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Abstract. In bridge structures, damage may induce an additional deflection which may naturally contain essential
information about the damage. However, inverse mapping from the damage-induced deflection to the actual
damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a
new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse
mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is
defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region.
From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the
maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage
localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1)
identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an
inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the
modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the
abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several
inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on
a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried
out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can
identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.
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1. Introduction

Structural health monitoring (SHM) is an emerging subject in civil engineering, offering potential to

prevent catastrophic structural failures, to increase cost effectiveness in maintenance, and to prolong the

service life, by continuous and/or periodic assessments of the structural integrity of civil infrastructures.

During the past three decades, vibration-based SHM methods have been extensively studied and

developed utilizing various vibration characteristics such as natural frequencies, mode shapes, modal

curvatures, modal flexibility, etc. An excellent review can be found in a report by Doebling et al. (1996).

In spites of the in-depth research efforts in vibration-based SHM and damage detection methods, there still

remain several challenges in the practical and reliable applications. Although many SHM methodologies

have been devised, only a few have been fully validated for its applicability and reliability on site.

Especially, from the viewpoint of online SHM frameworks, it is very important to detect damage or

abnormality at the earliest stage to establish proper maintenance and/or retrofit plans on time. Therefore, it

is highly required to adopt an appropriate damage detection method for the continuously or periodically

incoming measurement data. More research efforts are also needed to enhance the applicability of the

SHM technologies to real structure systems with a large number of degrees of freedom.

Recently, the modal flexibility has become one of the promising damage descriptors owing to its high

sensitivity to damage. Through numerical studies for a spring-mass system with five degrees of

freedom, Zhao and DeWolf (1999) showed that the modal flexibility is more sensitive for damage

detection than the natural frequencies and mode shapes. Several damage detection methods have been

proposed based on the modal flexibility. The earliest one is a damage detection method using changes

in modal flexibility (Pandey and Biswas 1994). Anomaly in the uniform load surface calculated by

modal flexibility was proposed as a damage feature (Toksoy and Aktan 1994). Damage detection

method using changes in curvatures of the uniform load surface was also proposed (Zhang and Aktan

1995). The damage locating vector (DLV) was proposed to localize the damages based on changes in

the modal flexibility with the intact finite element model (Bernal 2002). Many other methods have been

also studied based on the modal flexibility (Madhwesh and Ahmet 1992, Yan and Golinval 2005, Ni,  et

al. 2008). The aforementioned methods have drawbacks such as the high noise sensitivity due to

curvature calculations, the no explicit relationship between the damage and damage features, and the

requirement of an intact finite element model.

The proposed method in this study is originated from the same idea with the method by Toksoy and

Aktan (1994), but is based on the explicit relationship between the damage and damage-induced

deflection. The load requirement for deflection-based damage detection is also theoretically investigated.

In this paper, at first, the background theory is explained including the modal flexibility, the deflection

estimation by the modal flexibility, the damage-induced deflection, and the deflection-based damage

localization method. Then, numerical simulations are shown for a simply supported beam and a three-

span continuous beam cases with noise-free measurement. Experimental verification study was also

carried out on a two-span continuous beam structure with a steel box-girder. The proof for the proposed

damage detection method is given in Appendix to make the main text simple and concise.

2. Theory

2.1. Deflection estimation by modal flexibility

The dynamic characteristic equation for a structure can be written as 
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(1)

where M and K are the mass and stiffness matrices; Ψ is the un-scaled mode shape matrix which may

be obtained by the output-only modal analysis (Peeters and De Roeck 2001, Brinker and Andersen

2002, Yi and Yun 2004); and Λ is the modal frequency matrix with  on its diagonal. When the un-

scaled mode shape matrix Ψ is scaled to the mass-normalized mode shape matrix Φ (ΦTMΦ = I), the

stiffness matrix K and the flexibility matrix G can be expressed as

K = Φ
-T
ΛΦ

-1 (2)

G = ΦΛ
-1
Φ

T (3)

The influence of the i-th mode on the stiffness matrix K increases with the squares of the natural

frequencies , whereas the influence on the flexibility matrix G decreases with . Therefore, the

flexibility matrix can be constructed more accurately by using only a few lower modes than the

stiffness matrix (Duan, et al. 2005, Gao, et al. 2006). The modal flexibility matrix Gm using m-lower

modes can be obtained as

(4)

where , ωi is the i-th natural frequency, i = 1,2,...,m; Φm = [φ1, φ2,...,φm]; and φi is the i-th

mode shape with the mass-normalization which can be carried out by the added mass method (Brinker

and Andersen 2002, Bernal 2004).

