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Abstract. The empirical mode decomposition (EMD) method is well-known for its ability to decompose a
multi-component signal into a set of intrinsic mode functions (IMFs). The method uses a sifting process in which
local extrema of a signal are identified and followed by a spline fitting approximation for decomposition. This
method provides an effective and robust approach for decomposing nonlinear and non-stationary signals. On the
other hand, the IMF components do not automatically guarantee a well-defined physical meaning hence it is
necessary to validate the IMF components carefully prior to any further processing and interpretation. In this
paper, an attempt to use the EMD method to identify properties of nonlinear elastic multi-degree-of-freedom
structures is explored. It is first shown that the IMF components of the displacement and velocity responses of a
nonlinear elastic structure are numerically close to the nonlinear normal mode (NNM) responses obtained from
two-dimensional invariant manifolds. The IMF components can then be used in the context of the NNM method
to estimate the properties of the nonlinear elastic structure. A two-degree-of-freedom shear-beam building model
is used as an example to illustrate the proposed technique. Numerical results show that combining the EMD and
the NNM method provides a possible means for obtaining nonlinear properties in a structure. 

Keywords: empirical mode decomposition; nonlinear normal mode; nonlinear identification.

1. Introduction

Fourier transform (FT) has been used commonly for extracting structural dynamic characteristics

from measured vibration responses. Despite its simplicity and long history of application, the FT

suffers from a few shortcomings. The FT decomposes a time-domain signal into a superposition of

constant-frequency trigonometric functions. As commented by Huang, et al. (1998a), the Fourier

spectral analysis is restricted to linear systems and the signal to be processed should be either periodic

or stationary. The FT is not able to reveal the time dependency of a signal and fails to capture the

evolutionary characteristics that commonly observed in the signal measured from naturally-excited

structures (Gurley and Kareem 1999). As the Fourier spectrum defines harmonic components globally,

additional harmonic components are needed to simulate non-stationary data or data that contain
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nonlinear effects. This eventually leads to spurious harmonic components and causes misleading

energy-frequency distribution (Huang, et al. 1998a). Wavelet transform (WT) may be viewed as an

extension of the FT with adjustable window location and size. It allows an arbitrary function to be

expressed as a series expansion where each term is one of the local basis wavelets multiplied by its

magnitude. This use of local wavelet functions provides the WT with a flexibility to allow for simultaneous

time-frequency resolution for non-stationary data. Another approach that shows a potential for time-

frequency decomposition of non-stationary and/or nonlinear data is the Hilbert transform (HT).

Feldman (1994a, b) developed a HT based method to identify instantaneous modal parameters of

nonlinear single-degree-of-freedom (SDOF) systems under free and forced vibration. In this method,

the HT is first applied on the free decay response of a nonlinear SDOF system to form an analytic

signal. The nonlinear damping and stiffness of the systems can then be determined from the time-

dependent phase angle and amplitude of the analytic signal. As the HT is applicable to signals containing

only one major component, Huang, et al. (1998a, b) proposed an empirical mode decomposition

(EMD) method prior to the use of HT. This EMD method can decompose a signal into a superposition

of intrinsic mode functions (IMFs) that contain one major mode at any time instant. Since the

decomposition is based on the local time-scale characteristic of data, it is applicable to non-stationary

and nonlinear data. This innovative combination of EMD and HT, also known as the Hilbert-Huang

transform (HHT), has shown a great potential in almost all disciplines that require analyzing non-

stationary and nonlinear time history data. For civil engineering applications, Yang, et al. (2003a, b)

proposed a HHT based method to identify the normal modes and the complex modes of multi-degree-

of-freedom (MDOF) linear systems using free vibration responses. Their results demonstrated that the

method can be used for damage identification and health monitoring of structures. Nevertheless, like

most of the other vibration-based techniques, these results are obtained assuming that the structures

under monitoring exhibit linear behavior both before and after damage. Farrar, et al. (2001) stated that a

predominantly linear structure could exhibit some degrees of nonlinearity when it was damaged. One

such example is the damage involving cracks that open and close when the structure is subjected to

external loads. Hence it is necessary to develop applicable algorithms that can be used to monitor or

