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Abstract. High-strength concrete (HSC) is becoming increasingly attractive for various construction projects 
since it offers a multitude of benefits over normal-strength concrete (NSC). Unfortunately, current design 
provisions for shear capacity of RC slender beams are generally based on data developed for NSC members 
having a compressive strength of up to 50 MPa, with limited recommendations on the use of HSC. The failure of 
HSC beams is noticeably different than that of NSC beams since the transition zone between the cement paste and 
aggregates is much denser in HSC. Thus, unlike NSC beams in which micro-cracks propagate around aggregates, 
providing significant aggregate interlock, micro-cracks in HSC are trans-granular, resulting in relatively smoother 
fracture surfaces, thereby inhibiting aggregate interlock as a shear transfer mechanism and reducing the influence 
of compressive strength on the ultimate shear strength of HSC beams. In this study, a new approach based on 
genetic algorithms (GAs) was used to predict the shear capacity of both NSC and HSC slender beams without 
shear reinforcement. Shear capacity predictions of the GA model were compared to calculations of four other 
commonly used methods: the ACI method, CSA method, Eurocode-2, and Zsutty’s equation. A parametric study 
was conducted to evaluate the ability of the GA model to capture the effect of basic shear design parameters on the 
behaviour of reinforced concrete (RC) beams under shear loading. The parameters investigated include compressive
strength, amount of longitudinal reinforcement, and beam’s depth. It was found that the GA model provided more 
accurate evaluation of shear capacity compared to that of the other common methods and better captured the 
influence of the significant shear design parameters. Therefore, the GA model offers an attractive user-friendly 
alternative to conventional shear design methods.
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1. Introduction

Slender reinforced concrete beams without web reinforcement can undergo diagonal tensile failure. 

This failure mode is sudden since it occurs almost immediately after the formation of the first diagonal 

crack (Rebeiz 2001). This problem is even more critical for high-strength concrete (HSC) which 

exhibits a more brittle failure than that of normal strength concrete (NSC). Hence, several design codes 

limit the compressive strength of concrete to less than 70 MPa. The use of a very low water/cement ratio

along with pozzolonic materials has enabled concrete to reach compressive strengths exceeding 70 MPa.

The use of HSC in construction projects has been steadily increasing since it offers a multitude of 

benefits over NSC, including reducing the cross-section of columns in high-rise reinforced concrete 
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buildings providing relatively more floor space, reducing dead loads, offering more clear space, 

reducing elastic deflections and wind sway (higher elastic modulus), and achieving higher durability.

Unlike NSC beams in which cracks propagate around aggregates providing significant aggregate 

interlock as a shear resisting mechanism and indication of imminent failure, cracks in HSC generally 

propagate through aggregates (trans-granular) providing little or no warning of failure since the 

transition zone between the cement paste and aggregates has been densified by the inclusion of 

pozzolonic materials and the use of low w/c ratio. Therefore, there is need to critically examine the 

validity of using design provisions that have traditionally been developed for NSC for developing HSC 

members. Table 1 presents some commonly used shear calculation methods:

1.1. ACI code

The ACI 318-95 code considers the shear capacity of slender reinforced concrete beams without 

stirrups as the shear stress at which diagonal cracking begins. The shear capacity can be calculated 

using one of two equations. The first one, ACI 11-3, only considers the compressive strength of 

concrete and the beam dimensions, while the second, ACI 11-6, also includes the influence of the 

longitudinal reinforcement. The compressive strength of concrete for both equations is limited to less 

than 70 MPa (Table 1).

1.2. CSA simplified method

The CSA simplified design method is similar to the ACI method except that it neglects the influence 

of the longitudinal reinforcement and the shear span to depth ratio. It does, however, include a term to 

account for the size effect for beam depths greater than 300 mm (Table 1).

Table 1 Shear design calculation methods considered in this study

Method Shear strength1

ACI 11-3

ACI 11-6

CSA (simplified)

 when d ≤ 300 mm

 when d > 300 mm

Zsutty

EC -2
where 

1. fc' = concrete compressive strength, bw = beam width, d = beam depth, ρl = percent of longitudinal 
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1.3. Zsutty’s equation

Zsutty’s equation was developed in the 1970’s using regression analysis of experimental data. It has 

proven to be relatively accurate in predicting the shear strength of NSC beams. Hence, this equation has 

become widely used in the literature. The equation takes into account the compressive strength of 

concrete, longitudinal reinforcement ratio, and shear span to depth ratio (Table 1).