When the modal flexibility matrix is evaluated using Eq. (4), the deflection profile under an arbitrary

load f can be estimated by a simple matrix multiplication as

u = Gmf (5)

2.2. General equation of damage-induced deflection

For a structural system with a stiffness matrix K0, the relationship between the deflection u0 due to a

load F can be expressed as 

(6)

A similar relationship can be obtained for a system with a structural damage defined as a reduction in

the stiffness matrix ΔK as 

(7)

where Δu is the damage-induced deflection caused by the damage ΔK under the same external force F.

 By subtracting Eq. (6) from Eq. (7) and applying the first order approximation, the general equation

of the damage-induced deflection can be obtained as

(8)

MΨΛ KΨ=

ω i

2

ω i

2
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T
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K0u0 F=

K0 ΔK–( ) u0 Δu+( ) F=

Δu K0

1– ΔKu0( ) K0

1– ΔF= =
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where ΔF is a part of the stress resultant which was caused by the damaged portion of the element

under the undamaged condition. It may be also interpreted as the damage-equivalent force imposed on

the damaged part of the structure. Eq. (8) indicates that the damage-induced deflection can be estimated

by applying the damage-equivalent force on the undamaged structure.

For a special case with a damage at segment (e), the damage-equivalent force ΔF for a beam structure

can be obtained as

(9)

where ke the intact stiffness matrix of the damaged segment (e); αe the damage index (0<αe<1); and

 is the stress resultant on the damaged element (e) for the external load

F under the undamaged state. v1 and m1 are the vertical forces and moments at the left end of (e) and v2
and m2 are those at the right end of (e); and u0

e  is the nodal deflection of the element (e) under the

undamaged state. From Eq. (9), it is noticed that the damage-equivalent force ΔF acts only on the

damaged segment not on the rest of the structure. 

2.3. Positive bending inspection load 

The inflection point is the point where the curvature of the deflection and the bending moment are

zero. It is worthy to note that damage near an inflection point may not induce significant additional

deflection to the beam structure because the bending moment on the damaged portion is negligibly

small. Therefore, it is almost impossible to detect damages near the inflection points using the damage-

induced deflection. To detect the damage in a region of interests, a load or a system of loads producing

no inflection point in the region is desirable. For this end, a positive-bending-inspection-load (PBIL) is

proposed in this study, which guarantees the positive bending moment in the inspection region, so that

no inflection point may occur in that region.

Examples of the loads satisfying the requirement of the bending moment positiveness are shown in

Table 1. Span-wise uniform loads are considered in this study for the simplicity of definition and

manipulation. For a cantilever and a simply supported beam, a uniform load on the whole beam length

does not produce any inflection point. For a continuous beam system, however, there is no single

uniform load for the entire beam length, which prevents inflection points over the whole structure.

Therefore, two types of loads, namely span inspection load f 1 and intermediate support inspection load

f 2, are devised as shown in Table 1.

The span inspection load f 1 as shown in Table 1 produces inflection points only at the intermediate

supports, while the intermediate support inspection load f 2 produces the maximum positive moment at

the intermediate supports. The magnitudes of the span-wise uniform loads wi, i = 1,2 can be determined

using the formula shown in Table 1 for the cases with a span-wise uniform cross-section. Two loads f 1

and f 2 may be utilized complementarily to detect damage at an arbitrary location within the whole

ΔF ΔKu0

0

αef
e

0⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

= =

ΔK
0 0 0
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e

0

0 0 0

=

f
e

k
e
u0

e
v1 m1 v2 m2, , ,{ }T= =



 Damage detection in beam-like structures using deflections obtained by modal flexibility matrices 609

beam. For cases with non-uniform cross-sections in a span, proper PBILs can be easily devised by

structural analysis, which should satisfy the requirement of the moment positiveness within their own

regions of interest. 

2.4. Equation of damage-induced deflection for continuous beams

Consider a continuous beam with a single damage loaded by an arbitrary load F as shown in Fig. 1.

The damage is assumed to locate at x = xD having very small damage-width.

