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Abstract.

In this project, buckling response of polymeric plates reinforced with carbon nanotubes (CNTs) and coated by

magnetostrictive layer was studied. The equivalent nanocomposite properties are determined using Mori-Tanak model
considering agglomeration effects. The structure is simulated with first order shear deformation theory (FSDT). Employing
strains-displacements, stress-strain, the energy equations of the structure are obtained. Using Hamilton's principal, the governing
equations are derived considering the coupling of mechanical displacements and magnetic field. Using Navier method, the
buckling load of the sandwich structure is obtained. The influences of volume percent and agglomeration of CNTs, geometrical
parameters and magnetic field on the buckling load are investigated. Results show that with increasing volume percent of CNTSs,
the buckling load increases. In addition, applying magnetic field, increases the frequency of the sandwich structure.
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1. Introduction

The application of sandwich structures in many
industries is rising due to their excellent properties such as
high strength, low weight and resistance to fatigue. One of
the special types of these structures is truncated conical
shell with application in aerospace, marine and automobile
industries. Due to their practical interest, sandwich
structures have been the subject of numerous works.

In the field of sandwich structures, Shariyat (2009)
studied the dynamic buckling of piezo laminated plates
under thermo-electro-mechanical loads. Pandit et al. (2010)
proposed a finite element model for bending and vibration
analysis of laminated sandwich plates. The analysis of
bending, buckling and free vibration response of laminated
plate was presented by Ferreira et al. (2011). Malekzadeh
and Shojaee (2013) investigated the buckling behavior of
quadrilateral laminated plates reinforced by carbon
nanotubes (CNTs). Malekzadeh and Zarei (2014) performed
free vibration analysis of quadrilateral laminated CNTs
reinforced plates based on FSDT. Marjanovi¢ and
Vuksanovi¢ (2014) carried out free vibration and buckling
analysis of laminated composite and sandwich plates. Li et
al. (2015) researched the dynamic buckling behavior of
laminated composite plates under an axial step load. Li et
al. (2016) performed the analysis of the buckling and vibro-
acoustic response of the laminated composite plates in
thermal environment. The post-buckling analysis of bi-
axially compressed laminated nanocomposite plates was
presented by Zhang et al. (2016). Large amplitude vibration
problem of laminated composite spherical shell panel under
combined temperature and moisture environment was
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analyzed by Mahapatra et al. (2016a). The nonlinear free
vibration behaviour of laminated composite spherical shell
panel under the elevated hygrothermal environment was
investigated by Mahapatra and Panda (2016b). Mahapatra et
al. (2016c¢) studied the geometrically nonlinear transverse
bending behavior of the shear deformable laminated
composite spherical shell panel under hygro-thermo-
mechanical loading. Nonlinear free vibration behavior of
laminated composite curved panel under hygrothermal
environment was investigated by Mahapatra et al. (2016d).
Nonlinear flexural behaviour of Ilaminated composite
doubly curved shell panel was investigated by Mahapatra et
al. (2016e) under hygro-thermo-mechanical loading by
considering the degraded composite material properties
through a micromechanical model. Moradi-Dastjerdi and
Malek-Mohammadi (2016) studied bi-axial behavior of
nanocomposite sandwich plates reinforced by CNTs Fan
and Wang (2016) carried out nonlinear bending and post-
buckling analysis of hybrid laminated plates containing
CNTs reinforced composite layers in thermal environments.
Yu et al. (2016) studied free vibration and buckling
response of laminated composite plates with cutouts. Free
vibration analysis of anti-symmetric laminated composite
and soft core sandwich plates was studied by Sayyad and
Ghugal (2017). Zhao et al. (2017) proposed a finite element
formulation on basis of piecewise shear deformation theory
to assess vibrational behavior of laminated composite and
sandwich plates in thermal environments. Pramod et al.
(2017) appraised static and free vibration response of cross-
ply laminated plates with simply supported boundary
conditions. Lei et al. (2017) presented a geometrically
nonlinear analysis of CNTs reinforced laminated composite
plate using meshless method. Zhang and Selim (2017)
focused on free vibration analysis of CNTSs reinforced thick
laminated composite plate according to Reddy’s higher
order shear deformation theory. Hajmohammad et al.
(2017) investigated dynamic buckling of laminated
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viscoelastic sandwich plate with CNT-reinforced layers and
viscoelastic piezoelectric layers at the top and bottom face
sheets. Wave propagation in a piezoelectric sandwich plate
with viscoelastic nanocomposite core subjected to a
magnetic field and viscoelastic piezoelectric layers
subjected to an electric field was studied by Kolahchi et al.
(2017a). In another work by Kolahchi et al. (2017b)
Optimization of embedded piezoelectric sandwich
nanocomposite plates for dynamic buckling analysis was
presented based on Grey Wolf algorithm. The flexural
behaviour of the laminated composite plate embedded with
two different smart materials (piezoelectric and
magnetostrictive) and subsequent deflection suppression
were investigated by Dutta et al. (2017). Shokravi and Jalili
(2017) presented nonlocal temperature-dependent dynamic
buckling analysis of embedded sandwich micro plates
reinforced by functionally graded carbon nanotubes (FG-
CNTs). Suman et al. (2017) studied static bending and
strength behaviour of the laminated composite plate
embedded with magnetostrictive (MS) material numerically
using commercial finite element tool. Vibration and
buckling analysis of laminated sandwich truncated conical
shells with compressible or incompressible core were
presented by Nasihatgozar and Khalili (2018). Shokravi
(2018) studied dynamic buckling of the smart subjected to
blast load subjected to electric field.