1.4. Eurocode-2 method

The European code calculates the shear capacity of reinforced concrete beams without web reinforcement

accounting for the influence of the concrete compressive strength, longitudinal reinforcement ratio, and 

the size effect. Its main equation is also shown in Table 1.

1.5. Cope and research significance

Extrapolations of current shear design provisions for NSC to calculate the shear capacity of HSC 

beams may result in unreliable results since such provisions were generally based on experimental 

data obtained on beams made of NSC. Recently, there have been several attempts to develop shear 

design equations which perform better than current standard methods and predict the shear capacity 

of NSC and HSC beams more accurately. For instance, some researchers have used artificial neural 

networks (ANNs) to predict the shear strength of reinforced concrete beams (Oreta 2004, Mansour, 

et al. 2004, Cladera and Mari 2004, El Chabib, et al. 2005). ANNs are modeled on artificial 

intelligence and are composed of interconnected processing elements that have the ability to be 

trained to map between a given input and the desired output. Although ANN can accurately predict 

the shear capacity of beams, they do not offer simple design equations that can be used in practice. 

Predicting the shear strength of reinforced concrete beams using nonlinear finite element analysis has 

also been attempted and it was found to be able to accurately predict the lower bound strength of RC 

beams (Bhatt and Kader 1998).

In this study, a new approach based on genetic algorithms (GAs) was used to predict the shear 

capacity of both NSC and HSC slender beams without shear reinforcement. Genetic algorithms are 

modeled on the basis of Darwinian evolution and natural selection. They have the ability to traverse 

highly nonlinear and noisy search spaces and reach global maxima or minima without getting 

trapped at local extreme values such as several other search and optimization methods (Goldberg 

1989). This makes GAs widely applicable to many highly constrained problems in various civil 

engineering applications.

Genetic algorithms have been used for the mixture proportioning of high-performance concrete (Lim 

and Yoon 2004), design of reinforced concrete (RC) beams (Coello, et al. 1997), and the detailed 

design of reinforced concrete members for multi-storey buildings (Koumousis and Arsenis 1998). They 

have also been used in calibrating models for river flow simulation and forecast (Wang 1997). A 

conceptual rainfall-runoff model was developed using a genetic algorithm to solve for various 

parameters. It was shown that GAs are a useful search technique in calibrating models with a high 

number of parameters, and are consistently capable to find an objective function value very close to the 

global minimum (Wang 1997).

Since the shear capacity of slender RC beams is influenced by various complex parameters, design 

codes do not agree on how to quantify the effect of each parameter, while experimental data is scattered 
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and at times conflicting. Thus, genetic algorithms may offer a promising effective tool to predict the 

shear capacity of RC beams. In this study, a genetic algorithm is developed to create an equation that 

can accurately predict the shear strength of normal and high-strength reinforced concrete beams 

without stirrups. A parametric study is then carried out to determine the ability of the model to capture 

the effect of basic shear design parameters on the behaviour of normal and high-strength reinforced 

concrete slender beams under shear loads. Finally, two GA models are developed in order to design 

slender beams for shear loading given: 1) the desired ultimate shear capacity, and 2) the beam’s 

dimensions (width and depth).

2. Genetic algorithms

Genetic algorithms are a powerful and broadly applicable stochastic search and optimization 

technique. In the past, much attention has been given to GAs as an optimization tool, but they are also 

widely applicable in developing models to fit data. GAs are search procedures based on the 

mechanisms of natural selection and natural genetics. They are different from standard optimization 

and search procedures in the following essential ways (Goldberg 1989):

• GAs work with a coded set of variables, not the variables themselves

• GAs search from a population of solutions, not a single solution

• GAs use payoff information (fitness function) not derivatives or other auxiliary knowledge 

• GAs use probabilistic transition rules, not deterministic rules

Genetic algorithms work with a coded set of randomly generated solutions called population. Each 

individual in the population is called a chromosome, and represents a potential solution to the 

problem at hand. A chromosome is a string of symbols, which represent the genes (features) of each 

chromosome; it is usually, but not necessarily, a binary bit string consisting of ones and zeros (e.g. 