A span with the damage can be regarded as an equivalent single-span beam with two rotational

springs kA and kB at the supports as shown in Fig. 2(a). As discussed in the previous section, the

Fig. 1 Continuous beam system with damage under an arbitrary load F

Table 1 Examples of PBILs for various inspection regions

 Beam Types  Inspection Regions Ω PBILs  Definitions of inspection loads

 Cantilever Beam  Whole structure  f 1,*)

 Simply Supported 
Beam

 Whole structure  f 1

 2-Span Continuous 
Beam

 1st span-region
 2nd span-region

 f 1

 -f 1

 Intermediate 
support-region**)  f 2,*)

 3-Span Continuous 
Beam

 1st and 3rd span-regions
 2nd span-region

 f 1

 -f 1

 Intermediate 
support-regions**)  f 2

*) f 1 and f 2: Span-region inspection load and intermediate support-region inspection load.
**)Intermediate support-region may cover the 1/4 span regions on both sides of the support
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damage-induced deflection can be obtained by applying the damage-equivalent load ΔFe = αe

 to the single-span beam in the intact condition as shown in Fig. 2(a), where the signs

of the internal forces are defined as in the conventional finite element analysis.

For the convenience of analysis, further simplification has been made by replacing the rotational

springs kA and kB with two end reaction moments  and , which occur in the

simple beam as shown in Fig. 2(b). Then, the damage-induced deflection shown in Fig. 2(b) can be

obtained by summing two deflections; i.e., Δu1(x) of the simple beam under ΔFe as in Fig. 2(c), and

Δu2(x) under MA and MB as in Fig. 2(d), so long as the resulting rotations at the ends θA and θB are same

as those in Fig. 2(a).

2.4.1. Calculation of Δu1(x)

The damage equivalent force ΔFe is a self-equilibrium force. Thus, when ΔFe is applied to the simple

beam shown in Fig. 2(c), no reaction forces are produced at the supports, and no shear force and

bending moment are produced along the beam except at the damage location x = xD as shown in Fig. 3.

The deflection Δu1(x) by ΔFe is a triangular shape except at the damage location, which can be

expressed by two linear curves as

(10)

v1 m1 v2 m2, , ,{ }T

MA kAθA= MB kBθB=

Δu1 x( )

          θA1x        0 x xD<≤

xD

xE

-----θA1– x L–( )   xD x L<≤
⎩
⎪
⎨
⎪
⎧

=

Fig. 2 Equivalent simple beam for calculation of damage-induced deflections

Fig. 3 Shear stresses, bending moments, and the damage-induced deflection
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where θA1 and θB1 are the end rotations with θB1= −(xD/xE)θA1 as in Fig. 3.

In Eq. (10), Δu1(x) is expressed in terms of θA1. Hereafter, the deflection equations will be expressed

in terms of θA1 for the simplicity and convenience. The sign of θA1 is dependent on the sign of the

bending moment of ΔFe. In other words, if the bending moment is positive, θA1 is positive, while if the

bending moment is negative, θA1 is negative. 

 

2.4.2. Calculation of Δu2(x)

 To calculate Δu2(x) of the idealized simple beam, the end rotations θA and θB are needed to determine

the applied moments at the ends,  and , as shown in Fig. 2(d). The end rotations

can be obtained by solving the following equations: Eq. (11a) describing that the end rotations in Δu(x)

is the sum of those in Δu1(x) and Δu2(x); Eq. (11b) for the end rotations of the beam due to M1 and M2;

and Eq. (11c) for the stiffness of the rotational springs as

(11a)

(11b)

(11c)

where , , and  are the end rotations in Δu(x),

Δu1(x), and Δu2(x); m = {MA, MB}
T is the end moments; k = diag(kA, kB), and g is the rotational

flexibility matrix with respect to the end moments as

(11d)

in which EI is the bending rigidity of the beam section.

By solving the above equations, the moment vector m can be obtained in terms of θ1 as

(12)

where I is the 2 by 2 identity matrix.

When the cross sections of the beam is assumed to be uniform, the deflection Δu2(x) due to MA and

MB can be obtained as

(13)

which can be rewritten in terms of θAl using Eq. (12) as

(14)

where 

MA kAθA= MB kBθB=

θ θ1 θ2–=

θ2 gm= 

m kθ=

θ θA θB,{ }T= θ1 θA1 θB1,{ }T= θ2 θA2 θB2,{ }T=

g L 3EI 1 1 2⁄–

1 2⁄– 1
×⁄=

m kθ k I gk+( ) 1–
θ1= =

Δu2 x( ) Lx

3EI
---------– 1

3

2
--- x L⁄( ) 1

2
--- x L⁄( )2+–⎝ ⎠

⎛ ⎞MA

Lx

6EI
--------- 1 x L⁄( )2–( )MB+=

Δu2 x( )
θA1

3EI
---------

xP x( )
4 4kA 4kB 3kAkB+ + +( )xEL

-------------------------------------------------------------------=

P x( ) ax
2

bx c+ +=
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(15)

Finally, the damage-induced deflection is obtained by the sum of the two deflections as

(16)

2.5. Damage localization by damage-induced deflection

To make the damage localization procedure effectively, a damage-induced chord-wise deflection (DI-

CD)  is introduced, which can be defined as the additional deflection measured from the chord

connecting two points at x = xa and xb as

= − (17)

where Ω = [xa, xb] is the inspection region.

