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1. Introduction 
 

Identifying the damage-sensitive features that can 

accurately distinguish a damaged structure from an 

undamaged one is the focus of the most of the SHM 

technical literature (Sohn et al. 2002). Many existing SHM 

feature extraction methodologies for damage diagnosis are 

based on fitting linear models (e.g. modal models, physics-

based models or data-based time-series model) to measured 

system response data before and after damage. Changes in 

the parameters or predictive errors of these models are then 

used as indicators of damage. 

Change in the stiffness of the structure locally, that 

result in loss of performance is generally construed as 

damage. In many cases, a structure, which exhibits 

predominantly stationary and linear dynamic response 

properties in its undamaged state, tend to exhibit non-

stationary and nonlinear properties after damage. Examples 

include post-buckled structures (Duffing non-linearity), 

rattling joints (impacting system with discontinuities), or 

breathing cracks (bilinear stiffness), delaminations, etc., and 

such damage has been referred to as damage with nonlinear 

features (Kerschen et al. 2006, Worden et al. 2001, 2008). 

The damage detection process can be significantly 

enhanced if one takes advantage of these nonlinear effects 

when extracting damage-sensitive features from measured 

data. 
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Apart from this, several engineering structures are 

constructed with joints, geometric discontinuities and also 

built with shock absorbers, dampers etc. The enhancement 

of the stiffness and damping properties of a linear structure 

via structural modification through the addition of strongly 

nonlinear structural modules that behave, in essence, as 

Nonlinear Energy Sinks (Sapsis et al. 2012). Properly 

designed Nonlinear Energy Sinks can affect significantly 

the stiffness and damping properties of the structures to 

which they are attached. Apart from this, the structures can 

also have regions undergoing large displacements. Such 

structures exhibit localized nonlinearity while leaving some 

portions of the structure largely unaffected. However, these 

localized nonlinearities can have a significant global impact 

and they exhibit nonlinear behaviour even in the healthy 

state. The dynamic signatures obtained from these 

structures with localized nonlinearity will obviously have 

nonlinear features often mislead for a probable damage. 

Hence it is essential to take into account the contributions of 

these inherent localized nonlinearities to the dynamic 

signature and extract the additional features which can be 

attributed to damage in order to improve the robustness of 

the damage diagnostic algorithms for engineering 

structures. Therefore, a robust and reliable SHM system that 

can deal with both damage induced nonlinearity and 

inherent nonlinearities in healthy structures is highly 

desirable. 

Several methods have been developed for detecting the 

presence of nonlinearity in a system (Wang et al. 2015, 

Casciati et al. 2016, Kerschen et al. 2006, Worden et al. 

2000, 2008, Prawin and Rao 2017, 2018a, b, Sapsis et al. 

2012, Pai et al. 2013, Hickey et al. 2009). These methods 

can be broadly classified as time domain (Worden and 
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Tomlinson 2000, Prawin and Rao 2017, Sapsis et al. 2012, 

Pai et al. 2013) modal analysis method (Hickey et al. 2009), 

frequency domain methods (Prawin and Rao 2017, Sapsis et 

al. 2012, Pai et al. 2013, Hickey et al. 2009), time-

frequency analysis based techniques (Nagarajaih et al. 

2015, Li et al. 2017, Bae et al. 2017, Robertson et al. 2003, 

2013, Gokhale and Khanduja 2010, Goggins et al. 2007, 

Huang et al. 1998, Feldman 2011) and multivariate analysis 

techniques (Hot et al. 2012, Salehi et al. 2016, Hasselman 

et al. 1998, Cammarata et al. 2010, Zang et al. 2001, Yan 

and Golinval 2006, Rao et al. 2015). There is not a single 

technique available to handle all classes of nonlinear 

systems. 

Modal parameters cannot be used directly for 

nonlinearity detection as they vary for different inputs and 

different input amplitudes. Even though the popular 

nonlinear modal analysis technique widely referred as 

Nonlinear Normal modes can be used for detection and 

even characterization. It requires a huge amount of data and 

involves complex mathematical operations. 

Most of the well-known techniques use frequency 

domain data. The techniques such as Frequency Response 

Function (FRF) Distortions and Homogeneity test of FRF 

and Higher-order nonlinear frequency response function 

used for nonlinear detection are highly dependent on the 

excitation type. Hence they are not suitable for ambient 

variant data. The frequency domain data involves 

transformation and leakage errors. The frequency domain 

data is also highly sensitive to damping and noise.  

The time domain techniques such as auto and cross-

correlation cannot be primarily used to detect nonlinearity 

due to their sensitivity to measurement noise. Apart from 

this, harmonic distortion based nonlinear indicator uses 

harmonic excitation vibration data.  

The main feature of the nonlinear vibration signal is that 

instantaneous parameters (i.e., both frequency and 

damping) are time varying function with respect to the 

different types of nonlinearity. Hence the feature extraction 

process requires analyzing the nonlinear and non-stationary 

signals. Majority of the time and frequency domain 

nonlinear detection techniques requires input force 

information and uses either sweep or harmonic excitation to 

detect the presence of nonlinearity. Even though there are 

few techniques, which use only ambient vibration data, they 

are highly susceptible to measurement noise. Further, for 

civil structures, it is often more convenient to measure the 

ambient vibration data than forced response data. Therefore, 

the time-frequency and multivariate analysis are promising 

tools to solve such non-stationary signals and to estimate 

the time-varying properties of the signal and detect the 

presence of nonlinearity in the system using ambient 

vibration data. 