characterize nonlinear behavior in structures for the purpose of either damage identification or health

monitoring of these structures. As reviewed above, the EMD method provides an effective and robust

approach for decomposing nonlinear and non-stationary signals. The IMF components however do not

automatically guarantee a well-defined physical meaning. Hence it is necessary to validate the IMF

components carefully prior to any further processing and interpretation. In this paper, an attempt to use

the EMD method to identify properties of nonlinear elastic multi-degree-of-freedom structures is

explored. It is first shown that the IMF components of the displacement and velocity responses of a

nonlinear elastic structure are numerically close to the nonlinear normal mode (NNM) responses

obtained from two-dimensional invariant manifolds. The IMF components can then be used in the

context of the NNM method to estimate the properties of the nonlinear elastic structure. A two-degree-

of-freedom shear-beam building model is used as an example to illustrate the proposed technique.

2. Hilbert-Huang transform (HHT)

Huang, et al. (1998a) proposed the EMD method to decompose a multi-component signal s(t) into a

set of mono-component signals known as the IMFs. This EMD method can be briefly summarized as

follows: 
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1. Identify all extrema of s(t) 

2. Interpolate between the minima by a cubic spline to form the envelope emin(t), similarly for the

maxima emax(t) 

3. Compute the mean µ1(t) = (emin(t) + emax(t))/2 

4. Subtract the mean from the signal h1(t) = s(t) – µ1(t)

The above procedure is known as the sifting process. Since the spline fitting involves approximation,

the sifting process has to be iterated. In the second sifting process, s(t) is replaced by h1(t) in step 1 and

step 4 becomes h11(t) = h1(t) – µ11(t). The process is iterated k times until h1k(t) = h1(k–1)(t) – µ1k(t)

satisfies two conditions: (1) h1k(t) is a mono-component, i.e., the difference between the number of zero

crossing (including up-crossing and down-crossing) and number of extrema is at most one; and (2)

h1k(t) satisfies the criteria proposed by Rilling, et al. (2003). The criteria ensure small fluctuations in the

mean globally and allow for large excursions locally. The time function h1k is defined as the first IMF

from the original data and designated as g1. It contains the highest frequency component of the data.

The residue r1 is obtained by subtracting s(t) by g1. Since this residue may contain lower frequency

components, it is treated as a new signal and subjected to the same sifting process as described above.

This procedure can be repeated until the residue is a mean trend of the original signal. Since each IMF

contains only one major component at any time instant, the HT can be applied on these IMFs individually.

Given an arbitrary narrow-band time signal g(t), its HT gH(t) is defined as (Hahn 1996).

(1)

where P is the Cauchy principal value. The functions g(t) and gH(t) can be combined to form an analytic

complex signal G(t) as follows: 

(2)

in which a(t) and θ(t) are the amplitude and the phase angle of the signal and are given respectively by 

(3)

(4)

Note that θ(t) is normally a fast varying time function as compared with a(t). The instantaneous

frequency of the analytic signal is defined as

(5)

3. Nonlinear normal mode (NNM) 

For a nonlinear elastic structure with N degrees of freedom, the equations of motion under free

vibration are given as 
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where x = [x, x2, ..., xN]T is the displacement vector, and M, C, and K0 are the mass, damping and linear

stiffness matrices, respectively; Kn represents a nonlinear stiffness matrix that can be a general function

of x and . The state-space form of Eq. (6) can be written as

(7a)

(7b,c)

where z and D are the state vector and the nonlinear state matrix, respectively. Alternatively, Eq. (6) can

also be rewritten as

                         ,                        i = 1,2, ..., N (8)

Shaw and Pierre (1993) assumed that there exists at least one motion for which all displacements and

velocities can be functionally related to a single displacement–velocity pair, say x1 and y1. For brevity,

let x1 = u and y1 = v, and express the other xi’s and yi’s in terms of u and v as follows:

                  xi = Xi(u, v),  y = Yi(u, v)                 i = 1, 2, ..., N (9a,b)