From the theoretical investigation on the DI-CD, the damage localization algorithm can be

established using  as follows.

Damage occurs at (18)

where a PBIL is a positive-bending-inspection-load in the inspection region Ω which guarantees the

moment positiveness in Ω, as defined in the previous section and illustrated in Table 1. Eq. (18) states

a 2xExA– 2xDkB 3 xD xE–( )kAkB+ +=

b 6xELkA 3 xD 2xE–( )LkAkB–=

c 4xEL
2
kA– 3xDL

2
kB– 3xEL

2
kAkB+=

Δu x( ) Δu1 x( ) Δu2 x( )+=

ΔuΩ x( )

ΔuΩ x( ) Δu x( )
Δu xb( ) Δu xa( )–

xb xa–
---------------------------------------- x xa–( ) Δu xa( )+⎝ ⎠
⎛ ⎞

ΔuΩ x( )

x xD

ΔuΩ x( ) has the maximum at x xD and =

ΔuΩ′ x( )  changes abruptly at x xD under a PBIL =⎩
⎨
⎧

⇔=

Fig. 4 Example of damage-induced chord-wise deflection for a simply support beam
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that the damage can be localized at the location with the maximum DI-CD  and the abrupt

change in its slope. The proof of Eq. (18) is described in Appendix, and two illustrative examples are

shown in Figs. 4-5. For a damage near a mid-span, the inspection region is taken as the whole span of

interest. On the other hand, for a damage near an intermediate support region, the inspection region is

taken as the 1/4 span regions on both sides of the support. 

2.6. A proposed method under measurement noises

In realization of Eq. (18) for damage detection, statistical approaches are preferred due to inevitable

measurement noises. A novelty index Zi of the damage-induced chord-wise deflections is utilized to

alarm the damage existence as follows

Damage existence alarm issues if mean (Zi) > ZThreshold (19)

(20)

(21)

(22)

where Ω = [xa, xb] is the inspection region; Zi is the novelty index of the damage-induced chord-wise

deflection  at the location ;  is the concurrent chord-wise deflection in Ω, ;

 is the mean-value of the referenced (intact) chord-wise deflection  over measurements;

 is the standard deviation of ; u(x) is the deflection under fPBIL; fPBIL is the PBIL for the

inspection region Ω; and Gm is the modal flexibility.

When a damage existence has been found in the inspection region Ω, the damage localization shall be

ΔuΩ x( )

Zi

uΩ xi( ) uΩ

I
xi( )–

σ uΩ

I
xi( )( )

------------------------------------ xi Ω∈,=

uΩ xi( ) u x( )
u xb( ) u xa( )–

xb xa–
-------------------------------- x xa–( ) u xa( )+⎝ ⎠
⎛ ⎞–=

u Gm fPBIL=

uΩ x( ) xi Ω∈ uΩ xi( ) xi Ω∈
uΩ

I
xi( ) uΩ

I
xi( )

σ uΩ

I
xi( )( ) uΩ

I
xi( )

Fig. 5 Examples of damage-induced chord-wise deflections for a 2-span continuous beam
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followed. Herein, to account for the inevitable measurement noise again, the damage-induced chord-

wise deflection is evaluated using Eq. (23) based on the mean values of the damage-induced chord-wise

deflections as

(23)

where  is the mean-change in the damage-induced chord-wise deflection;  is the mean-

value of  after issuing damage existence alarm; and  is the mean-value for the reference case.

According to Eq. (23), the location of the maximum DI-CD, xm = arg  is assessed to

be an actual damage location, if the abrupt change in the slope of  occurs at xm. However, if

 does not come with an abrupt change at xm, it can be assessed the damage might have occurred

outside the inspection region Ω.

The proposed damage localization can be summarized as follows.

Damage locates at xm            if 

Damage locates outside of Ω   if (24)

where  is an index to measure the abrupt change in the slope of  at x = xm. An index is

proposed based on the area ratio without explicit calculations of the slope as follows.

