods proved as efficient is the scheme of effective independence distribution vector (EIDV)

proposed by Penny et al. (1994). The original idea of EIDV was presented with FIM of mode shapes

without a mathematical background. Since the current approach is to determine locations of accelerometers

based on the computed mode shape sensitivities rather than the mode shape themselves, the method is

called modal sensitivity EIDV (MS-EIDV) in the paper to discern from EIDV. The distribution vector

ed of MS-EIDV is computed with the contributions from all the participating modes as Eq. (15). In the

computed distribution vector, we can eliminate components with relatively small values one-by-one

which contribute less to the modal behavior.

ed =  where edi = diag[Ei] with Ei =  (15)

where , = idempotent matrix and the distribution vector of mode i, respectively. A

typical characteristic of an idempotent matrix E is that its rank is the same as the sum of the diagonal

terms of the matrix E. If rank( ) is full, Ei = I so that rank(Ei) = Np will be satisfied.

2.5. Consideration of parameter error bound in determining OAL

To determine OAL by the proposed algorithm, values of structural parameters should be provided.

However, in identifying a structure by a SI scheme, structural parameters are the unknowns to be

estimated. Design properties may be used as the values for structural parameters in determining OAL
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but they may not agree with the actual properties of a structure.

To accommodate this conflict between OAL and SI, a statistical approach is proposed in the paper by

considering a parameter error bound around the initial design values for the structure. Monte Carlo

iterations are applied to determine a proper set of OAL with random errors within the parameter error

bound assumed based on an engineering judgment.

2.6. Application of frequency domain SI algorithm

A frequency domain SI algorithm modified from the algorithm proposed by Jang, et al. (2002) has

been applied to investigate the effectiveness of the proposed algorithm for selecting OAL. The applied

SI algorithm has demonstrated its usefulness in identifying structural parameters even with noisy and

sparse measured data. As a similar process to the minimization of Eq. (5), a constrained optimization

problem of Eq. (16) is formulated to solve for an optimal stiffness parameter vector x.

 J(x) = Jo(x) + Jr(x) =  (16)

where xlo, = lower and upper bounds of the parameter vector x and β = regularization factor,

respectively. The primary error vector (x) is defined by the error in the equality condition as Eq.

(17).

 (17)

where  = a Boolean matrix to indicate the measured DOFs among the full modal displacement

vector fi,  = identity matrix with the size of measured DOFs, and  = part of mass

matrix corresponding to the measured DOFs, respectively. 

The error vector defined by Eq. (17) is basically equal to the output error between measured and

computed modal displacements. The pseudo-stiffness matrix in Eq. (17) is defined by

 (18)

where  = part of zero matrix corresponding to the measured DOFs and = part of mass matrix

corresponding to the unmeasured DOFs.

A regularization term of a Frobenius norm of Eq. (19) is added to alleviate the inherent ill-posed

properties of such an inverse problem during optimization process (Park, et al. 2001).

 (19)

where xo = the baseline value of structural parameters.

3. Simulation study

Two simulation cases were carried out to examine the proposed OAL algorithm. A two-span multi-
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girder bridge and a two-span truss bridge were used for the simulation studies. Each structure was

modeled with 8 parameter groups and the priority in locating the accelerometers was provided for the

number of measurable mode shapes varying between 3 and 6. To verify the reliability of the selected

OAL, a frequency-domain SI method was applied to estimate the structural parameters. To evaluate the

optimality of the selected OAL, three different statistical error indices of ANM (average of normalized

mean parameters), ARMS (average of root mean square error), and ASD (average of standard deviation)

were computed as defined by Eq. (20).

ANM =

ARMS =

ASD = (20)

where Ne = the total number of elements in the analytical model, Ng = the number of groups, = the

mean value of the estimated structural parameters through Monte Carlo iterations,  = the baseline

value for the i-th group parameter, = the standard deviation of the i-th group parameter obtained

through Monte Carlo iterations, respectively.

3.1. Simulation Study on two-span non-symmetric multi-girder bridge

As the first simulation case, a two-span three-girder bridge as shown in Fig. 1 is selected. The bridge

is idealized as a non-symmetric grid model with respect to the middle support to investigate the rank

deficiency problem frequently occurred in inverting the FIM. The section, material and grouping

information are provided in Fig. 1 and also summarized in Table 1. It was assumed that only the vertical

directions could be measured for this type of structure.

Fig. 2 shows the variation of the selected OAL depending on the number of measurable target modes.

The circles drawn in the figures indicate the minimal OAL to the vertical direction. Compared with the

case of symmetric bridge with respect to the middle support, the arrangement of OAL for the current

bridge is not symmetric and tends to locate at a longer span with a higher priority (Kwon 2006).
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Fig. 3 shows the computed statistical error indices with the variations in the number of target modes

and the number of measuring DOF. From the figure, we can observe that the use of 4 accelerometers

could provide reliable SI results as far as the number of measured modes is larger than 3. As the number

of target modes increases to 4, 5, and 6 modes, the minimum number of accelerometers also increases

to 4, 6, and 8, respectively with the OAL as selected in Fig. 2. 