In view of this, in this paper, we present the 

investigations carried out on various time-frequency and 

multivariate analysis based nonlinear indicators for 

detection of nonlinearity in civil engineering structures 

using ambient vibration data. Both damage induced 

nonlinearity and inherent structural nonlinearity in healthy 

systems are considered. The selected time-frequency 

analysis based techniques include Holder Exponent, 

Wavelet Packet Decomposition and Hilbert Huang 

Transform, while the multivariate analysis techniques 

include principal component analysis and null subspace 

analysis. Even though these methods have been investigated 

earlier by researchers for nonlinear detection, their 

capability for both classes of nonlinear problems with 

ambient excitation is not fully exploited. In addition, an 

attempt is also made in this paper to reflect the strengths 

and weakness of these techniques with ambient excitation 

and sensitivity to noise through experimental and 

numerically simulated examples. In the present work, these 

existing time and time-frequency domain techniques are 

evaluated with respect to the identification of presence of 

nonlinearity in the structure, identification of time instant of 

incipience of nonlinearity, sensitivity to noise, applicability 

to two different classes of nonlinearrity. 

 

 

2. Nonlinear detection techniques 
 

In this section, we present the details related to the 

various time-frequency and multivariate analysis techniques 

considered in this paper for nonlinear detection with 

ambient vibration data. 

 

2.1 Holder exponent 
 

Holder exponent is usually used to assess the signal 

regularity in time. The regularity identifies the degree to 

which the signal is differentiable. Conventionally, Holder 

exponent is found from the Fourier transform of the signal, 

which will only provide global minimum regularity. 

However, with wavelet analysis, the signal regularity is 

assessed at multiple time measurements. The wavelet 

variability of time and frequency in the wavelet analysis 

provides a finer time resolution at the higher frequencies, 

which can be useful to detect when sudden changes in the 

signal occur. Therefore, Holder exponent is determined 

using wavelet analysis in the present work. 

-

1 t - u
Wf(u,s) = f(t) ψ * dt

ss





 
 
 

  (1) 

The Holder exponent is determined by applying the 

wavelet transform of the structure response signal 

(acceleration time history data) to calculate the absolute 

values of the resulting wavelet coefficients. Then these 

coefficients are organised in a two-dimensional time-scale 

matrix. While the first dimension of the time-scale matrix 

(u) represents a different time point in the signal, the other 

dimension denotes a different frequency scale (s). Extract 

one column at a time from the time-scale matrix. Each 

column is the frequency spectrum of the signal at a 

particular time instant. Generate a log-log plot of this 

extracted vector at each point of time with the 

corresponding scale. The slope of this line provides the 

Holder exponent at a particular time point (Robertson et al. 

2003). 

The measurement of signal regularity using holder 

exponent can be used to detect singularities (or 
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discontinuities) induced by the nonlinearity present in the 

structure. The easiest way to identify discontinuity induced 

by nonlinearity using Holder Exponent is the change in the 

regularity (Holder exponent) versus time. A discontinuous 

point has a Holder exponent value of zero, however 

resolution limitations of the wavelet transform will result in 

slightly different values from zero. So, identifying time 

points where the Holder exponent decreases from positive 

values towards zero, or below, will identify when the 

discontinuities in the signal occur. From this, the 

nonlinearities induced in the form of discontinuities into the 

measured dynamic response data can be identified. 

Once holder exponent values are extracted, the threshold 

value or control limit is employed, which exceedance will 

indicate the presence of nonlinearity in the system. The 

control limit is determined using known data with no 

discontinuities (i.e., linear response). In order to apply the 

control limit, all the local maxima and minima of the 

Holder exponent function in time for the normal signal 

(linear data) are first recorded and then the drops in the 

Holder exponent values are calculated as the difference 

between a given minimum and the maximum immediately 

preceding it. The control limit is typically set at 1.5 times of 

the greatest decrease of the holder exponent value under 

linear conditions. The threshold of 1.5 is derived using 

extreme value statistics chosen (Robertson et al. 2003, 

2013). It is essential to have the acquired reference linear 

response of the structure to develop statistical classifiers for 

Holder exponent to detect the presence of such 

discontinuities. If the Holder exponent of the test data is 

greater than the control limit, the presence of nonlinearity is 

identified. To remove excess of noise, low-pass moving 

average (MA) filter is applied. 

 

2.2 Wavelet Packet Decomposition 
 

The Wavelet Packet Decomposition (WPD) is a 

generalization of wavelet decomposition that provides a 

wider range of possibilities for signal analysis. Using 

wavelet packet decomposition, level by level transformation 

of a signal from time domain to frequency domain can be 

achieved. In order to reduce the time resolution and increase 

the frequency resolution, Wavelet Packet Decomposition 

(WPD) uses a recursion of filter-decimation operations 

(Gokhale and Khanduja 2010). Since the WPD divides not 

only the low but also the high-frequency sub-band, the 

frequency bands are of equal width, unlike wavelet 

decomposition. 

In wavelet analysis, a signal is split into approximation 

and detail coefficients. The approximation coefficients are 

split into a second-level approximation and detail 

coefficients. In wavelet packet analysis, the detail and 

approximation coefficients can be split. This results in more 

than 
n-122 different ways to encode the signal. 

When the wavelet transform is generalized to the 

wavelet packet transform, not only can the low pass filter 

output be iterated through further filtering, but the high pass 

filter can be iterated as well. This ability to iterate the high 

pass filter outputs means that the wavelet packet transform 

allows for more than one basis function (or wavelet packet) 

at a given scale while the Wavelet Transform has one basis 

function at each scale other than the deepest level, where it 

has two. The set of wavelet packets collectively makes up 

the complete family of possible bases, and many potential 

bases can be constructed from them. If only the low pass 

filter is iterated, the result is the wavelet basis. If all low 

pass and high pass filters are iterated, the complete tree 

basis is constructed. The uppermost level of the WPD tree 

is the time representation of the signal. As each level of the 

tree is traversed there is an increase in the tradeoff between 

time and frequency resolution. The bottom level of a fully 

decomposed tree is the frequency representation of the 

signal.  