(25)

ΔuΩ xi( ) uΩ

D
xi( ) uΩ

I
xi( )–=

ΔuΩ xi( ) uΩ

D
xi( )

uΩ xi( ) uΩ

I
xi( )

max
xi

ΔuΩ xi( )
ΔuΩ x( )

ΔuΩ x( )

IA xm( ) IA
Threshold≥

IA xm( ) IA
Threshold<

IA xm( ) ΔuΩ x( )

IA xm( ) 1

ΔuΩ x( )dx
Ω
∫

ΔuΩ xm( )dx
Ω
∫
---------------------------------–=

Fig. 6 The flow chart of the proposed method
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For the case of the abrupt change in the slope in Ω,  will be a triangular shape or peaked-shape

resulting into . On the other hand, for the case of no abrupt change in the slope in Ω,  will

have a smooth convex curve resulting into . Typical example for each case can be seen in Ω[0,1] and

Ω[1,2] of Fig. 5(a), respectively. The proposed damage detection procedure is summarized in Fig. 6.

3. Numerical study

3.1. Simply supported beam structure

Numerical investigation on the proposed damage localization algorithm by Eq. (18) was carried out

on a simply supported beam with a uniform cross section (EI=constant) under the PBIL f 1 as shown in

ΔuΩ xi( )
IA 0.5≥ ΔuΩ xi( )

IA 0.5<

Fig. 7 DI-CWDs for a simply supported beam
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Table 1. The structure is modeled by 40 beam elements. Two single damage cases with 10% EI

reduction and one double damage case with 10% EI reduction each at different locations were

considered as shown in Fig. 7. Two single damages locate at xD = 8 and 24 (m) respectively and one

double damage locates at xD = 12 and 32 (m) simultaneously. Acceleration measurements were assumed

available at 41 node locations without noise for sufficiently long duration. The first three natural

frequencies and mode shapes were utilized to construct the modal flexibility matrices before and after

damage, and then the deflections are estimated by using the modal flexibility matrices and a uniform

load which is a PBIL for this case. The deflections are scaled with a constant so that the maximum

value is to be 1. The DI-CDs defined in the whole structure and the two inspection regions are shown in

Figs. 7(a) and 7(b), respectively. For the single damage cases, it can be found that the damage can be

localized at the location where the DI-CD is the maximum and its slope changes abruptly as shown in

both inspection regions. For the double damage case, it can be found that the damage can be localized

by using two separated inspection regions as shown in Fig. 7(b).

3.2. Continuous beam structure with 3 spans

A three-span continuous beam model with a uniform cross section (EI=constant) is considered. The

structure is modeled by 122 beam elements. Nine damage cases of 20% EI reduction at different

locations were considered as shown in Fig. 8: xD = 10, 19, 29, 33, 38, 42, 50, 61 and 72 m. The first four

natural frequencies and mode shapes were assumed to be evaluated exactly, and they were utilized to

construct the modal flexibility matrices before and after damage for each case. The deflections under

PBILs are estimated by the modal flexibility matrices and are scaled so that the maximum deflection

value is to be 1. The damage-induced chord-wise deflections are shown for the 5 inspection regions

(Ω1−Ω5) in Fig. 9.

Fig. 9(a) shows the damage-induced chord-wise deflections  in five inspection regions due to

damage in the 1st span. By inspecting  of the 1st span, the damages occurred in the 1st span

were able to be clearly identified and localized by the locations of the maximum deflections with the

abrupt changes in the slope. However,  in the other regions Ωi (i = 2,3,4,5) are found to be smooth

without the abrupt changes in the slopes, which indicates no existence of damage in those spans.

ΔuΩj
x( )

ΔuΩ
1

x( )

ΔuΩi
x( )

Fig. 8 A three span continuous beam model with different damage cases

Table 2 Inspection regions and corresponding PBILs for a 3-span continuous beam model

 Inspection Regions Ωi *)  PBILs

Ω1 and Ω3 f 1

Ω2 -f 1

Ω4 and Ω5 f 2

*)Definitions of Ωi are shown in Fig. 5, and f i are defined in Table 1.
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Fig. 9(b) shows  due to damages around the 1st intermediate support. It can be found that the

damages near the support were clearly identified and localized by checking . It is worthy to

note that  and  for the 1st and 2nd span regions can also indicate the damage

occurrences at x = 33 and 42 m. But the peaks are relatively small, since the damages occurred near the

inflection point at the 1st intermediate support under the span PBILs.