1010011011). The chromosomes evolve through successive iterations, called generations. During 

each generation, the chromosomes are evaluated using some measure of fitness. The potential 

solutions to the problem at hand are then ranked according to their fitness and subsequently undergo 

selection, recombination and mutation. A brief description of selection, recombination and mutation 

is provided below, while more thorough explanations can be found in the literature (Michalewicz 

1992, Cen and Cheng 1997). 

Fig. 1 Roulette wheel selection

Fig. 2 Stochastic universal sampling
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2.1. Selection

The chromosomes can be selected using a variety of different selection methods such as the roulette 

wheel selection (Fig. 1), stochastic universal sampling (Fig. 2), or tournament selection. The selection 

process provides the driving force in a genetic algorithm, directing the search towards promising 

regions in the search space (Michalewica 1992). The intensity of the driving force depends on the 

selection pressure.

For roulette wheel selection the individuals in the population are mapped continuously around a disc 

or on a line whereby each individual segment is equal in size to its fitness. A random number is generated

and the individual whose segment spans the random number is selected. This process is continued until 

the desired number of individuals is obtained. In the case of stochastic universal sampling the 

individuals are mapped continuously on a line with each individual segment equal in size to its fitness. 

Equally spaced pointers are placed over the line with their number being equal to that of the desired 

individuals. In tournament selection a number of individuals are randomly selected from the population 

and the best individual is selected from the group to be the parent. This process is repeated until the 

desired number of individuals has been selected. The size of the tournament can range from 2 to the 

number of individuals present in the population.

2.2. Recombination

Recombination, also known as crossover, is preformed on pairs of selected chromosomes in the form 

of single point crossover (Fig. 3), two-point crossover, or uniform crossover in the case of binary values. 

The crossover operator combines some features of two parent chromosomes to form two new offspring. 

A higher crossover rate allows exploration in the large solution space and reduces the chances of settling 

for a false optimum. However, if this rate is too high, it results in the wastage of a lot of computation time 

Fig. 3 Single point crossover

Fig. 4 Area of possible offspring using intermediate recombination
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in exploring unpromising regions of the solution space. For real values, the recombination methods are 

slightly more complex but are based on the same principles. These include intermediate recombination 

(Fig. 4), line recombination (Fig. 5), and extended line recombination (Fig. 6).

In intermediate recombination, the offspring are chosen somewhere around and between the variable 

values of the parents. The interval for selection is [-d, 1+d] where d = 0.25, which ensures that the 

variable area of the offspring does not shrink over the generations. In line recombination, the offspring 

are chosen at any point on the line defined by the parents. Extended line recombination is not restricted 

to the line between the parents and a small area outside it. Rather, the parents just define the line where 

possible offspring may be created. The area for possible offspring is defined by the domain of the 

variables, although the probability of creating offspring near the parents is higher. The offspring are 

more often created in the direction from the worse to the better parent.

2.3. Mutation

Mutation is a secondary genetic operator, which randomly changes the genes (features) of a 

chromosome. This allows genes that were not present in the initial population to help guide the search. 

Fig. 5 Possible values of offspring after extended line recombination

Fig. 6 Possible values of offspring after extended line recombination according to parent positions and variable
boundaries
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If the mutation rate is too low, many genes that would have been useful are never tried out. But if it is 

too high, there will be much random perturbation, and the offspring will start losing their resemblance 

to the parents (Michalewica 1992).

Although GAs are randomized, they do not simply walk the solution space in hopes of finding the 

global optimum. In fact, they efficiently incorporate information from previous stages to create new 

search points in the design space resulting in improved performance (Koumousis and Arsenis 1998). 

GAs are robust in that they can rapidly transverse a complex multi-dimensional search space to obtain a 

solution (Goldberg 1989). Such a search requires balancing two apparently conflicting objectives: 

exploiting the best solution and exploring the search space. 

3. Genetic algorithm model for shear capacity of RC beams

A total of 263 NSC and 117 HSC slender beams collected from the literature were used in this study, 

among which 122 NSC and 45 HSC slender beams were used to develop and train the model. The 

number of beams used for training the model was increased until it was determined that any additional 

beams did not significantly improve the GA solution. The remaining beams were used to test and verify 

the GA model. A commercial genetic algorithms program was used for determining the unknown 

coefficients for the model equation. 