Mathematically, Eqs. (9) describe a constraint surface of dimension two (u, v) in the 2N-dimensional

phase space. A normal mode of motion for the nonlinear elastic system can be defined as a motion that

takes place on a two-dimensional invariant manifold in the system’s phase space. An approximate

solution for the normal mode invariant manifold near the equilibrium point has been proposed by Shaw

and Pierre (1993). Eqs. (9) are first approximated by a third-order Taylor series expansion, 

xi ≈ α1iu + α2iv + α3iu
2 + α4iuv + α5iv

2 + α6iu
3 + α7iu

2v + α8iuv2 + α9iv
3  (10a)

yi ≈ β1iu + β2iv + β3iu
2 + β4iuv + β5iv

2 + β6iu
3 + β7iu

2v + β8iuv2 + β9iv
3 i = 1,2,...,N (10b)

where αij and βij are the Taylor series coefficients. Provided that the structural properties are given, N

sets of αij and βij can be obtained by substituting Eqs. (10) into (7a) with the elimination of the time

derivative terms using Eq. (8). Each of these sets correspond to a pair of (u, v) which is termed as the

modal coordinates. Hence the state vector z in the physical domain can be related to the modal coordinate

vector w as, 

(11)

(12)

where Φ is the nonlinear mode shape matrix which is a function of w and the Taylor series coefficients;

and Φ0, Φ1 and Φ2 are the 0th, 1st and 2nd order mode shape component matrices which are functions of

the 0th, 1st and 2nd order of w, respectively. The modal coordinate vector w = [u1, v1,...,uN, vN]T consists

of N modal coordinates (uk, vk), k = 1, 2,..., N. Substituting (11) into (7a) gives,

(13)
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which is an explicit function of modal coordinate vector w only. When the structural properties are

given, the time histories of w can be obtained from this equation.

4. EMD-NNM based characteristics identification

Assume that the state vector z of the nonlinear elastic structure is available from measurement. A pair

of displacement and velocity time history data, let’s say x1 and 1, is selected as a reference and

processed through the EMD to produce 2n IMF components. The selection of the data pair is rather

arbitrary, except that these data must contain response from all modes. It is postulated that the obtained

2n IMF components can be used to form the modal coordinate vector w. As commented by Huang et al.

(1998a), the IMF components do not guarantee a well-defined physical meaning just like the other

decomposition methods with a priori basis. Hence the equivalence between the IMF components and

the modal coordinate vector needs to be carefully validated in the numerical study.

Theoretically speaking, the nonlinear mode shape matrix Φ, in the summation form of Φ0,  Φ1 and Φ2,

can be obtained using Eq. (11) via a constrained nonlinear optimization technique under given z and w.

However, as suggested by Zhao ad DeWolf (1999), mode shapes of a lightly-damped system are

generally insensitive to small nonlinearity. Hence, the estimation of nonlinear mode shape components

Φ1 and Φ2 might lead to significant errors. It is suggested to approximate the nonlinear mode shape

matrix using the linear mode shape matrix. Eq. (11) then becomes,

(14)

This linear mode shape matrix can be obtained from the least square fit of ratios between the IMF

components at a measurement location and that at the reference location. Under this condition, Eq. (13)

can be written as 

(15)

The nonlinear state matrix D that contains the physical properties of the nonlinear structure can be

estimated through a constrained nonlinear optimization technique such as the sequential quadratic

programming algorithm (Schittowski 1985). When the mass matrix M and the form of nonlinear

stiffness are available, the damping matrix C and the coefficients of linear and nonlinear stiffness

matrices, K0 and Kn, can be obtained via Eq. (7c).

5. Illustrative examples

A 2-story shear beam building model (Fig. 1) with nonlinear stiffness is used to illustrate the applicability

and accuracy of the EMD-NNM based nonlinear characteristic identification. The equations of motion

for this model under free vibration condition can be written as, 

(16)
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The nonlinear state matrix D is expressed as,

(17)

The mass and the linear stiffness coefficients for the two stories were assumed to be identical: m1 = m2