Fig. 9(c) shows similar results for the damages occurred in the center span, which also demonstrate

the effectiveness of the present damage-induced chord-wise deflection method incorporating PBILs. 

 4. Experimental study

Experimental validation of the proposed method was carried out on a steel box-girder model shown

in Fig. 10. The test structure is a two-span continuous box-girder model of 18 m long, which is

composed of 9 segmental boxes connected by bolts and plates. Detailed dimensions of the test structure

were given at Fig. 10(a). Nineteen accelerometers were evenly placed on the upper surface of one side

ΔuΩj
x( )

ΔuΩ
4

x( )
ΔuΩ

1
x( ) ΔuΩ

2
x( )

Fig. 9 Damage-induced chord-wise deflections for a three-span continuous beam system
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of the box-girder as shown in Figs. 10(a) and 10(b). Small damages of narrow cuts were imposed at two

locations on the bottom flange by saw cuts as described in Tables 3 and 4. Vibration responses were

induced by successive impact loads during 4 minutes, and the acceleration responses were measured

with 200 Hz sampling rate. An example record is shown in Fig. 11. The acceleration measurements

were repeated 18 times for the intact case and 7 times for each damage case. The experiments were

Fig. 10 Laboratory test on a steel-box girder model

Table 3 Damage severity on test section

 Item  Description

 Section Shape

 Description  a cut of 5.0 cm long and 1 mm wide on each side

 Bending Rigidity (EI)  12% Reduction in the cut-section

 Area  4.6% Reduction

Table 4 Damage scenarios

 Damage cases  Damage scenario

 Damage 1  at Location 1

 Damage 2  at Location 1 and 2
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performed during a period of about 6 hours, while the temperature remains nearly steady to make

temperature effects negligible. 

Modal parameters were extracted using the enhanced frequency domain decomposition (EFDD)

Table 5 Modal parameters extracted by EFDD before and after damages 

 Mode 1  Mode 2 Mode 3

 Intact

 Damage Cases  Frequency
f1(Hz)

Δf1/f1
*

(%)
MAC**

Frequency
f2 (Hz)

Δf2/f2

(%)
 MAC

Frequency
f3 (Hz)

 Δf3/f3

 (%)
 MAC

 Damage 1  13.592  -0.05  1.0000  20.258  -0.02  1.0000  51.666  -0.01  0.9999

 Damage 2  13.594  -0.04  1.0000  20.250  -0.06  1.0000  51.691  0.00  0.9999
*)Δfi from the intact values fi.
**)MAC between the modes before and after damage.

Fig. 11 Typical example acceleration time history

Fig. 12 Modal flexibility matrix and its change due to Damage Case 2
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method (Brincker, et al. 2001), which can estimate natural frequencies accurately using curve fitting in

time domain. Typical modal parameters estimated are shown in Table 5. The modal assurance criterion

(MAC) values were obtained between the mode shapes of the intact and damage cases. The changes in

natural frequencies and mode shapes due to the damage were found to be very small. Accordingly it

will be very difficult to detect the damage directly based on the modal parameters.

The modal flexibility matrices were constructed by using Eq. (4) for the intact and damaged cases

based on the mass-normalized mode shapes. The mass normalization was carried out by using the

lumped mass matrix obtained from the design drawing of the test structure. The typical modal

flexibility matrix for the intact case and the typical change in the modal flexibility matrices are shown

in Fig. 12. The modal flexibility matrix was scaled to have a unit-maximum value.

The PBILs fPBIL used for the test structure are shown in Table 6. The deflections under the PBILs f1
and f2 were calculated for 18 sets of the modal flexibility matrices obtained from the intact

Fig. 13 Eighteen sets of the intact deflections and their deviation level under PBILs

Table 6 PBILs for test bridge

Inspection Regions PBILs Definition of PBIL

1st span-region f 1

2st span-region -f 1

Intermediate support-region f 2
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measurements as shown in Fig. 13. The results were scaled so that the absolute maximum value are to

be 1.0. As seen in the Fig. 13, eighteen results almost coincide with each other and the deviation levels

are less than ±0.8 × 10-3, which indicates the excellent repeatability of the estimated deflections. 

