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1. Introduction 
 

For a few decades, feedback control has attracted 

amount of interest in engineering fields. In the feedback 

structural control system, the array of sensors, actuators and 

controllers are used to reduce undesired vibrations during 

dynamic excitations such as earthquakes. When a dynamic 

excitation occurs, the sensors receive structural response 

data, and this data is transferred to controller, control 

commands are determined by controller and are delivered to 

actuators that are installed in some or all stories. The 

actuators apply control force to structure stories and reduce 

the structural response. Applying the control force to 

structure can be done directly (active control) or indirectly 

(semi-active control). Housner et al . (1997) have 

investigated structural control including active control, 

semi-active control and, etc. In the semi-active manner, 

Ghaffarzadeh (2013) has studied an optimal fuzzy logic 

control scheme for vibration mitigation of buildings using 

magneto-rheological dampers subjected to near-fault 

ground motions. The application of BPFs in the semi-active 

control algorithm concerning decrease the computational 

expenses is presented by Younespour and Ghaffarzadeh 

(2016). Two novel semi-active control methods for a 

seismically excited nonlinear benchmark building equipped  
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with magnetorheological dampers are presented by Askari 

et al. (2016). Muthalif et al. (2017) have studied a new way 

to use MR damper for vibration control in semi-active 

manner. Braz-César and Barros (2018) have presented the 

application of a semi-active fuzzy based control system for 

seismic response reduction of a single degree-of-freedom 

(SDOF) framed structure. In the conventional control 

system, there is one controller that is named centralized 

control method. Manjunath and Bandyopadhyay (2005), 

Preumont and Seto (2008), Cheng et al. (2008), Ubertini 

(2008), Beheshti-Aval and Lezgy-Nazargah (2010), 

Dhanalakshmi et al. (2011), Korkmaz (2011), Cao and Lei 

(2014) have studied feedback and feedforward active 

controller in the centralized case. 

In this case, the transition of large amounts of data 

between sensors and controller is difficult and lose of 

controller function may lead to disruption of the whole 

control system. In addition, because of communication 

requirements in the centralized control method, economical 

problems may be generated, especially when the large scale 

structural system should be controlled. Hence, decentralized 

control approach can be employed, so that a large scale 

structure is divided in to multiple substructures (Loh and 

Chang 2008). If a controller on a story only uses the sensor 

data from that story, it is named fully decentralized control 

but if the controller receives data from other sensors in the 

other substructures or stories, it is named partial 

decentralized control. The partial decentralized control 

method can be represented in some forms. When one 

substructure stories don’t overlap with the other 
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substructure stories, it is named as uncoupled partially 

decentralized control and in second form the non-

overlapped substructure of the uncoupled method is 

modified into an overlapped case, and it is named as 

coupled partially decentralized control. Lynch and Law 

(2002, 2004), Wang et al. (2007), Johansen (2008), Bakule 

(2008), Chen and Nagarajaiah (2008), Lei and Lin (2009), 

Ma et al. (2010), Cha et al. (2013), Rubió-Massegú et al. 

(2012), Lei et al. (2012, 2013), Ruiz-Sandoval and Morales 

(2013), Yan et al. (2014), Yu et al. (2017) have studied 

decentralized algorithm with different methods and topics. 

The decentralized control creates suboptimal control, and 

this is a shortage of it compared to the centralized control. 

Therefore, choosing a suitable control algorithm in the 

decentralized case is necessary. This algorithm should be 

able to produce results in reducing the structural response 

toward the centralized control conclusions.  

To implement the decentralized control method, some 

approaches have been investigated such as Homotopy 

method (Wang 2011, Qu et al. 2013) and applying sparsity 

patterns to the gain matrices (Wang et al. 2009, Palacios-

Quinonero et al. 2014). Decentralized control has been 

previously utilized based on the linear quadratic regulation 

(LQR) (Wang et al. 2007, Lei and Lin 2009, Palacios-

Quinonero et al. 2014, Chu et al. 2017), Linear Gaussian 

regulation (LQG) (Loh and Chang 2008, Lei et al. 2013, 

Kohiyama and Yoshida 2014) and sliding mode control (Ma 

2008, 2010) in the literature. Wang et al. (2009) have 

investigated the design of the decentralized 𝐻∞ controller 

for the large-scale civil structures. 