= 1000 kg and k1 = k2 = 980 kN/m, respectively. The stiffness nonlinearity was assumed to be in a cubic

order with coefficients of k1r and k2r for the first and the second stories, respectively. Three cases

were considered in this study: Case 1: linear model with k1r = k2r = 0; Case 2: nonlinearity occurs

between the ground and the 1st story with k1r = –200 MN/m3 and k2r = 0; and Case 3: nonlinearity

occurs at both stories with k1r = k2r = –200 MN/m
3
. The damping coefficients for all three cases were

assumed to be the same with c11 = 840 N·s/m, c22 = 560 Ns/m, and c12 = c21 = –280 N·s/m. This set of

damping coefficients gives a modal damping ratio of 1% for both modes of the linear model. The

objective of these three case studies was to estimate the structural properties, including the damping

coefficients, linear and nonlinear stiffness coefficients, assuming that the displacement and the

velocity responses of the two stories were available. These responses were obtained using the Runge-

Kutta (RK) method. Throughout the analysis, the two story masses were assumed to be known. The

model was under free vibration with an initial condition of x1(0) = 0.03 cm, (0) = x2(0) = (0) = 0

for all three cases. 

5.1. Case 1: Linear model 

To examine the accuracy of the NNM method, the response time histories of the model was

calculated via the superposition of two modal responses obtained from Eqs. (11) and (13). Fig. 2 shows

the comparison of displacement and velocity responses obtained from the RK and the NNM methods. It

D

0 0   1   0

0 0   0   1
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Fig. 1 Nonlinear 2-DOF shear-beam building model
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is seen that the responses obtained from the NNM method match perfectly with those obtained from the

RK method. Next, the displacement responses at the 1st and the 2nd stories obtained from the RK

method were processed through the EMD individually which resulted in two IMF components for each

Fig. 2 Displacement and velocity responses obtained from the Runge-Kutta (RK) method and the nonlinear
normal mode (NNM) method for Case 1

Fig. 3 Comparison of the results obtained from the
IMF components of the displacement response
and the NNM method for Case 1 (1st story)

Fig. 4 Comparison of the results obtained from the
IMF components of the displacement response
and the NNM method for Case 1 (2nd story)
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of the displacement responses. The comparison between these two IMF components and the two modal

responses from the NNM method for the 1st and 2nd stories are shown in Figs. 3 and 4, respectively. It is

seen that the IMF components match with the NNM responses very well. The IMF components and the

NNM responses were then processed through the HT (Eq. (1)). Their amplitudes, phase angles and

instantaneous frequencies were found and plotted in Figs. 3 and 4. It is seen that the phase angles

obtained from the two approaches match quite well. Similarly, the amplitudes also compare quite well

for the two approaches, except at the two end zones where the EMD appears to suffer from some end

effects. Finally, the instantaneous frequencies obtained from the Hilbert transform of the NNM

responses are pretty much constant and coincide with the analytical values of 3.08 Hz and 8.06 Hz,

respectively. Those of the IMF components however fluctuate around the respective analytical values.

The fluctuation might be attributed to the residual errors associated with the sifting process as

commented by Rilling, et al. (2003). The two linear mode shapes can be obtained by comparing the

corresponding IMF components of the displacement responses at the two stories as shown in Fig. 5. It

is seen that the two mode shape ratios obtained from the IMF components are very close to the

respective analytical values except at the two end regions. Assuming the nonlinear state matrix D in the

form of Eq. (17), the damping coefficients and the linear and the nonlinear stiffness coefficients can be

obtained from Eq. (15) using the sequential quadratic programming algorithm. The identified results

are shown in Table 1. It is seen that the identified parameters are in good agreement with the assumed

Fig. 5 IMF components obtained from the displacement
responses of two stories and their amplitude
ratios for Case 1

Fig. 6 Displacement and velocity responses obtained
from the RK method and the NNM method
for Case 2

Table 1 Parametric identification for the 2-story building model (Case 1: linear model; Case 2: nonlinearity
occurs between the ground and the 1st floor; and Case 3: nonlinearity occurs at both stories) 

Property k1 (kN/m) k2 (kN/m) c11 (N·s/m) c12 (N·s/m) c22 (N·s/m) k1r (MN/m3) k2r (MN/m3)