For Damage Cases 1 and 2, the chord-wise deflection changes in each inspection region are shown in

Figs. 14, 17 and 20. For Damage Case 1 with a small narrow cut at xD = 5.5 in the 1st span, the chord-

wise deflection in the 1st span increased very significantly with an abrupt change in the slope near the

damage location, while small change occurred in the other two regions without damages as shown in

Fig. 14 Means and 2σ deviations in the DI-CDs for Damage Case 1 from Intact Case 

Fig. 15 Damage existence assessment for Damage Cases 1 from Intact Case

Fig. 16 Damage localization assessment for Damage Cases 1 from Intact Case
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Fig. 14. The novelty indices were calculated by using Eq. (20) and its mean values were shown in Fig. 15.

Damage existence alarm issued in Ω1 with Zi
Threshold= 4. The index of the abrupt change was

IA(xm = 6) = 0.581>0.5, so the damage location was assessed to be xm = 6(m) which is reasonable since

it is one of the closest measured-location to the actual damage location at xD = 5.5(m).

For Damage Case 2 with an additional small cut near the intermediate support, very visible increase

can be observed in the chord-wise deflection under the PBIL in the intermediate support region, while

no significant increases in the other regions without damages. The mean values of the novelty indices

Fig. 17 Means and 2σ deviations in the DI-CDs for Damage Case 2 from Damage Case 1

Fig. 18 Damage existence assessment for Damage Cases 2 from Damage Case 1

Fig. 19 Damage localization assessment for Damage Case 2 from Damage Case 1
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were shown in Fig. 18. Damage existence alarm issued in Ω3, and the index of the abrupt change was

IA(xm = 9) = 0.593 > 0.5. Thus the damage location was assessed to be xm = 9(m), which is reasonable

since it is the closest measured-location to the actual damage location at xD = 9.3(m).

Fig. 20 shows the chord-wise deflection increase of Damage Case 2 from Intact Case under the PBIL.

Two visible increases were observed on both the 1st span and the intermediate support region, while no

significant increases in the 2nd span region without damage. The mean values of the novelty indices

were shown in Fig. 21. Damage existence alarm issued in both Ω1 and Ω3, and the indices of the abrupt

Fig. 20 Means and 2σ deviations in the DI-CDs for Damage Case 2 from Intact Case

Fig. 21 Damage existence assessment for Damage Cases 1 from Intact Case

Fig. 22 Damage localization assessment for Damage Case 2 from Intact Case
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change were IA(xm = 6) = 0.586 > 0.5, and IA(xm = 9) = 0.585 > 0.5. Thus the damage locations were

assessed to be xm = 6 and 9 (m).

5. Conclusions

In this paper, a novel damage detection method was proposed based on the damage-induced chord-

wise deflections which were estimated using the modal flexibility matrices before and after damage. 

A new load concept, so called Positive Bending Inspection Load (PBIL) was proposed to make the

proposed damage detection and localization procedures effective. A PBIL in an inspection region is

defined as a load or a system of loads which guarantees positive bending moment in the inspection

region of a structure. The relationship between the damage location and the damage-induced chord-

wise deflection (DI-CD) was theoretically investigated, and it was proved analytically that the DI-CD

has the maximum value at the true damage location with the abrupt change in its slope under a PBIL. 

Novelty indices defined based on the damage-induced chord-wise deflection were devised for

assessing damage existence under inevitable measurement noises and the index of the abrupt change in

the slope of DI-CD were also proposed for damage localization. From a numerical study, the

effectiveness of the proposed method of detecting small local damages has been demonstrated on a

simply supported beam and a three span continuous beam. Then, experimental verifications were

carried out for a two-span continuous steel-box girder model. It has been founded that the proposed

method can detect small narrow cuts inflicted on the bottom flange which caused 12% reduction in the

bending rigidity (EI) on the narrow segment of the box-girder. 
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Appendix Proof for Eq. (18)

A.1. Proof for span inspection region

Consider an equivalent simple beam with end rotational springs subjected to damage as shown in Fig. 2(a).
Herein, the span inspection region is Ω=[0, L]. Then, the chord-wise deflection  is identical to the
deflection . Thus, the proof will be carried out on  instead of .