To the best of authors’ knowledge, this paper is the first
to investigate the buckling analysis of the nanocomposite
plates coated by magnetostrictive layer. The mathematical
model is developed on the basis of the FSDT and using
Hamilton’s principle. The Navier method is applied to
obtain the buckling load of the system. The effects of
various parameters like geometric constants, volume
fraction and agglomeration of CNTs and magnetic field on
the buckling load of the structure are examined.

2. Formulation

Fig. 1 shows a nanocomposite plate reinforced by
agglomerated CNTs coated by magnetostrictive layer. The
length and width of the struature are a and b, respectively
and thickness of the nanocomposite and magnetostrictive
, respectively.

layers are indicated by h and h_

Fig. 1 A nanocomposite plate reinforced by agglomerated

CNTs coated by magnetostrictive layer

2.1 FSDT

There are many new theories for modeling of different
structures. Some of the new theories have been used by
Tounsi and co-authors (Bessaim 2013, Bouderba 2013,
Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi,
2015, Bourada 2015, Bousahla et al. 2016a ,b, Beldjelili
2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia
2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina,
2017, Menasria 2017, Chikh 2017).

Based on FSDT, the displacement fields can be written
as (Reddy 2002)

U XY,z t)=uy(x,y,t)+zy(x,y,t),
V (X,Y,Z,t) =v,(X,y,t)+z4(X,y,t), (1)
W (X,y,z,t) =w,(x,y,t),

where uy, Vo and wy are mid-plane displacements and y as

well as ¢ indicate the rotations. The strain relations of the
structure are
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2.2 Basic relations

The stress relations for the nanocomposite and
magnetostrictive layers can be expressed as

%) (Qu Qp Qs 0 0 0 &
O-W Q21 sz st 0 00 gyy
u| |Qu Qu Qw 0 00 |z, @)
T 0 0 0Q, 0 0 |27
7, 0 0 0 0 Qg 0|2,
7, 0 0 0 0 0 Qg2
O Cll ClZ 0 00 9:31 0
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Txy O 0 Ces 0 0 536 hz (4)
TYZ CM 0 8}/1
Tx 0 C55 ’
where Q; and C; are stiffness constants of the

nanocomposite and magnetostrictive layers, respectively;
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e_ij are magnetic constants and h, = 8_‘1’ is the magnetic

OX
field. Mechanical analysis of nanostructures has been
reported by many researchers (Zemri 2015, Larbi Chaht
2015, Belkorissat 2015, Ahouel 2016, Bounouara 2016,
Bouafia 2017, Besseghier 2017, Bellifa 2017, Mouffoki
2017, Khetir 2017). The stiffness constants of the

nanocomposite layer (Qij ) can be obtained based on Mori-
Tanaka model as (Shi and Feng 2004)

E :&, (5)
3K +G

poK-2G ©)
6K +2G

where K and G are bulk and shear modulus which can be
defined as
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where & and ¢ are agglomeration parameters and
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2.3 Governing equations

Utilizing energy method, the potential energy can be
given as

U =1j[Nxxa—“+M Won &
2 OX

XXB_X yyg
+M %+NXZ(W+%)+
OX

yy ay
22
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where the stress resultants are
N u O-xx
XX 2
Ny = _[ Oy (02, (23)
h
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¢(X!ylt)=l//y05in(

m X nry
" jcos( 5 j (36)

Substituting Egs. (32)-(36) into Egs. (27)-(31) yields

Ki K Ky Ky K ] Uo 0
Ko Ky Ky Ky Kyl Vo 0
Ko Ky Ky Ky Kag | W, =10 (37)
K Ki K Ko Kes ||| o 0
Ksp Ksp Ky Ky Ky Yo 0

Setting the determinate of the Eq. (37) yields the buckling
load.