Case 1 
Theoretical
Identified
% error 

980
973
–0.7 

980
980
0.0

840
817
–2.7

–280
–280
0.0

560
547
–2.3

0
9
– 

0
–0.5

– 

Case 2 
Theoretical
Identified
% error 

980
1000
2.0

980
968
–1.2 

840
796
–5.2 

–280
–301
7.5 

560
526
–6.1

–200
–182
–9.0

0
0.5
–

Case 3 
Theoretical 
Identified
% error 

980
965
–1.5

980
979
–0.1

840
823
–2.0

–280
–289
3.2

560
559
–0.2

–200
–216
8.0

–200
–172
–14.0
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values. The errors for the linear stiffness coefficients are less than 1% and that for the damping

coefficients are between 2-3%. 

5.2. Case 2: Nonlinearity occurs between the ground and the 1st story 

Assuming that elastic nonlinearity occurs between the ground and the 1
st
 floor, Fig. 6 shows the

comparison of displacement and velocity responses obtained from the RK and the NNM methods. It is

seen that the responses obtained from the NNM method match perfectly with those obtained from the

RK method for this nonlinear case. The responses from the RK method were processed through the

EMD to produce IMF components. Fig. 7 shows the comparison of the IMF components and the NNM

responses together with their amplitudes and phase angles for the 1st story displacement responses. It is

seen that all three quantities compare quite well. After the Hilbert transform, the instantaneous frequencies

from the IMF components and the NNM responses were obtained and plotted at the bottom of Fig. 7.

The results show that the instantaneous frequency of the 1
st
 IMF, corresponding to the higher mode,

follows a slightly increasing trend around 8 Hz with some small fluctuations. The matching between

the IMF and the NNM frequencies is excellent. As for that of the 2nd IMF, the instantaneous frequency

increases from around 2.9 Hz to around 3.1 Hz as response amplitude reduces. The result from the

NNM also shows a similar trend and good matching between the two results is again observed except at

the end regions. These results again demonstrate that the IMF components obtained from the EMD are

Fig. 7 Comparison of the results obtained from the
IMF components of the displacement response
and the NNM method for Case 2 (1st story)

Fig. 8 Comparison of the results obtained from the
IMF components of the displacement response
and the NNM method for Case 2 (2nd story)
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very close to the NNM responses. Similar results and comparisons for the 2nd story are shown in Fig. 8.

The two instantaneous mode shapes can be obtained by comparing the corresponding IMF components

of the displacement responses at the two stories as shown in Fig. 9. It is seen that the two instantaneous

mode shape ratios obtained from the IMF components are very close to the respective analytical linear

mode shape values. These results confirm that the approximation of nonlinear mode shapes by linear

ones as adopted by Eq. (14) is reasonable. Hence the nonlinear state matrix D can be obtained from Eq.

(15) through the sequential quadratic programming algorithm. The identified parameters for this case

are again summarized in Table 1. It is seen the errors for the linear stiffness coefficients are less than 2%

and that for the damping coefficients are between 5-8%. Also note that the nonlinear stiffness

coefficient k1r is identified with 9% error and the value of the other nonlinear stiffness coefficient k2r is

quite small. This suggests that the current approach can correctly locate the occurrence of stiffness

nonlinearity in the model. 

In practical applications, measurement noises are almost unavoidable. It is necessary to study whether

these measurement noises would affect the accuracy of the proposed technique. Assume that the

measured displacement and velocity responses are polluted by measurement noises and can be

expressed as follows: 

(18)

The noise vector n(t) = [n1(t) n2(t) ... n2N(t)]T consists of 2N independent zero-mean band-limited

Gaussian white noises ni(t). The intensity of noise is described by the ratio between the root mean

square of the noise and the maximum amplitude of the corresponding response (Yang, et al. 2003a,b).

In the following analysis, noises with an intensity of 5% were assumed in the measured displacement

and velocity responses. Fig. 10 shows the unpolluted and the noise-polluted 2
nd

 story displacement

z̃ t( ) z t( ) n t( )=+

Fig. 9 IMF components obtained from the displacement
responses of two stories and their amplitude
ratios for Case 2

Fig. 10 Unpolluted and noise-polluted displacement
responses and noises at the 2nd story for
Case 2
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responses as well as their Fourier spectra. Prior to decomposing the responses through the EMD

method, it was necessary to remove noises from the responses. In this study, two approaches were used

for noise removal: the Fourier-based band-pass filtering technique and the wavelet-based denoising

technique. The Fourier-based band-pass filtering technique for the EMD was proposed by Yang, et al.