A.1.1. Sufficiency (⇒)
The first statement “  has maximum at x = xD under a PBIL” can be proved by showing the following

inequality to hold,

on (26)

For the domain , Eq. (26) can be rewritten using Eqs. (10), (14), and (16) as

(27)

where  

, and

ΔuΩ x( )
Δu x( ) Δu x( ) ΔuΩ x( )

ΔuΩ x( )

Δu xD( ) Δu x( )– 0≥ x 0 L,[ ]∈

0 x xD<≤

Δu xD( ) Δu x( )–
θA1

3EI
---------

xD x–( )

4 4kA 4kB 3kAkB+ + +( )xEL
2

--------------------------------------------------------------------- P1 x( )×=

P1 x( ) a1x
2

b1x c1+ +=

a1 2xEkA– 2xDkB 3 xD xE–( )kAkB+ +=

b1 2xEkA 2xD 3k+
E

( )kA 2xD

2
kB 6xE

2kAkB 0>+ +=

c1 4xEL
2

= 2xD 2L xE+( )kA 2xE

2
2L xD+( )kB 6xDkEkAk

B
0>+ + +
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 under a PBIL as discussed in Section 2.4.
All the terms in Eq. (27) are obviously positive except P1(x). Thus, the positiveness of P1(x) is needed to be

shown. It can be easily shown that P1(x) is positive at two boundary points at x = 0 and xD as.

For the case of , the global minimum of P1(x) occurs at , which is outside of the region of
0 ≤ x ≤ xD. Thus, P1(x) > 0 in the region since it is second order polynomial. For the case of , P1(x) is a
convex or linear curve so P1(x) > 0 for . Therefore, P1(x) > 0 and the r.h.s. of Eq. (27) is positive.

For the other domain of xD ≤ x ≤ L, a similar procedure can be shown for Eq. (26). Thus, Δu(x) has been proven
to have the maximum at x = xD. 

The second statement that “  changes abruptly at x = xD under a PBIL” is obvious, since there is the
abrupt change in  as shown in Fig. 3.

A.1.2. Necessity (⇐)
Contraposition of the necessity is written as. 

Damage doesn’t occurs at 

The proof for the necessity can be done by showing the above statement and is very obvious.

A.2. Proof for intermediate support inspection region

Consider a continuous beam system with damage loaded by a PBIL as shown in Fig. A-1. Herein, the
intermediate support inspection region is , where xa = 3/4 L1, and xb = L1+1/4 L2. Without loss of
generality, the damage is assumed to locate in the left span region near the intermediate support, .

The continuous beam can be regarded as two equivalent single-span beams with rotational springs as show in
Fig. A-2. Then, the damage induced deflection in the left span can be derived from Eqs. (10), (14) and (16). On the
other hand, the damage-induced deflection in the right span can be obtained by using the rotational compatibility
condition at x = L1; i.e.,  as

(28)

where kn = , E2 and I2 is the Young’s modulus and moment of inertia in the right span, respectively;

θA1 0>

P1 0( ) c1 0>=

P1 xD( ) 4xEL
2

kA 6xDxE xD 2xE+( ) kB 4xD

3
6xDxE

2
4xE

2
+ +( ) kAkB 3xD xD

2
xDxE– 4xE

2
+( ) 0>⋅+ +⋅+=

a1 0> xm b1 2a1( )⁄–=
a1 0>

0 x xD≤ ≤

Δu′ x( )
Δu1′ x( )

x xD
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,
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⎨
⎧
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Fig. A-1 Damage-induced deflection near an intermediate support
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 under a PBIL as discussed in Section 2.4.

A.2.1. Sufficiency (⇒)
The curvature κ(x) in the left span can be obtained by differentiating Eq. (16) twice, as

where κ(x) can be shown to be positive for  since κ(x) is the 1st order polynomial with positive 
values at two boundary points at x = xa and L1 as.

, and

in which 

By differentiating Eq. (28) twice, the κ(x) for  can be obtained as

where κ(x) can be shown to be positive for  since  under a PBIL and κ(x) is the 1st order
polynomial of x with positive values at two boundary points x = L1 and xb as

and 

Therefore, κ(x) is positive for the whole intermediate support inspection region except the damage location x = xD

,  (29)

Furthermore, the following two inequalities hold according to the previous proof in Appendix A-1 and the fact
that  is negative since  as
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Fig. A-2 Equivalent single-span beams for the left and right spans
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 and   (30)

From Eqs. (29) and (30), the deflection curve can be depicted as follows.
Accordingly, it can be found that the maximum chord-wise deflection  occurs at x = xD regardless of the

magnitude of κ(x) > 0.
The proof of the abrupt change in  for the intermediate support region is obvious since there is an

abrupt change in  as shown in Fig. 3.

A.2.2. Necessity (⇐)
The proof for the intermediate support region can be done by proving the contraposition of the necessity and is

very obvious.

Δu xD( ) Δu xa( )> Δu xD( ) 0 Δu xb( )> >

ΔuΩ x( )

ΔuΩ
′ x( )

Δu1
′ x( )

Fig. A-3 Chord-wise deflection in an intermediate support region