To build a genetic algorithm, the form of the empirical equation defining the problem at hand must 

first be developed. The input parameters considered in this study are the beam depth (d), beam width 

(bw), the shear span-to-depth ratio (a/d), the percent of longitudinal reinforcement ( pl), and the concrete 

compressive strength ( fc'). The ranges of input parameters for data used in the study are presented in 

Table 2. The final form of the shear strength equation used in the model is as follows:

(1)

where α, β, q, r, s: represent the unknown coefficients, and dv = 0.9d is the effective beam depth which 

accounts for the lever arm between the resultant tensile and compressive forces at a beam section.
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Table 2 Range of experimental database parameters

Parameter Minimum Maximum Average

d (mm) 40.60 1097.281 568.94

bw (mm) 38.10 400.00 219.10

pl (%) 10.48 115.04 112.76

fc'  (MPa) 10.51 99.0 54.8

a /d 12.40 116.05 114.23

Vfail (kN) 12.69 368.10 185.40

Table 3 Range for model coefficients

Bound α β q r s 

Lower 0 0 0 0 -1

Upper 10 400 1 1 1
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An objective function was constructed as a measure of how well the model predicted output agrees 

with the experimentally measured output, and then a search was conducted to find the coefficients that 

minimize this function. The ranges of the coefficients in which the search was conducted are shown in 

Table 3. The selection of the GA settings requires careful consideration since it is problem-dependent 

and tends to ultimately control the performance of the genetic algorithm. Although some rules of thumb 

do exist, such as high levels of mutation tend to disorganize the convergence on the solution; it is the 

responsibility of the experimenter to decide on appropriate values for the selective pressure, recombination

rate, and mutation rate. The appropriate selection of these parameters along with the population size is 

essential for the successful performance of a genetic algorithm. The final settings used in the present 

genetic algorithm are presented in Table 4. 

4. Results and discussion

Once the appropriate settings of the GA were established, the genetic algorithm model was run five 

times. The results from the five trials along with the corresponding objective function value (OBJ) and 

generation in which the results were obtained are presented in Table 5. The final optimized equation 

accounting for both normal and high-strength reinforced concrete slender beams without stirrups is:

(2)

The calculation of the shear capacity of reinforced concrete slender beams (both NSC and HSC) 

using the GA model along with that of the ACI equation, the CSA simplified method, the Eurocode-2, 

Vc 0.35 1
362
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Table 5 Results of model using genetic algorithm

Run α β q r s OBJ Generation

1 0.3542 361.80 0.4043 0.1831 -0.3380 1652.4 9716

2 0.3867 349.41 0.4098 0.1708 -0.3712 1653.9 9429

3 0.3534 358.32 0.4045 0.1851 -0.3405 1652.4 8354

4 0.3629 372.47 0.4054 0.1758 -0.3409 1652.4 8451

5 0.3847 349.33 0.4099 0.1717 -0.3693 1653.8 9652

Table 4 Genetic algorithm settings

Number of Individuals 70

Variable Format Real values

Maximum Generations 10000

Selection Method Roulette wheel selection

Selection Pressure 1.7

Recombination Name Extended line

Recombination Rate 0.74

Mutation Rate 0.01
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Fig. 7 Measured versus predicated shear capacity for normal strength concrete slender beams
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Fig. 8 Measured versus predicated shear capacity for high-strength concrete slender beams
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and Zsutty’s equation is presented in Figs. 7 and 8, respectively versus the experimentally measured 

shear capacity values. It can be observed that the data points predicted by the GA model are located on 

or within a small range around the equity line for both NSC and HSC beams (Figs. 7e and 8e), whereas 

those calculated by the other methods lie over a much wider range away from the equity line. The ACI 

(11-6) and CSA simplified methods tended to underestimate the shear capacity of normal and high-

strength reinforced concrete slender beams for shear capacity values of up to 200 kN, while the EC-2 

and Zsutty’s equation provided relatively more accurate results.