(2003a), in which the measured responses were band-pass filtered with frequency bands of 25 Hz and

5-8 Hz respectively before processed through the EMD for the IMF components. The wavelet-based

denoising procedure involved the following steps: (i) apply wavelet transform to the noisy signal to

produce the noisy wavelet coefficients; (ii) select appropriate thresholds for each level to remove

noises; and (iii) inverse wavelet transform of the thresholded wavelet coefficients to obtain a denoised

signal (Donoho 1995). For this example, the Daubechies wavelet db5 was used and the decomposition

was performed up to the 4th level before applying a constant threshold. The wavelet filtered responses

were then processed through the EMD for the IMF components. Fig. 11 shows the comparison of the

two sets of IMF components for the noise-polluted 2
nd 

story displacement response processed through

the Fourier-based band-pass filtering technique and the wavelet-based denoising technique, respectively.

Also shown in the same figure are their amplitudes, phase angles and instantaneous frequencies. It is

seen that the amplitudes and phase angles obtained from the two filtering techniques are almost

indistinguishable from each other. The instantaneous frequencies however show some differences.

Those obtained from the Fourier-based band-pass filtering technique appear to be less fluctuating than

that from the wavelet-based denoising technique. The proposed technique was then applied on the IMF

components to identify the properties of the building model. The identified results are listed in Table 2.

Fig. 11 Comparison of the IMF components of the displacement response for Case 2 in the presence of
measurement noises (2nd story)
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It is seen that the identified linear stiffness and damping coefficients from the two filtering techniques

are not significantly affected by the presence of noise and are in good agreement with the assumed

values with less than 10% differences. These findings agree with those obtained from Yang, et al.

(2003a,b), who investigated the effect of noise for the identification of linear MDOF structures. For the

nonlinear properties, the Fourier-based band-pass filtering technique however results in a 91% error for

the nonlinear stiffness coefficient k1r. Huang, et al. (1998a) commented that additional intrawave

harmonic components in the Fourier analysis were needed to simulate nonlinear characteristics in a

signal. As these harmonic components were removed globally by the Fourier-based band-pass filtering,

hence the nonlinear properties of the structure could not be correctly identified. On the other hand, the

wavelet-based denoising technique identifies the nonlinear stiffness coefficient k1r to be –175 MN/m
3

which corresponds to about 12% error. The wavelet-based technique has a capability to decompose a

signal in the frequency and the temporal domains simultaneously, hence the response could be denoised

without significantly affecting its nonlinear characteristics. 

5.3. Case 3: Nonlinearity occurs at both stories

Assuming that elastic nonlinearity occurs at both stories, Fig. 12 shows the comparison of

displacement and velocity responses obtained from the RK and the NNM methods. Again, the

responses obtained from the NNM method match perfectly with those obtained from the RK method

Table 2 Parametric identification for the Case 2 building model in the presence of 5% measurement noise 

Property k1 (kN/m) k2 (kN/m) c11 (N·s/m) c12 (N·s/m) c22 (N·s/m) k1r (MN/m3) k2r (MN/m3)

Fourier-based 
Theoretical
Identified
% error 

980
970
–1.0 

980 
972 
–0.8 

840 
890 
6.0 

–280 
–284 
1.4 

560 
606 
8.2 

–200 
–19 
–91 

0
–7
– 

Wavelet-based 
Theoretical 
Identified 
% error 

980 
970 
–1.0 

980 
972 
–0.8 

840 
897 
6.8 

–280 
–285 
1.8 

560 
613 
9.5 

–200 
–175 
–12.5 

0
39
– 

Fig. 12 Displacement and velocity responses obtained from the RK method and the NNM method for Case 3
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for this nonlinear case. The responses from the RK method were then processed through the EMD to

produce IMF components. Fig. 13 shows the comparison of the IMF components and the NNM