Since Wavelet Packet Transform is a level by level 

decomposition technique, a total number of 2j components 

can be derived if the signal is decomposed to j
th

 level. Each 

component has a central frequency determined for i
th

 

wavelet packet component from 

N
i j+1

(2i -1)f
f =

2
 (2) 

The central frequency fi of the i
th
 component at level j is 

represented in terms of Nyquist frequency fN, which is 

determined as the half of the sampling frequency. Once the 

dynamic signals (i.e., acceleration time history response) 

measured from structures are decomposed into the wavelet 

packet components. Then the wavelet packet component energy 

will be estimated. The component energy is calculated as 

2

j,n j,n

k

e c  (3) 

where „e‟ represents the component energy at the j
th
 level at the 

n
th
 node. Notation ‟c‟ represents the wavelet packet coefficient 

and „k‟ is the translation parameter. The wavelet packet 

component energy basically measures the signal energy content 

for a specific frequency band. For the given wavelet basis and 

decomposition level, the wavelet transform of a signal is unique 

and invariant. Therefore, the wavelet packet transforms energy 

values extracted from the decomposed signals will also be 

unique for the linear system and can be used as a feature to 

represent the system characteristics. The shifts of wavelet packet 

component energy amongst frequency band can be employed as 

a feature to detect the presence of nonlinearity in the structure 

(Goggins et al. 2007, Shahverdi et al. 2013). This is because the 

nonlinearity present in the structure will suppress or enhance 

certain frequency components of the structure response signal. 

 

2.3 Instantaneous frequency 
 
Instantaneous frequency is defined as the rate of change of 

the phase angle at time t of the analytic version of the signal. 

Given a real signal x(t), the analytic signal z(t) is a complex 

signal having the actual signal as the real part and the Hilbert 

transform of the signal as the imaginary component. In order to 

perform the Hilbert transform, first, the time history signal needs 

to be decomposed into monocomponent signals called intrinsic 

mode function (IMF) using empirical mode decomposition 

(EMD). Details related to Empirical Mode Decomposition can 

be found in Huang et al, 1998, Feldman (2011) . Once, the IMF 
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components from the time history x(t) are obtained using EMD, 

Hilbert transform on each IMF jC (t)  can be applied to 

determine the following set of equations below 

( )1
( )







j

j

C τ
C t P dτ

π t τ
 (4) 

 
( )( ) ( ) i ( ) ( )   iθ t

j j jz t C t C t A t e  (5) 

 

 
1
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1

( ) [ ( )] [ ( )]    and 

( )
 ( ) tan

( )



  
 



j jA t C t C t

C t
t

C t

 (6) 

 

d ( )
( )

d


θ t
ω t

t
 (7) 

Where A(t) is instantaneous amplitude, and θ(t)  is the 

phase angle and ω(t)  is the instantaneous frequency ω(t) . 

With these set of equations, the Instantaneous frequency can be 

estimated. Structural properties of the linear system such as 

Instantaneous frequency do not vary with time. Hence the shift 

in the instantaneous frequency or time-varying nature of 

instantaneous frequency can be attributed to the presence of 

nonlinearity in the structure. 

 

2.4 Principal component analysis 
 

Principal Component Analysis (Hot et al. 2012, 

Khoshnoudian and Talaei 2017, Khoshnoudian and Bokaeian 

2017, Kerschen et al. 2004) includes Singular Value 

Decomposition (SVD) on the time domain response data, A (an 

m x n matrix of data, n data points of m different measurements) 

TA UΣV  (8) 

where U indicates the principal components (PCs) of size m x m 

and V indicates the principal coordinate history of size n x n 

respectively which contains the normalized frequency response 

of the principal directions The diagonal matrix   is termed the 

singular matrix which represents the level of „energy‟ present in 

each mode. The principal directions extracted from test data, 

always lie in the subspace (or hyperplane) generated by the 

participating modes for the healthy linear system. 

Mathematically speaking, this means that the so-called principal 

hyperplane is invariant, even if the directions of the principal 

vectors are dependent on the structural excitation. Nevertheless, 

the principal hyperplane is dependent on the structural 

characteristics. This can be effectively employed to detect the 

presence of nonlinearity, as the principal hyperplane will be 

altered with increased levels of excitation indicating the 

nonlinearity in the structure‟s response. 

The presence of nonlinearity can be detected using the 

subspace angle between baseline data, i.e., when the structure is 

linear and the current response when the structure exhibits 

nonlinearity (Golub and Loan 2012). Theoretically, if the 

response is linear, the angle between the subspaces spanned by 

reference data and the current data should be zero. In reality, it 

will not be zero due to environmental variances and also the 

noises present in the measurement process. In view of this, a 

number of reference data set with the linear response at varied 

excitation levels are collected by taking measurements at 

different time instants and partitioned into several sets. This 

gives us a collection of different subspace angle values. It can 

easily verify that the subspace angles obtained for the linear 

system with environmental variability follow a normal 

distribution. Hence, we can establish the control limits using the 

data of subspace angles obtained from the linear structure. The 

presence of the nonlinearity in the structure can be detected 

when the subspace angle of the monitored current data exceeds 

the control limits.  