For beams exceeding 200 kN in shear capacity, only the GA model provided accurate predictions, 

while the remaining four methods demonstrated poor results particularly for HSC beams. The ACI 

(11-6) code and Zsutty’s equation in particular tended to overestimate the shear capacity for normal 

strength concrete beams in this high shear capacity range. All methods other than the genetic algorithm 

model overestimated the shear capacity of high-strength concrete beams, likely because they could not 

capture the effect that smooth fracture surfaces due to trans-granular failures have on reducing the 

aggregate interlock shear resisting mechanism.

The ability of each of the shear design/calculation methods considered in this study to accurately 

estimate the shear capacity of slender beams was measured using the average absolute error (AAE) as 

per Eq. (3) along with the ratio of measured to predicted shear strength (Vm/Vp).

(3)

where Vm and Vp are the measured and predicted shear capacity, respectively. The average, standard

deviation (STDV), and coefficient of variation (COV) of measured to predicted shear strength ratio and 

average absolute error (AAE) for all shear design/calculation methods investigated are presented in 

Table 6. The results indicate that the GA was successful in learning the relationship between the 

different shear design parameters and the shear strength of reinforced concrete slender beams. The GA 

model outperformed all other methods in predicting the shear strength of both NSC and HSC beams. 

EC-2 had satisfactory performance for both NSC and HSC beams but was un-conservative for high 

shear capacity HSC beams. Zsutty’s equation achieved satisfactory performance for both NSC and 

HSC beams but had inadequate results over the high shear capacity range. ACI 11-6 and CSA both 

underestimated the shear capacity of NSC and HSC slender beam without stirrups having low shear 

capacity, which is expected since they are design tools with reduction factors. However, they achieved 

highly un-conservative calculations for high shear capacity HSC beams. In all cases the AAE and COV

AAE
Vm Vp–

Vm

--------------------- 100×=

Table 6 Performance of shear calculation methods

Prediction 
method

Normal strength concrete (NSC) High strength concrete (HSC)

AAE
(%)

Vmeasured/Vpredicted AAE
(%)

Vmeasured/Vpredicted

Average STDV COV Average STDV COV

GA 10.5 0.99 0.15 14.59 14.6 1.09 0.25 25.91

ACI 11-6 24.7 1.30 0.31 23.64 34.0 1.24 0.47 38.02

CSA 21.8 1.22 0.30 24.42 28.0 1.12 0.42 37.11

EC-2 13.2 1.08 0.20 18.74 21.0 1.07 0.35 32.54

Zsutty 14.2 1.04 0.20 19.44 25.5 1.02 0.31 30.25
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were higher for HSC than NSC, therefore reinforcing the idea of a loss in ultimate shear capacity of 

HSC beams, due to the effect of smooth fracture surfaces and the inability of current design provisions 

to capture this phenomenon. 

5. Parametric study

Sets of new beams were created from randomly selected beams in the database to study the influence 

of various shear design parameters on the shear strength of reinforced concrete slender beams without 

stirrups. The findings of this parametric study are described below.

5.1. Size effect

There is substantial evidence (Zararis and Papadakis 2001, Collins and Kuchma 1999, Kani 1967) 

that the depth of slender RC beams has a significant influence on their shear capacity. It has been shown 

that as the beam’s depth increases, the shear stress at failure decreases. To investigate this size effect on 

the shear capacity of reinforced concrete slender beams without stirrups, a set of beams was generated 

from a beam randomly selected from the database, keeping all design parameters constant except for 

the beam’s depth, which was varied between 219 and 466 mm. It can be noted from Fig. 9 that the GA 

model, EC-2 and to a lower extent the CSA simplified method were able to capture the effect of the 

beam depth on its shear strength. However, both ACI (11-6) and Zsutty’s equation ignore the effect of 

the beam depth on the ultimate shear strength. Experimental results for two beams with comparable 

design parameters to the randomly selected beam were used for comparison. The GA and the EC-2 

Code had results closest to the experimental values.

Fig. 9 Effect of d on shear strength of RC beams without shear reinforcement
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5.2. Influence of concrete compressive strength

To examine the influence of concrete compressive strength on the shear capacity of slender RC 

beams without stirrups, a set of new beams was also generated from one beam randomly selected from 

the database. The design parameters of the original beam were maintained constant, except that the 

compressive strength varied between 26 and 82 MPa. Fig. 10 shows the influence of concrete compressive

strength on the shear capacity of RC slender beams as predicted by the GA model compared to 

calculations of the other methods used in the study. It can be seen from Fig. 10 that for GA predictions, 

the rate of increase of shear strength up to a compressive strength of 70 MPa is greater than that beyond 

70 MPa, indicating that the GA has captured the effect of loss in shear friction provided by aggregate 

interlock at high compressive strength. It can also be observed in Fig. 10 that shear capacity calculations 

of the GA model were closer to experimentally measured data, followed by the EC-2 code. The rate of 

increase in shear capacity versus compressive strength for HSC beams is 60% of that for NSC beams. 