responses together with their amplitudes and phase angles for the st story displacement responses. It is

seen that all three quantities compare quite well. After the Hilbert transform, the instantaneous

frequencies from the IMF components and the NNM responses were obtained and plotted at the bottom

of Fig. 13. The results show that the instantaneous frequencies of the 1
st
 and the 2

nd
 IMF exhibit an

increasing trend from about 7.5 Hz to 8.0 Hz and about 2.7 Hz to 3.1 Hz, respectively, as their response

amplitudes reduce. The IMF and the NNM frequencies match well in terms of their mean trends though

exhibit differences in their local fluctuations. Comparisons for the 2nd story are shown in Fig. 14 and

similar results are observed. The two instantaneous mode shapes can be obtained by comparing the

corresponding IMF components of the displacement responses at the two stories as shown in Fig. 15.

The results once again confirm that the two instantaneous mode shape ratios obtained from the IMF

components are very close to the respective analytical linear mode shape values. Hence the nonlinear

state matrix D can be obtained from Eq. (15) through the sequential quadratic programming algorithm.

The identified parameters for this case are also summarized in Table 1. It is seen the errors for the linear

stiffness coefficients are less than 2% and that for the damping coefficients are less then 4%. As for the

nonlinear stiffness coefficients, it is seen that k1r and k2r are identified with 8% and 14% error,

respectively. 

Fig. 13 Comparison of the results obtained from the
IMF components of the displacement response
and the NNM method for Case 3 (1st story)

Fig. 14 Comparison of the results obtained from the
IMF components of the displacement response
and the NNM method for Case 3 (2nd story)
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6. Conclusions

The EMD method is well-known for its ability to decompose a multi-component signal into a set of

IMFs. The method uses a sifting process in which local time-scale extrema of a signal are used together

with a spline fitting approximation for decomposition. This method provides an effective and robust

approach for decomposing nonlinear and non-stationary signals. On the other hand, the IMF components do

not automatically guarantee a well-defined physical meaning hence it is necessary to validate the IMF

components carefully prior to any further processing and interpretation. In this paper, an attempt to use

the EMD method for identifying properties of nonlinear elastic MDOF structures was explored. It was

first shown that the IMF components of the displacement and velocity responses of a nonlinear elastic

structure were numerically close to the NNM responses obtained from two-dimensional invariant

manifolds. The IMF components could then be used in the context of the NNM method to estimate the

properties of the nonlinear elastic structure. A two-degree-of-freedom shear-beam building model was

used as an example to illustrate the proposed technique. Three different levels of nonlinearity were

assumed: linear model, nonlinearity occurs between the ground and the 1
st
 story, and nonlinearity

occurs at both stories. Numerical results showed that the combined EMD and NNM method was able to

estimate the properties of the nonlinear elastic model reasonably well. The estimation errors were

mainly attributed from the residual errors associated with the sifting process in the EMD method. The

effect of measurement noise was also studied in this paper using two noise removal techniques: the

Fourier-based band-pass filtering technique and the wavelet-based denoising technique. The noise-

polluted responses were processed through the noise removal techniques prior to using the EMD

method. Results showed that the linear parameters of the building model could still be accurately

estimated for both noise removal techniques. The Fourier-based band-pass filtering technique however

failed to identify the nonlinear parameters as it removed the intrawave harmonic components that were

needed for modeling the nonlinear characteristics in the responses. The wavelet-based denoising

technique on the other hand appeared to be less affected by the presence of measurement noise and still

could estimate the nonlinear parameters fairly well. Although the numerical results were obtained using

Fig. 15 IMF components obtained from the displacement responses of two stories and their amplitude ratios
for Case 3
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a building model with only two degrees of freedom, the proposed technique can be used to identify

nonlinear properties of structures with a larger number of degrees of freedom. It however should be

noted that the increase of degrees of freedom not only requires more computational effort but also leads

to potential numerical difficulties associated with convergence of the constrained nonlinear optimization

algorithm. From the computational viewpoint, it might be beneficial to use the proposed technique

together with a nonlinear order reduction algorithm to minimize computational effort and alleviate

possible numerical difficulty. 
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