Alternatively, the presence of nonlinearity can be detected 

through residual projection error after projecting one subspace 

on to the other. The residual projection error can then be 

calculated as 

T*   (t) = P P ( )NL NLx x t  (9) 

where P is the principal component matrix of the baseline data of 

size m x p (m-no. of sensors and „p‟- no. of PCs extracted from 

U with 99.5% of total energy). Thus, for each time step, the 

projection error vector (Hot et al. 2012) is given as 

*( ) (t) - ( ) NL NLr t x x t  (10) 

From the projection error vector r(t) obtained at time t,  the 

novelty index NI can be defined using Mahalanobis norm as 

T 1
tNI r(t) M  r(t)   (11) 

Where M=(1/n) NLX T
NLX L  is the covariance matrix. The 

nonlinearity can be detected through novelty index when the 

prediction error at any time increment exceeds the upper control 

limit corresponding to the Mahalanobis norm. 

 

2.5 Null subspace analysis 
 
In Null subspace analysis, the acceleration time history 

response measured in the form of a matrix of size mxn similar to 

PCA is partitioned into several data subsets, in the case of 

continuous online monitoring of the structure. A block Hankel 

matrix Hp,q from the output covariance matrix can be formed for 

each data subset (Yan and Golinval 2006, Rao et al. 2015) and 

can be written as 

0 1 1

1 2

1 2

1

Λ Λ Λ

Λ Λ Λ
;

Λ Λ Λ

1
q p where  Λ ;  0 1

( )



  







 
 
 
 
 
  

    



p,qH

q

q

p p p q

N i
T

i k i k

k

y y i N
N i

 (12) 

The indices p and q  in the Hankel matrix define the 

number of considered time shifts and should be chosen based on 

the assumed system order n, i.e. q=n-p+1 and iΛ  represents the 

output covariance matrix and  {y} is the acceleration time 
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history response of a particular sensor. yk refers to the 

acceleration at k
th
 time step. Performing the singular-value 

decomposition (SVD) on the weighted Hankel matrix, we get 

   
T

1 p,q 2

0
=

0 0

   

 
  

 



1

1 2 1 2

T

1 1 1

S
H WH W U U V V

U S V

 (13) 

where W1 and W2 are weighting matrices chosen as identity 

matrices for simplicity (Yan and Golinval 2006). Due to the 

orthonormal property of matrices, the following relationship can 

be written mathematically as 

=0T

2 1U U  (14) 

However, in reality, Eq. (14) will not be zero due to 

environmental variances, variation of the ambient excitation and 

measurement noise. Therefore, the residue matrix Rs should be 

formulated and determined as the matrix obtained by 

multiplying the null space matrix ( T

L0,rU ) of the baseline data 

and the active subspace matrix (
L1, cU ) of the current data set 

T
2.r 1.csR U U  (15) 

The residue matrix Rs contains the information about how 

the new data obtained has been altered. The null subspace angle 

(NSA) or the complementary angle between subspaces U2,0 and 

U1,c  can be employed as a measure to detect the presence of 

nonlinearity. It can be derived as follows. 

1NSA sin [norm( )] sR  (16) 

where norm (.) is an operator giving the maximal singular value 

of a matrix. A large value of null subspace angle indicates a 

change in the state of the system from linear to nonlinear. As 

earlier pointed out, the null subspace angle (NSA) cannot be 

equal to zero due to environmental noise. Similar to the PCA 

method, the NSA limit of linearity is also obtained using the 

procedure in section 2.4. 

The degree of nonlinearity index (DoN) is derived from the 

residue matrix to quantify the severity of nonlinearity present in 

the system and it can be defined as follows 

c

R

{β}
DoN

{β}
  (17) 

where  indicates the Euclidean norm and the vector {β}  

having size {m1x1} can be defined through absolute row sum of 

residue matrix sR  of size m1 X n1 as 

1n
( i ,j)

s 1

j 1

{ }   where  i 1, 2,...m


  Rβ  (18) 

The DoN value will be one when the system is linear and 

will be higher than one when the nonlinearity is present in the 

system and it can be taken as the intensity measure of 

nonlinearity in the system. 

 

 

3. Numerical examples 
 

In this paper, several time-frequency and multivariate 

analysis based techniques for detection of the presence of 

nonlinearity in the structures are presented. We have 

demonstrated the strengths and weaknesses of each of the 

techniques presented through carefully chosen two 

numerical examples exhibiting different classes of 

nonlinearity and the experimental simulations of a 

benchmark problem provided by the LANL (Los Alamos 

Laboratory) Structural Health Monitoring benchmark site. 

Among the two numerically simulated examples, the first 

one is a cantilever beam with a local nonlinear stiffness 

attachment which comes under the class of structural 

systems exhibiting inherent nonlinearity even in its initial 

healthy state. The second one is the cantilever beam with a 

breathing crack exhibiting nonlinearity only after damage 

(i.e., damage induced nonlinearity). 

However, engineering structural systems usually exhibit 

nonlinear behaviour during service life due to operational 

and environmental loads. In order to simulate the real 

structure behaviour, i.e., the structure is initially linear and 

later become nonlinear, we propose to introduce 

nonlinearity after certain time steps for both class of 

nonlinear problems considered in this paper. This sort of 

simulation helps in verifying the effectiveness of the 

algorithm in identifying the exact time of incipience of 

nonlinearity. 

 

3.1 Numerical example-1: Cantilever beam 
 
The cantilever beam model as shown in Fig. 1 is 

considered (Hot et al. 2012). The span of the beam is 1.0m 

and the cross-sectional dimension is 0.014 X 0.014 m. The 

beam is modelled using 10 beam elements. A non-linear 

cubic spring KNL is added between the beam free end and 

the ground. The material properties of the beam are Young‟s 

Modulus, E = 2.1E11 MPa; mass density, = 7800 Kg/m
3
; 

Nonlinear spring stiffness, KNL=1.0E07 N/m
3
. The linear 

damping matrix is constructed using Rayleigh damping. 