Fig. 4 compares the estimated structural parameters by using the selected OAL from MS-EIDV with

those from EIDV when the number of target modes was 5 and the number of used accelerometers was

7. In the figure, when the estimated parameter is the same as the exact one, the value is normalized to

1.0. Each figure shows the estimated parameters of group 1 or group 5 among all 8 groups in the

Table 1 Material and sectional properties of the girder bridge

Group Area [mm2] E [GPa] Density [Kg/m3] I33 [mm4] I22 [mm4] J [mm4]

1, 5 836.4

210 7850

3.638×105 1.052×106 8.080×105

2, 6 836.4 3.638×105 1.052×106 8.080×105

3, 7 836.4 3.638×105 1.052×106 8.080×105

4, 8 1175.0 2.945×105 1.864×106 1.721×105

Fig. 2 Variation of OAL for the girder bridge with the number of target modes

Fig. 3 Variation of statistical error indices for the girder bridge with the numbers of target modes and
measured DOF
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horizontal and vertical axes. From the figure, it can be observed that the results from MS-EIDV gather

more closely around 1.0 than those from EIDV.

3.2. Simulation Study on two-span non-symmetric truss bridge

As the second simulation study, a statistically indeterminate two-span truss bridge has been studied as

shown in Fig. 5. At each joint of the truss, the horizontal and vertical DOF were considered as

candidate OAL. Like the first simulation study, the truss was idealized as a non-symmetric one with

respect to the middle support. The material and sectional properties of the truss bridge are summarized

in Table 2.

Fig. 6 shows the variation of selected OAL depending on the number of measurable target modes.

Differently from the case of two-span multi-girder bridge, the locations of accelerometers tend to

uniformly distribute on both spans in all the cases with a different number of measurable target modes.

For the case the number of target modes is equal to 4, more horizontal DOF could be selected than the

other cases.

Fig. 7 shows the variation of statistical error indices with the number of target modes and the number

Fig. 4 Comparison of estimated parameters of the girder bridge from MS-EIDV and EIDV methods

Fig. 5 Non-symmetric truss bridge model

Table 2 Material and sectional properties of the truss bridge

Group Member Area [mm2] E [GPa] Density [Kg/m3]

1, 5 Left Top, Right Top 250

210 7850
2, 6 Left Bottom, Right Bottom 300

3, 7 Left Vertical, Right Vertical 200

4, 8 Left Diagonal, Right Diagonal 220
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of measuring DOF. Fig. 7 indicates that at least 8 accelerometers are required to estimate structural

parameters reliably when the number of measurable target modes is 4. To measure up to 5 modes, at

least 10 accelerometers are also needed with stable standard deviation in the parameter estimation.

Likewise, to measure up to 6 modes, 10 accelerometers are enough to obtain converged SI results of

structural parameters but more than 14 accelerometers are needed to get stable standard deviation in the

parameter estimation with the consideration on the measurement noise.

Fig. 8 compares the estimated structural parameters by using the selected OAL from MS-EIDV with

those from EIDV when the number of target modes was 5 and the number of used accelerometers was

10. Each figure shows the estimated parameters of 2 groups among all 8 groups in the horizontal and

vertical axes. Differently from the case of the girder bridge, the estimated parameters gather close from

both methods. However, the values by EIDV are separated into two locations and one of them stays

relatively away from 1.0.

Fig. 6 Variation of OAL for the truss bridge with the number of target modes

Fig. 7 Variation of statistical error indices for the truss bridge with the numbers of target modes and measured
DOF
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4. Conclusions

A new algorithm to determine OAL is proposed for identifying a structure by a frequency domain SI

scheme. Compared with the conventional EIDV method, the proposed algorithm of MS-EIDV is

developed with the likelihood function of measurements and formulates a FIM with mode shape

sensitivity by maximizing the likelihood of the occurrence of the measurements relative to the

predictions. The concept of error bound on the structural parameters is introduced in the paper to

accommodate the conflict between in determining OAL and in applying SI. Monte Carlo iterations with

random errors within a pre-defined error bound are applied to determine more reliable OAL.

To examine the proposed algorithm, simulation studies have been carried out on a two-span multi-

girder bridge and a truss structure. For each simulation case, a guideline could be presented to

determine the priority of OAL by drawing three statistical error indices with variations in the number of

measurable target modes and the number of measured DOF. From the figures, the required minimum

number of accelerometers could be determined depending on the number of measurable target modes.

The usefulness of the proposed MS-EIDV algorithm compared with EIDV could be demonstrated

through the simulated examples.
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