The CSA simplified method ignores this phenomenon, while the ACI code recognizes the loss in shear 

friction but makes no attempt to capture it accurately in the design equation and maintains the shear 

capacity constant beyond  fc' of 70 MPa. Since 33-50% of the ultimate shear capacity of slender concrete 

beams without stirrups is provided by aggregate interlock along the fracture surface (Rebeiz 2001), 

which tends to be smoother for HSC than NSC, it is expected that the rate of increase in shear capacity 

will decrease with concrete compressive strength above 70 MPa (Kim and Park 1996, Taylor 1970).

5.3. Influence of longitudinal steel reinforcement

To evaluate the influence of the longitudinal steel reinforcement, ρl on the ultimate shear capacity of 

reinforced concrete slender beams without shear reinforcement, two new sets of beams were generated. 

The first set representing NSC shares the same design parameters, except that the longitudinal 

Fig. 10 Effect of  fc'  on shear strength of RC beams without shear reinforcement
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reinforcement ratio was varied between 1.13% and 3.53%. The beams in the second set represent HSC 

and share the same design parameters, but the longitudinal reinforcement ratio also ranged from 1.13% 

to 3.53%. Fig. 11 illustrates the effect of the longitudinal reinforcement ratio on the shear strength of 

NSC slender beams. It can be seen that the ACI (11-6) code underestimates the influence of the 

longitudinal reinforcement, while the CSA simplified method ignore its contribution. Fig. 11 shows the 

ability of the GA model to accurately capture the influence of the longitudinal reinforcement on the 

shear capacity of NSC beams. Zsutty’s equation also captures the effect of longitudinal reinforcement 

Fig. 11 Effect of ρl on shear strength of NSC beams without shear reinforcement

Fig. 12 Effect of ρl on shear strength of HSC beams without shear reinforcement
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fairly accurately although it tends to underestimate its contribution for high tensile steel ratios. Similarly, 

EC-2 can accurately evaluate the shear capacity of NSC beams with tensile steel ratios less than 2.0%. 

Unfortunately the equation limits the tensile steel ratio to 2.0% and hence it fails to capture its influence 

at higher reinforcement levels.

Fig. 12 shows the influence of the longitudinal reinforcement ratio on the shear strength of HSC 

slender beams. It can be noted that all methods except the GA model tended to overestimate the effect 

of the tensile steel ratio on the shear capacity of RC slender beams having a reinforcement ratio below 

2%. Above 2%, with the exception of Zsutty’s equation, which overestimated this effect, all methods 

provided conservative results. The GA model provided the best shear capacity predictions amongst all 

other methods for slender HSC beams at all reinforcement ratios. Experimental results for three NSC 

and two HSC beams with comparable properties to the randomly selected beams were used for 

comparison and it can be seen that results of the GA model followed the experimental trend the closest 

in both cases. 

6. Optimization of beam design using genetic algorithms

The ability to accurately predict the shear strength of RC beams is important, but the capability to 

design beams to meet specific design criteria in a rapid, easy, and accurate manner is even more critical. 

A second genetic algorithm program was developed in this study in order to design RC slender beams 

based on the new shear strength equation optimized in the first part of this paper. The genetic algorithm 

settings used for the optimization are presented in Table 7. The first design model requires only to input 