The non-linear force, FKNL due to the nonlinear stiffness 

can be expressed as functions of the translational 

displacement of node 11 over y-direction 

3
KNL NL 11F K y  (19) 

The nonlinearity is introduced after 4500-time steps of 

beam‟s loading. The first five Eigen-frequencies of the 

underlying linear response of the beam are 11.73 Hz, 73.54 Hz, 

205.96 Hz, 403.87 Hz and 668.67 Hz. The beam is excited with 

0.35, 2, 6 and 100 NRMS on free end for about 1.2 Sec in the 

frequency band [1–800 Hz]. The time domain response is 

calculated using Newmark‟s (constant average acceleration) 

time integration scheme combined with the Newton-Raphson 

algorithm. The acceleration history of all active nodes, i.e., nodes 

2 to 11 in Fig. 1 is considered. The response corresponding to 

the very low amplitude of excitation i.e., 0.35NRMS, exhibiting 

linear behaviour is taken as the reference data. The chosen 

sampling frequency is 5000 Hz. In order to investigate the effect 

of the noise level on the performance of the proposed algorithm, 

environmental noise (i.e., white noise) is added to the  
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acceleration time history before it is processed in the form of 

signal to noise ratio (SNR). We have considered SNR 50 for 

both the numerical examples considered in this paper. 

The results from applying the time-frequency analysis based 

nonlinearity detection techniques in section 2 for the cantilever 

beam are shown in Fig. 2. The Holder exponent, WPT energy 

plot and instantaneous frequency plots are shown in Figs. 2(a)-

2(c) respectively. The response measured at the free end is used 

for estimating the nonlinearity index proposed in various 

methods considered in this paper. 

 

 

 

 

The discontinuity at the onset of nonlinearity at the 4500
th
 

time increment can be observed from the holder exponent plot 

shown in Fig. 2(a). The presence of nonlinearity is confirmed by 

the Holder exponent values crossing the limit of linearity after 

4500
th
-time step. The results presented with applied noise in Fig. 

2(a) show that this method is insensitive to noise. 

 

 

 

Fig. 1 Cantilever beam 
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(c) Instantaneous frequency 

Fig. 2 Time-frequency analysis 
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The WPT energy plot shown in Fig. 2(b) for varied 

excitations levels clearly indicate that there is no variation in the 

energy (energy/frequency shifts) at a low level of excitations 

(NRMS) i.e., the system is in a linear state. However, we can 

observe marginal variation in the energy at high amplitude of 

excitation i.e., when the degree of nonlinearity present in the 

system is relatively high. From the range of excitations in Fig. 

2(b), it is difficult to establish conclusively the presence of 

nonlinearity as the observed energy shifts can be also attributed 

to the temporal variation of the excitation frequency content. 

However, comparison of the WPT correlation coefficients of 

both excitation and response given in Tables 1 and 2 indicates 

the presence of nonlinearity. For the linear cantilever beam in 

Table 1, the correlation coefficient is close to 1 for all levels of 

excitation (also with imposed noise). However, the averaged 

WPT coefficients shown in Table 2, for the cantilever beam with 

introduced nonlinearity decrease with an increase in the level of 

excitation. This confirms the presence of nonlinearity in the 

system. In summary, wavelet packet energy together with WPT 

correlations can be used as an indicator for detecting the 

presence of nonlinearity. This method cannot give the exact time 

instant of nonlinearity. 

 

 

 

 

From the instantaneous frequency results in Fig. 2(c), a shift 

in the frequency at the onset of nonlinearity (i.e., from the linear 

resonant frequency at 73 Hz to 75 Hz at 6NRMS excitation and 

to 180 Hz at 100NRMS excitation) is clearly visible. However, it 

is difficult to confirm the presence of nonlinearity at lower levels 

of excitation (i.e., low degree of nonlinearity) below 6 NRMS 

with and without noise. These smaller shifts can be even due to 

measurement noise. In order to confirm the presence of 

nonlinearity using Instantaneous frequency, it is essential that the 

degree of nonlinearity in the system should be high enough. This 

method identifies the exact time instant of nonlinearity.  

The effectiveness of PCA based nonlinear detection methods 

based on subspace angles and prediction error based method are 

investigated and the results are shown in Fig. 3. The singular 

value diagram shown in Fig. 3(a) indicates that the first seven 

principal components contribute to 99.5% of energy cantilever 

beam. Hence, 7 PCs are used for evaluation. 

The subspace angle plot for various levels of excitation of 

the cantilever beam is shown in Fig. 3(b). It can be observed that 

for the excitation level of 0.35NRMS, the beam behaviour is 

linear and hence the subspace angle is well below the upper 

control limit (UCL) and with an increase in the excitation levels 

to 2NRMS, 80NRMS and 120 NRMS, the subspace angles are  
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well above the control limit, clearly indicating the presence of 

nonlinearity. The exact time instant, where the system changes 

from linear to the nonlinear state can be identified from the 

control limits drawn when the subspace angle of any dataset 

with the earlier datasets exceeds the UCL. Alternatively, we can 

also establish the presence of nonlinearity using the projection 

error plots shown in Fig. 3(c). It can be observed that the novelty 

index plotted in Fig. 3(c), clearly overshoots the established limit 

of linearity at 4500
th
 time step, clearly indicating the presence of 

nonlinearity. 

Similarly, the results of the cantilever beam with null 

subspace analysis are shown in Fig. 4. It can be clearly observed 

from Fig. 4(a) that the subspace angle is well below the limit of 

linearity for the first three datasets due to linear behaviour and 

after the fourth dataset, the values crosses the limit of linearity.  

The angle is found to be increasing with increase in the 

excitation levels due to hardening behaviour. The exact time  

 

 

 

 

 

 

instant, where the system changes from linear to the nonlinear 

state can be identified from the control limits established. Apart 

from this, we can quantify the degree of nonlinearity (DoN) 

present in the system using Null space analysis as shown in Fig. 