Linear matrix inequality (LMI) has been applied for 

feedback control of structures (Bakule 2008, Du et al. 2012, 

Pozo et al. 2016, Xu et al. 2018). The 𝐻∞ control method 

with LMI constraints was applied to reduce the 

complexities in the control process (Wang 2011, Jiang and 

Li 2011, Rubió-Massegú 2012). It should be noted that the 

achievement of full state information is difficult in practice, 

especially in large scale structures. In this case, full state 

feedback controller can be replaced by static-output 

feedback controllers.  

The main problem that involves the controller design of 

systems is the uncertainty issue. Generally, the existence of 

uncertainty in modeling of a system is undeniable fact. In 

the control process, the operation of the model and the real 

system is not the same and this can be the main source of 

uncertainty.  

This kind of uncertainty is known as systematic 

uncertainty and can be diminished by applying two 

approaches. The first one is adaptive control (Tu et al. 2014, 

Ghaffarzadeh and Aghabalaei 2017), which identifies the 

continual process and adapts the controller to new 

conditions. The second method is robust control which 

protects the certain properties of the control loop for the 

whole family of controlled plants. Schmitendorf et al. 

(1994), Materazzi and Ubertini (2012), Giron and 

Kohiyama (2014), have studied robust control techniques 

for buildings, robust structural control with system 

constraints and a robust decentralized control method based 

on dimensionless parameters respectively. Jiang and Li 

(2011) evaluated the effect of uncertainty in decentralized 

robust control of structures. The active control of intelligent 

structures with uncertainty using a new method for 

analyzing the robustness of uncertain systems has been 

studied by Cao et al. (2003). Robust H∞ feedback control 

presented to vibration active control of structural systems 

under the uncertainty by Zhang et al. (2014). The main 

characteristic of the robust control is its formulation in both 

frequency and time domains. The uncertainty in the control 

systems can be modeled as parametric and nonparametric 

uncertainties. When the accurate values of the real 

parameters of a system are not known, parametric 

uncertainty is introduced. Nonparametric uncertainty should 

be considered when fast dynamics and nonlinearities of a 

system should be neglected (Wang et al. 2004, Lim et al. 

2006, Morales et al. 2012, Du et al. 2012).  

In this study, by considering various types of 

decentralization, we investigate the using of the 𝐻∞ method 

for controlling structural systems subject to earthquake 

excitation. The static-output feedback 𝐻∞  controller 

incorporated with the novel LMI constraints was designed 

and to be used for the control of the tall shear buildings. 

The robustness and the uncertainty of the models to be 

imposed in state space representation of the models. The 

robustness of the applied methodology against the 

parametric uncertainties was investigated. 

 

 

2. Problem formulations 
 

2.1 Parametric uncertainty formulations of static 
output feedback controller 

 

The equation of motion for building structures under 

earthquake excitation and control forces, is written as 

follows 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝐵𝑢(𝑡) + 𝐸�̈�𝑔(𝑡) (1) 

Where 𝑀,𝐶  and  𝐾  are   𝑛 × 𝑛  mass, Rayleigh 

damping and stiffness matrices respectively. 𝑥(𝑡) is 𝑛 × 1 

story displacement vector relative to the ground and 𝑢(𝑡) 

is 𝑟 × 1 control force vector. The location of control forces 

is represented by 𝑛 × 𝑟. 𝐵  Matrix, and 𝐸  is 𝑛 × 1 

coefficient vector for earthquake ground acceleration, 

�̈�𝑔(𝑡). n , r are also number of degrees of freedom of 

structure and actuator numbers located at some stories, 

respectively.   

Since in the most control schemes the actuators not to be 

located in all stories of structures, the control force vector 
*𝑢(𝑡)+𝑟×1  can be related to the  *𝑢(𝑡)+𝑛×1 control force 

vector using the matrix ,𝜃-𝑛×𝑟 in which its members 

corresponding to non-zero members of *𝑢(𝑡)+𝑛×1are 1 and 

other members are zero. By taking this matrix, the B matrix 

will be as 

,𝐵-𝑛×𝑟 = ,𝐵-𝑛×𝑛,𝜃-𝑛×𝑟 (2) 

The Eq. (1) can be represented in the state-space form as 

{
�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢𝑢(𝑡) + 𝐸𝑤�̈�𝑔(𝑡)

𝑦(𝑡) = 𝐶𝑦 𝑋(𝑡)
 (3) 
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Where 

𝐴 = [
,0-

−,𝑀-−1,𝐾-
|

,𝐼-

−,𝑀-−1,𝐶-
] 

 𝐵𝑢 = [
,0-

,𝑀-−1,𝐵-
] 