4. Numerical results

In this section, a polymeric plate is assumed with
Young's modulus of E_=0.8GPa Which is reinforced by

CNTs with Young's modulus of E, =1TPa and coated by

magnetostrictive  layer with  Young's modulus of
E =20GPa. The length to width of the sandwich

magnet
structureis a/b =2

At the first, the results are validated with neglecting the

CNTs and magnetostrictive layer. As shown in Table 1, the
buckling load a plate with different solution methods is
presented. It can be found that the results of this work are
the same as those reported by Guo et al. (2015).
The second validation is about buckling of plates reinforced
by CNTs without magnetostrictive plate. The dimesionless
buckling load of the simply supported nanocomposite plate
is illustrated in Table 2. It is observed that the results are
math with those reported by Lei et al. (2013).

Table 1 Validation of this work with Guo et al. (2015)

Solution Buckling load
Exact (Guo et al. 2015) 4.000
Finite element method (FEM) 4.011
(Guo et al. 2015)
Boundary element method (BEM) 4.041
(Guo et al. 2015)
Dual reciprocity method (DRM) 3.999
(Guo et al. (2015))
Spline finite strip method (SFSM) 4.000
(Guo et al. 2015)
Spline finite strip method (SFSM) 4.000
(Guo et al. 2015)
Radial point interpolation method (RPIM) 4.017
(Guo et al. 2015)
Differential quadrature element method 3.997
(DQEM) (Guo et al. 2015)
Discrete singular convolution (DSC) 4.011
(Guo et al. 2015)
Present 4.006

Table 2 Validation of this work with Lei et al. (2013)

Mode Lei et al. (2013) Present
1 14.1073 14.1068
2 23.3149 23.3143
3 25.6506 25.6501
4 27.0498 27.0491

ensionless deflection, W (mm)

0 o
v v Dimensionless length, x/L
Dimensionless width, y/b

ionless deflection, W (mm)

Fig. 2 (a) axial and circumferential first modes (b) axial
first and circumferential second modes (c)
circumferential first and axial second modes (d) axial
and circumferential second modes
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Fig. 3 The effect of CNT volume percent on the

dimensionless buckling load versus length of the sandwich
structure

Figs. 3 and 4 illustrate the effects of CNT volume percent
and agglomeration on the dimensionless buckling load
versus length of the structure. It can be found that with
enhancing the sandwich structure length, the dimensionless
buckling is decreased due to reduction in the stiffness of the
structure. With increasing the CNT volume percent, the
dimensionless buckling load is increased. In addition,
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considering agglomeration of CNTs leads to reduce the
dimensionless buckling load. It is due to this fact that with
increasing the CNTs volume percent, the stiffness is
increased and with assuming agglomeration, the stability
and rigidity of the sandwich structure decreases.

The effect of magnetic field on the dimensionless buckling
load versus length of the sandwich structure is shown in
Fig. 5. It can be observed that with increasing the magnetic
field, the dimensionless buckling load is improved. It is
since with increasing the magnetic field, the stiffness of the
structure increases.

Figs. 6 and 7 demonstrate the effect of nanocomposite and
magnetostrictive layers thickness on the dimensionless
buckling load versus length of the sandwich structure,
respectively. It is found that with enhancing the
nanocomposite and magnetostrictive layers thickness, the
dimensionless buckling load is increases. It is because with
enhancing the nanocomposite and magnetostrictive layers
thickness, the stiffness of the structure increases.
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8 = ~ > =
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Fig. 4 The effect of CNT agglomeration on the
dimensionless buckling load versus length of the sandwich
structure

0.16 T T T T T T T T T

—6—h,=0

—— hz=1 e8 A/Im
h,=2e8 A/m

—3— hz=3e8 Alm |

o©
>
T

o
N
T

4
T

0.08 -

0.06 -

Dimensionless buckling load, P

I

=3

=
T

L L L

0.02 I L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Length, L (m)

Fig. 5 The effect of magnetic field on the dimensionless
buckling load versus length of the sandwich structure
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The effect of lateral to axial load ratio on the dimensionless
buckling load versus length of the sandwich structure is
presented in Fig. 8. It is shown that with increasing the
lateral to axial load ratio, the dimensionless buckling load is
decreased.

5. Conclusions

Buckling analysis of the nanocomposite plate coated by
magnetostrictive layer was presented in this work. The
nanocomposite plate was reinforced by CNTs considering
agglomeration based on Mori-Tanaka model. Based on
FSDT, the governing equations were derived considering
coupling of mechanical displacements and magnetic field.
Utilizing Navier method, the buckling load was calculated
and the effects of CNTs volume percent and agglomeration,
geometrical parameters and magnetic field were shown. The
results show that with increasing the CNT volume percent,
the dimensionless buckling load was increased. In addition,
considering agglomeration of CNTs leads to reduce the
dimensionless buckling load. It can be observed that with
increasing the magnetic field, the dimensionless buckling
load was improved. It was found that with enhancing the
nanocomposite and magnetostrictive layers thickness, the
dimensionless buckling load was increases.
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