4(b). It can be observed from Fig. 4(b) that the DoN index 

established (Eq. (17)) can precisely estimate the degree of 

nonlinearity present in the system, which can be used to judge 

the state of the system under varying levels of excitation. 

In summary, all the time-frequency and multivariate analysis 

based techniques have the ability to identify inherent 

nonlinearity present in the structural system even in their healthy 

state. All the techniques except Wavelet Packet Component 

Energy exactly identify the time incipience of nonlinearity, 

hence amenable to online monitoring. It should be mentioned 

here that in order to confirm the presence of nonlinearity using 

instantaneous frequency, the degree of nonlinearity should be 

significant enough. 
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Fig. 4 Null subspace analysis 

Table 1 WPT correlation of linear cantilever beam 

Level of Excitation 
Frequency bands corresponding to the 3rd level of WPT decomposition 

1 2 3 4 5 6 7 8 Average 

Low(2NRMS) 1 1 1 1 1 1 1 1 1 

Medium(6NRMS) 0.9287 0.9887 0.9764 0.9705 0.9387 0.9785 0.9418 0.9984 0.965213 

High(100NRMS) 0.8171 0.8887 0.8677 0.7088 0.9007 0.9133 0.9865 0.9184 0.8751 

High (SNR50) 0.8167 0.8886 0.8680 0.7088 0.9007 0.9132 0.9864 0.9184 0.8751 

Table 2 WPT correlation of cantilever beam with stiffness nonlinearity 

Level of excitation 
Frequency bands corresponding to the 3rd level of WPT decomposition 

1 2 3 4 5 6 7 8 Average 

Low(2NRMS) 0.6184 0.7944 0.3564 0.8545 0.0114 0.1069 0.1198 0.11054 0.371543 

Medium(6NRMS) 0.6136 0.7943 0.3564 0.8545 0.0114 0.1070 0.1198 0.1105 0.370944 

High(100NRMS) 0.5957 0.7938 0.3557 0.8543 0.0114 0.1070 0.1200 0.1105 0.368553 

High (SNR 50) 0.5957 0.7938 0.3557 0.8543 0.0114 0.1070 0.1200 0.1105 0.36855 
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Both multivariate analysis technique and holder exponent 

requires reference linear response data to establish control limits, 

which exceedance confirms the presence of nonlinearity in the 

structure. Even though Wavelet Packet Component Energy does 

not require reference linear data, it requires a varied range of 

excitation responses and input force data to give a clear-cut 

conclusion about the presence of nonlinearity in the structure. 

 

3.2 Numerical example 2: Breathing crack problem 
 

The cantilever beam model with breathing crack shown in 

Fig. 5 is chosen as the second numerical example. The beam is 

initially in linear state and once the damage in the form of 

breathing crack sets in, the beam exhibits nonlinear behaviour. 

This comes under the class of damage induced nonlinearity 

problem. The span of the beam is 1.0 m and the cross-sectional 

dimension is 0.014 x 0.014 m.The material properties are: 

E=2.1e11 Pascal, = 7800 kg/m3. The beam is discretized with 

10 elements and simulated with a single-edged breathing crack 

at element no.5. Heavy side step function is widely used by the 

researchers to model bilinear stiffness behaviour (due to change 

in the state of the cracked domain from open to close and vice 

versa) of the breathing crack (Prawin et al. 2015, Giannini et al. 

2013, Lim et al. 2017). In the present work, the same has been 

adopted. The cracked domain of the structure is initially assumed  

 

 

to be in the closed state under compression and opening 

mechanism is triggered by the rotations at the nodes of the 

damaged element (i.e., 
i jθ , θ .with breathing crack located 

between node i and j) when the cracked domain is under tension. 

The actual stiffness K in the closed state is scaled by the 

factor α (0 < α < 1) in open state of crack. The stiffness of the 

cracked domain is given by 

 
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(a) Schematic diagram of breathing crack with bilinear stiffness characteristic in a structure 

 
(b) Cantilever beam model with breathing crack & FE idealisation 

Fig. 5 Cantilever beam with a breathing crack 
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μ
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 (21b) 

where E, L, H indicate the Young‟s Modulus, length of the 

structure and Heaviside step function. Iu, Id indicate the 

undamaged and damaged moment of inertia. Similarly K, Kd 

indicate the undamaged and damaged stiffness of the element  

 

 

 

and „ μ ‟ (0 < μ < 1) indicates the non-dimensional flexural 

damage. It is defined as the ratio of the loss of a moment of 

inertia due to damage, to the undamaged moment of inertia of 

the section of the beam. The value of µ corresponding to 0 and 1 

indicate the healthy and completely cracked state of the section 

respectively. More details related to finite element modelling of 

breathing crack problem can be found in (Kerschen et al. 2014). 
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(c) Nullsubspace analysis (d) PCA – Subspace angle 
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Fig. 6 Breathing Crack Problem 
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The breathing crack phenomenon is introduced after 2200 

time steps in a linear cantilever beam with non-dimensional 

flexural damage, μ = 0.4 . (i.e., crack depth, a=0.156567d=2.2 

mm) and after 3200 time steps a higher level of crack width μ

=0.8 (i.e., crack depth, a=0.415d = 5.8 mm) is simulated for 

nonlinear phenomena. The beam is excited at node 11 with a 

1.0s constant amplitude ambient excitation of 2NRMS in the 

frequency band [1–600 Hz]. The chosen sampling frequency is 

5000 Hz.The first five natural frequencies of the underlying 

linear cantilever beam, i.e., without the breathing crack, are 

11.73 Hz, 73.54 Hz, 205.96 Hz, 403.87 Hz, and 668.67 Hz.  

The results corresponding to various nonlinear indicators 

obtained from the numerical investigations carried out on the 

breathing crack problem are shown in Fig. 6. While the time-

frequency plots are shown in Figs. 6(a)-6(c), the plots related to 

multivariate analysis (i.e., PCA and Null subspace) are shown in 

Figs. 6 (d)-6(f). 