(4) 

In the Eq. (3), 𝑋(𝑡) is the state vector and A, Bu and 

Ew  are plant, control force coefficients and external 

excitation matrices, respectively. 𝐶𝑦 is the 𝑝 × 𝑛 matrix, 

where p is the number of output. 𝑦(𝑡) is output vector. In 

the output feedback control theory, using the output gain 

matrix k, the control force. 𝑢(𝑡). is computed based on the 

observed output 𝑦(𝑡) 

𝑢(𝑡) = 𝑘𝑦(𝑡) (5) 

And then by substituting 𝑦(𝑡) = 𝐶𝑦𝑋(𝑡), the control force 

feedback is calculated 

𝑢(𝑡) = 𝑘𝐶𝑦𝑋(𝑡) = 𝐺𝑋(𝑡) (6) 

Where, G is the 𝑟 × 𝑛 state gain matrix. By substituting 

the control force in Eq. (3) and considering the perturbed 

model, the perturbed closed loop form of state equations is 

formed. 

{
�̇�(𝑡) = 𝐴𝑢𝑐𝑙𝑋(𝑡) + 𝐸𝑤�̈�𝑔(𝑡)

𝑦(𝑡) = 𝐶𝑢𝑐𝑙𝑋(𝑡)
 (7) 

Where 𝐴𝑢𝑐𝑙 and 𝐶𝑢𝑐𝑙 are perturbed closed loop system 

matrices. By considering parameter uncertainties in the 

mass, stiffness and control force matrices, the uncertain 

parameters of system can be displayed as follows 

𝐴𝑢𝑐𝑙 = 𝐴 + ∆𝐴 + 𝐵𝑢𝐺 + ∆𝐵𝑢𝐺 (8) 

 

𝐶𝑢𝑐𝑙 = 𝐶𝑧 + 𝐷𝑧𝐺 (9) 

∆𝐴 and ∆𝐵𝑢 are the additive uncertainties. 

∆𝐴 = [
,0-

−∆𝐷𝑘

|
,𝐼-

−∆𝐷𝑐

] (10) 

 

∆𝐵𝑢 = [
,0-

,𝑀-−1,∆𝐵-
] (11) 

In which ,M-−1,K- = Dk and ,M-−1,C- = Dc.  𝐴𝑙𝑠𝑜, ∆𝐷𝑐 𝑎𝑛𝑑 ∆𝐵 

are perturbation time varied matrices with appropriate 

dimensions. In some cases of structured uncertainties, the 

norm bounded unstructured uncertainties are used and the 

norm-bounded unstructured uncertainties are described as 

‖∆𝑫𝑘‖ ≤ 𝛿𝑎1 . ‖𝛥𝑫𝑐‖ ≤ 𝛿𝑎2. ‖∆𝐵𝑢‖ = ‖∆𝐵‖ ≤ 𝛿𝑏𝑢 (12) 

Where two-norm bounds of the uncertain stiffness and 

uncertain damping matrices are displayed with 𝛿𝑎1  and 

𝛿𝑎2 respectively and a two norm is displayed with ‖ ‖. 

The Lagrangian representation of configuration in Eq. (7) 

can be described as a matched uncertain system. It should 

be considered that the matched uncertainties are located 

inside the range of the nominal control input matrix, 𝐵𝑢. 

Hence, the uncertainties that are previously discussed are 

expressed in the following form 

𝛥𝐴 = 𝐵𝑢 . 𝛥𝐴𝐵 , ∆𝐵𝑢 = 𝐵𝑢 . ∆𝐵𝐵𝑢  (13) 

From Eqs. (4), (10) and (12) it can be described 

𝛥𝐴𝐵 = ,−𝛥𝐷𝐵𝑘  − 𝛥𝐷𝐵𝑐-. ‖𝛥𝐷𝐵𝑘‖ ≤ 𝛿𝑚𝑎1
. ‖𝛥𝐷𝐵𝑐‖

≤ 𝛿𝑚𝑎2 (14) 

 

∆𝐵 = 𝐵∆𝐵𝐵 .  ∆𝐵𝐵𝑢 = ∆𝐵𝐵  .  ‖𝛥𝐵𝐵𝑢‖ ≤ 𝛿𝑚𝑏𝑢 (15) 