Table 7 Genetic algorithm settings for beam optimization

Number of Individuals 75

Variable Format Real values

Maximum Generations 500

Selection Method Stochastic universal sampling

Selection Pressure 1.7

Recombination Name Extended line

Recombination Rate 0.54

Mutation Rate 0.001

Table 8 Results of beam optimization model 1

GA Optimization GA Optimization GA Optimization

1 2 3 1 2 3 1 2 3

Beam D-3 D1 78

d (mm) 359 295 376 499 139 138 167 81 465 449 393 480

bw (mm) 229 298 382 288 60 88 42 103 200 256 234 128

p
l
 

(%) 4.32 3.56 1.44 1.39 1.35 0.54 4.08 1.46 1.35 0.88 1.64 2.98

fc' (MPa) 36.1 33.2 17.8 21.5 34.0 48.9 30.4 37.7 24.9 19.8 19.2 47.8

a/d 3.5 3 3

Shear (kN) 129 129 129 129 11.6 11.6 11.6 11.6 87.3 87.3 87.3 87.3
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the desired ultimate shear capacity and the GA is responsible for specifying the appropriate beam 

depth, width, percent of longitudinal reinforcement and the compressive strength of concrete to meet 

the design intent. Three beams were randomly selected from the database to test the ability of the GA to 

design RC slender beams without stirrups. The results from the optimization are presented in Table 8. It 

can be seen that the GA was able to accurately predict the design parameters and was ultimately able to 

provide multiple solutions that satisfied the design criteria.

The second design model requires inputting the desired ultimate shear capacity along with the beam 

dimensions, and the GA is responsible for determining an appropriate concrete compressive strength 

and percent of longitudinal reinforcement. The same three beams used for the first model were used in 

the second model and the results are presented in Table 9. Results from the optimization of the second 

model were in better agreement with the randomly selected experimental beam than the first model 

since more variables of the beam have been fixed.

It should also be noted that the GA model can carry out multi-objective optimization so that it designs 

optimal beams to meet specific design criteria, but also optimizes the design so that it is the most 

economical beam to meet the shear capacity requirements. Since the GA model is a predictive tool with 

optimization capacity, its predictions can be multiplied by a reduction factor to achieve reasonably 

conservative results for design purposes. Other existing methods, even though used for design, can 

have highly un-conservative predictions of shear capacity as shown earlier in the paper. 

7. Conclusions

This study demonstrates the advantages of using genetic algorithms to develop models for predicting 

the shear strength of reinforced concrete beams. A GA model was trained using 122 NSC and 45 HSC 

beams from the literature. A shear design equation was developed and proved to be more accurate in 

estimating the shear strength of both normal and high-strength reinforced concrete slender beams than 

the ACI 11-6, CSA simplified method, Eurocode-2, and Zsutty’s equation. A parametric study on the 

sensitivity of each of the methods to various shear design parameters was carried out and the following 

conclusions can be made:

• The GA model better captured the beam size effect on the shear capacity of reinforced concrete 

slender beams without shear reinforcement compared to all other methods considered in this study.

• The GA model predicted that the rate of increase in shear strength decreases with increasing 

Table 9 Results of beam optimization model 2

GA Optimization GA Optimization GA Optimization

1 2 3 1 2 3 1 2 3

Beam D-3 D1 78

d (mm) 359 139 465

bw (mm) 229 60 200

p
l 
(%) 4.32 4.21 4.01 4.28 1.35 1.43 2.00 1.87 1.35 1.34 1.28 1.17

fc' (MPa) 36.1 38.3 41.1 37.5 34 59.5 36.6 45.6 24.9 26.3 28.1 32.0

a/d 3.5 3 3

Shear (kN) 129 129 129 129 11.6 11.6 11.6 11.6 87.3 87.3 87.3 87.3



Modeling shear capacity of RC slender beams without stirrups using genetic algorithms 67
concrete compressive strength above 70 MPa, which is consistent with experimental data in 

the literature.

• The amount of longitudinal reinforcement influences the ultimate shear capacity of RC slender beams. 

The GA model captured such an influence for both NSC and HSC beams. Both EC-2 and Zsutty’s 

method captured this influence but only over a limited range. Conversely, the ACI (11-6) underestimates

this influence, while the CSA simplified method simply ignores its contribution. For low tensile 

reinforcement ratios, both the ACI code (11-6) and the CSA simplified method overestimate the 

impact of the reinforcement particularly for HSC beams.

Two optimization models were created and the GAs proved reasonably accurate in predicting the 

design parameters for various beams under stipulated design criteria. Thus, GAs can be used to 

optimize structural members meeting specific criteria. They can also be used to optimize the most 

economic shear design, and could be used for design purposes provided that a reduction factor is added 

for safer design.
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