The holder exponent plot shown in Fig. 6(a) indicates that 

the holder exponent values cross the limit of linearity at the onset 

of nonlinearity (i.e., at two time steps 2200
th
 and 3200

th
 time 

instant). The drop value at the initiation of nonlinearity (i.e., at 

2200
th
 time step with lower crack depth) is relatively smaller 

when compared to the drop at the higher crack depth (i.e., at 

3200
th
 time step). The ratio of drop levels is found to be 2.3 

which incidentally relates closely to the ratio of crack depths. 

Even though we can arrive at the level of nonlinearity present in 

the system using the holder exponent for this problem, it is 

difficult to generalize it to all problems, unlike null subspace 

analysis demonstrated in section 3.1. 

 

 

 

 

 

 

The instantaneous frequency corresponding to the uncracked 

and the breathing crack cantilever problem is shown in Fig. 6(c). 

It is clear that the Instantaneous frequency of the uncracked 

beam (linear) is constant around the fundamental resonant 

frequency of the linear system (i.e., 11.73 Hz). However, the 

instantaneous frequency of the cantilever beam with a breathing 

crack oscillates periodically between the values corresponding to 

the fully open and fully closed crack states. Similar observations 

can be made even with the noisy measurements presented in Fig. 

6(c). 

The subspace angle computed for the breathing crack 

problem using PCA is shown in Fig. 6(d). The initial three 

subsets are without a breathing crack and, therefore, the structure 

is in a linear state. Hence, the subspace angles corresponding to 

these three subsets are well below the upper control limit. 

Subsequently, when the breathing crack is formed (i.e., subset 

4), the nonlinearity sets into the system and It is clearly reflected 

in the plot shown in Fig. 6(e) by way of exceeding the 

established control limits.  Further, it can be observed that the 

variation in the subspace angle cannot reflect the severity of 

nonlinearity present in the system as the subspace angle is 

marginally lower at 7
th
 subset when the crack depth is increased. 

In contrast to the above, the residual projection error 

obtained using PCA, and shown in Fig. 6(e), shoots up with an 

increase in the severity of nonlinearity. We can clearly establish 

the exact time instant at which the degree of nonlinearity is 

varied from a lower level to a higher level. The studies presented 

here clearly indicate that two criteria presented using principal 

component analysis provides a very robust method for detection 

of nonlinearity in a structure and are shown not to be adversely  

affected by noise in the measurement data. 

Table 3 WPT correlation of breathing crack problem with varied degrees of nonlinearity 

Crack Depth 
Frequency bands corresponding to the 3rd level of WPT decomposition 

1 2 3 4 5 6 7 8 Average 

Low 0.0119 0.1046 0.4142 0.1053 0.2979 0.1466 0.0975 0.33505 0.189131 

Medium 0.2249 0.1243 0.0894 0.0324 0.0563 0.1906 0.0718 0.2026 0.1240 

High 0.0281 0.0675 0.0569 0.0306 0.2614 0.0738 0.0685 0.2914 0.1098 

High(SNR 50) 0.0221 0.0524 0.0521 0.0306 0.2614 0.0738 0.0558 0.2422 0.0988 

Table 4 Test data details 

Label State Condition description 

State 1 Undamaged Baseline condition 

State 10 Nonlinearity Induced (damaged) Gap (0.2 mm) 

State 14 Nonlinearity Induced (damaged) Gap (0.05 mm) 

Table 5 WPT correlation of LANL 4DOF benchmark 

Datasets 
Frequency bands corresponding to the 3rd level of WPT decomposition 

1 2 3 4 5 6 7 8 Average 

State 1 0.7875 0.6624 0.6113 0.8912 0.8121 0.8353 0.8739 0.8898 0.7954 

State 10 0.4252 0.1868 0.2904 0.0316 0.1838 0.0396 0.4673 0.1332 0.2198 

State 14 0.6491 0.2805 0.0601 0.06715 0.1605 0.3325 0.0816 0.02162 0.2067 

721



 

J. Prawin and A. Rama Mohan Rao 

 

 

The studies carried out using Null subspace analysis is found 

to be effective in establishing the degree of nonlinearity much 

more precisely than the other methods. For example, from Fig. 

6(f), we can clearly observe that the null subspace angle and the 

degree of nonlinearity indices are within the control limit for the 

initial three subsets due to the linear behaviour of the structure 

and after the fourth dataset, the indices increases with the 

increase in the severity of nonlinearity. The degree of 

nonlinearity can be estimated from the DoN plot more precisely 

than the subspace angle plot shown in Fig. 6(f).  

All the time-frequency and multivariate analysis proposed in 

this paper detect the presence of damage induced nonlinearity 

(i.e breathing crack) even if the system exhibits a low degree of 

nonlinearity (i.e lower crack depth). Further, all these techniques 

give indirect information about the severity of the breathing 

crack present in the structure by its increase in its magnitude 

with increase in crack depth. 

 
3.3 Experimental example: 4 DOF LANL benchmark 
 
The LANL 4DOF frame structure shown in Fig. 7 consists 

of aluminium columns and plates assembled using bolted joints. 

The structure slides on rails that allow movement in the x-

direction only. At each floor, four aluminium columns 

(17.7x2.5x0.6 cm) are connected to the top and bottom 

aluminium plates (30.5x30.5x2.5 cm) to form a complete system. 

Additionally, a centre column (15.0x2.5x2.5 cm) is suspended 

from the top floor. This column can be used to simulate damage 

by inducing nonlinear behaviour when it contacts a bumper 

mounted on the next floor.  