For a non-singular value of  𝐵𝑢 , the following matched 

forms occur 

∆𝐷𝐵𝑘 = 𝐵𝑢
−1∆𝐷𝑘 .  ∆𝐷𝐵𝑐 = 𝐵𝑢

−1∆𝐷𝑐 . 𝛥𝐵𝐵𝑢 = 𝐵𝑢
−1∆𝐵𝑢 (16) 

 

2.2 Optimal designs of the 𝑯∞ controller with LMI 
 

Based on the Lyapunov’s theorem, for a linear system 

with the plant matrix A, the system is stable if there exists a 

positive definite matrix P(𝑃 > 0) such that 

𝐴𝑇𝑃 + 𝑃𝐴 < 0 (17) 

The mentioned condition in Eq. (17) is named a 

Lyapunov inequality on 𝑃 and is a special form of a LMI 

(linear matrix inequality). By using a family of linear 

systems in Eq. (7), the transfer function can be expressed as 

𝐻(𝑠) ≜  𝐶𝑧(𝑠𝐼 −  𝐴𝑢𝑐𝑙)
−1𝐸𝑤 (18) 

From the bounded-real lemma, the 𝐻∞  norm of the 

static output feedback controller is less than a prescribed 

𝛾 > 0 if and only if there exists 𝑃 ≥  0 such that 

[
𝐴𝑢𝑐𝑙

𝑇 𝑃 + 𝑃𝐴𝑢𝑐𝑙 + 𝐶𝑢𝑐𝑙
𝑇 𝐶𝑢𝑐𝑙 𝑃𝐸𝑤

𝐸𝑤
𝑇𝑃 −𝛾2𝐼

] ≤ 0 (19) 

Then, the existence of 𝑃 >  0  satisfying (19) is 

equivalent to the existence of 𝑄 >  0 satisfying 

[
𝐴𝑢𝑐𝑙

𝑇 𝑄 + 𝑄𝐴𝑢𝑐𝑙 + 𝐸𝑤𝐸𝑤
𝑇/𝛾2 𝑄𝐶𝑐𝑙

𝑇

𝐶𝑢𝑐𝑙𝑄 −𝐼
] ≤ 0 (20) 

Eq. (20) is used to controller design. By substituting the 

values of Cucl and Aucl from Eqs. (8) and (9), Eq. (20) is 

changed as 

[
𝑄𝐴𝑇 + 𝑄∆𝐴𝑇 + 𝐴𝑄 + ∆𝐴𝑄 + 𝑄𝐺𝑇𝐵𝑢

𝑇 + 𝑄𝐺𝑇∆𝐵𝑢
𝑇 + 𝐵𝑢𝐺𝑄 + ∆𝐵𝑢𝐺𝑄 + 𝐸𝐸𝑤

𝑇/𝛾2 𝑄𝐶𝑧
𝑇 + 𝑄𝐺𝑇𝐷𝑧

𝑇

𝐶𝑧𝑄 + 𝐷𝑧𝐺𝑄 −𝐼
]

≤ 0 (21) 

To convert the nonlinear matrix inequality (21) to the 

LMI problem, the new variables should be defined. For this 

purpose, it is supposed that 𝐺𝑄 = 𝑌 and 𝛾−2 = 𝜂. Now, the 

condition (21) takes the following form 

[
𝑄𝐴𝑇 + 𝑄∆𝐴𝑇 + 𝐴𝑄 + ∆𝐴𝑄 + 𝑌𝑇𝐵𝑢

𝑇 + 𝑌𝑇∆𝐵𝑢
𝑇 + 𝐵𝑢𝑌 + ∆𝐵𝑢𝑌 + 𝐸𝐸𝑤

𝑇𝜂 𝑄𝐶𝑧
𝑇 + 𝑌𝑇𝐷𝑧

𝑇

𝐶𝑧𝑄 + 𝐷𝑧𝑌 −𝐼
] ≤ 0 (22) 

Where Q and Y are the optimization variables. To design 

the output-feedback 𝐻∞  controller with unmatched 

uncertainty, the LMI optimization problem can be 

formulated as follows 

{
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜂

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑄 > 0. 𝜂 > 0 𝑎𝑛𝑑 𝑡ℎ𝑒 𝐿𝑀𝐼 𝑖𝑛 𝐸𝑞. (22)
 (23) 
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Fig. 1 The controller design algorithm with LMI 

 

 

In the LMI problem it is to be supposed that 𝑌 = 𝑘𝐶𝑦𝑄, 

hence 𝑌𝑄−1 = 𝑘𝐶𝑦. When the optimization problem in Eq. 