The position of the bumper can be adjusted to vary the extent 

of impacting that occurs at a particular excitation level. An 

electrodynamic shaker provides lateral excitation to the base 

floor along the centerline of the structure. The structure and 

shaker are mounted together on an aluminium base plate 

(76.2x30.5x2.5 cm) and the entire system rests on rigid foam. 

The foam is intended to minimize extraneous sources of 

unmeasured excitation from being introduced through the base  

 

 

 

 

of the system. A load cell with a nominal sensitivity of 2.2 

mV/N was attached at the end of a stinger to measure the input 

force applied by the shaker. Four accelerometers with a 

sensitivity of 1000 mV/g each were attached to the level plate 

side as shown in Fig. 7. Because of the chosen location, the 

accelerometers are insensitive to torsional modes. Nonlinearity is 

simulated by a bumper mechanism that causes a repetitive, 

impact-type nonlinearity. This mechanism was intended to 

simulate, for instance, a crack that opens and closes under 

dynamic loads, or loose connections that rattle. As shown in Fig. 

5(b), adjusting the gap between the bumper and the suspended 

column controls the level of nonlinearity. Therefore, the gap was 

varied (0.2 mm-state 10, 0.05 mm-state 14 and undamaged- state 

1) in order to introduce different levels of nonlinearities. The 

details of the test data are shown in Table 4. 

The time-frequency and multivariate analysis based 

nonlinear indicator plots for benchmark problem are shown in 

Figs. 8 (a)-8(f). The following observations can be made from 

the results furnished 
i. The holder exponent shown in Fig. 8(a) between state 

1 and state 10 of the system indicates that state 10 data 

crosses the control limit and confirms the presence of 

nonlinearity in the structure.  

ii. The clear-cut variation in the WPT energy contribution 

between the two damaged states in Fig. 8(b) indicates 

the presence of nonlinearity. Further, the correlation 

coefficient corresponding to two different nonlinear 

datasets in (Table 5) shows poor correlation for the 

cases with introduced nonlinearity in comparison to the 

linear scenario. 

iii. The instantaneous frequency for the LANL 4 DOF 

problem shown in Fig. 8(c) shows a step change from 

54.25 Hz to 58 Hz associated with the introduced 

nonlinearity.  

iv. The nonlinear indicators based on multivariate analysis 

i.e. PCA and NSA shown in Figs. 8(d)-8(f) 

respectively, also detect nonlinearity in the system by 

the exceedance in the corresponding nonlinearity index 

values against set limits. 

 

 

Fig. 7 Cantilever beam with a breathing crack 
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4. Conclusions 
 
In this paper, the effectiveness of time-frequency and 

multivariate analysis for detection of nonlinear behaviour of 

engineering structures using ambient vibration data is 

explored. Both damage induced nonlinearity and structure 

exhibiting nonlinear behaviour in its initial healthy state are 

considered in our investigations. Efforts are made to  

 

 

investigate the strengths and weaknesses of each of the 

algorithm through numerically simulated examples 

followed by an experimental verification. The sensitivity of 

each of the algorithm with respect to measurement noise is 

also established. Based on the studies presented in this 

paper, the following conclusions can be drawn. 

The Holder exponent method was shown to be effective 

in identifying the presence of nonlinearity introduced in the 
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Fig. 8 LANL 4DOF Problem 
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form of discontinuities. The holder exponent has the ability 

to identify both class of nonlinearity (i.e., damage induced 

nonlinearity and inherent structural nonlinearity). It can 

identify the exact time instant of nonlinearity. It is also 

shown through investigations that the method is insensitive 

to measurement noise. Although the presence of 

nonlinearity can be established from a single sensor 

measurement using holder exponent, it should be ensured 

that the sensor is located near the source of nonlinearity 

present in the structure in order to capture the local 

nonlinear response. This may not be always practically 

feasible during online monitoring. 

The main advantage of the wavelet packet transform is 

computational efficiency and immunity to noise.  However, 

the selection of scale and level for the wavelet 

decomposition are critical for correct interpretation of the 

results. The variations in the Wavelet Packet component 

energy cannot alone establish the presence of nonlinearity, 

supplementary information from WPT cross-correlation 

data is required which is usually not available for real 

structures. The onset of nonlinearity cannot be determined 

by this technique. This technique requires a wide range of 

excitation responses for inherent local nonlinearity 

identification. Hence, the wavelet packet component energy 

is better suited for damage induced nonlinearity 

identification (which does not require varied excitation 

responses) than inherent structural nonlinearity 

identification. 

Although shifts in the instantaneous frequency can be 

used as an indicator of nonlinearity, the level of nonlinearity 

should be significant to make these shifts recognizable. 

However, this method can identify the onset of nonlinearity. 

The method based on PCA appears to be suitable 

approach considered in this paper. The PCA-based method 

uses response time history without further signal processing 

and is practically insensitive to measurement noise. The 

PCA technique also has the ability to identify the exact time 

instant of nonlinearity.  

The null subspace analysis based method appears to be 

the most suitable method among all the techniques 

discussed in this paper. The null subspace angle indicator is 

used to determine the presence of nonlinearity in the system 

whereas the DoN index is used to determine the level of 

nonlinearity. The major advantage of the Nullspace method 

is that it can be easily applied to relatively large structures 

with a limited number of sensors. It requires analyzing the 

vibration signal at different instants rather than considering 

snapshots as in classical PCA. In this manner, the defined 

hyperplane contains all modal information (e.g., natural 

frequencies and mode shapes) while the hyperplane defined 

by PCA contains only mode shape information. Hence, the 

null subspace-based method can identify even very 

marginal levels of nonlinearity. 
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