(23) is solved, the optimal value for 𝜂 is computed. The 

robust controller design algorithm is shown in a simple 

manner in Fig. 1. 

 

 

3. Decentralized 𝑯∞ controller 
 

From the control theory, unlike the decentralized control 

method, for a fully centralized control of the structure, both 

the whole structural system and all control forces should be 

identified. In decentralized control, just a part of the 

structural information is available for local controllers but 

in the centralized approach, the system plant’s information 

(a priori information) and the state data (a posteriori 

information) to be considered completely. The non-classical 

information configuration of the decentralized control 

approach can be identified based on the amount and type of 

available information to each sub-system controller. Three 

types of decentralized information configurations can be 

defined: full, partial and hierarchical decentralized control 

configurations. Fig. 2 illustrates the three forms of the 

decentralized information configuration. 

In a fully decentralized control configuration, there is 

access to local posteriori information for each controller 

without any transformation of data between local 

controllers. If there occurs data exchange between local 

controllers, it is named as partially decentralized control. In 

the hierarchical decentralized control, as illustrates in figure 

2(c), there is an additional layer of vertical information is 

situated besides the local controllers. In fact, the controllers 

of latest level create balanced relation between former layer 

local controllers. 

In this paper, to apply the decentralized control 

algorithms to the static output feedback control system, the 

sparsity patterns are used. For this reason, some new 

variables are presented by using the condition (23) to 

produce a simple term of the controller gain matrix k. Using 

these new variables, it is possible to apply zero and nonzero 

configuration of the LMI variables that lead to creation of 

full decentralized and a partial decentralized controllers in 

coupled and uncoupled forms. The variables are defined as 

follows: 

𝑄 = 𝑆𝑄𝑆𝑆
𝑇 + 𝑅𝑄𝑅𝑅𝑇 .   𝑌 = 𝑌𝑅𝑅𝑇 (24) 

   𝑄𝑆  and  𝑄𝑅  are symmetric matrices with (𝑛 − 𝑝) ×
(𝑛 − 𝑝) and 𝑝 × 𝑝 dimensions, respectively and 𝑌𝑅  is a 

general matrix with 𝑚 × 𝑝 dimension. S and R matrices in 

the Eq. (24) are  𝑛 × (𝑛 − 𝑝)  and 𝑛 × 𝑝  matrices, 

respectively in which S is the kernel of 𝐶𝑦  and R is 

calculated as follows 

𝑅 = 𝐶𝑦
𝑇 (𝐶𝑦𝐶𝑦

𝑇 )−1 (25) 

Now, these variables are imported in the LMI condition (22), 

then the LMI converts to 

[

𝑆𝑄𝑆𝑆
𝑇𝐴𝑇 + 𝑆𝑄𝑆𝑆

𝑇∆𝐴𝑇 + 𝑅𝑄𝑅𝑅𝑇𝐴𝑇 + 𝑅𝑄𝑅𝑅𝑇∆𝐴𝑇 + 𝐴𝑆𝑄𝑆𝑆
𝑇 + ∆𝐴𝑆𝑄𝑆𝑆

𝑇 +            ∗

𝐴𝑅𝑄𝑅𝑅𝑇 + ∆𝐴𝑅𝑄𝑅𝑅𝑇 + 𝑅𝑌𝑅
𝑇𝐵𝑢

𝑇 + 𝑅𝑌𝑅
𝑇∆𝐵𝑢

𝑇 + 𝐵𝑢𝑌𝑅𝑅𝑇 + ∆𝐵𝑢𝑌𝑅𝑅𝑇 + 𝐸𝐸𝑤
𝑇𝜂

𝐶𝑧𝑆𝑄𝑆𝑆
𝑇 + 𝐶𝑧𝑅𝑄𝑅𝑅𝑇 + 𝐷𝑧𝑌𝑅𝑅𝑇           − 𝐼

]

≤ 0 
(26) 

Now static output feedback controller can be calculated as 

follows 

{
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜂

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑄𝑠 > 0. 𝑄𝑅 > 0. 𝜂 > 0 𝑎𝑛𝑑 𝑡ℎ𝑒 𝐿𝑀𝐼 𝑖𝑛 𝐸𝑞. (26)
 (27) 

By solving the above problem, the output gain matrix is 

calculated as 

𝑘 = 𝑌𝑅𝑄𝑅
−1 (28) 

By considering Eq. (28), by imposing appropriate zero-

nonzero configuration on the QR  and YR  matrices, by 

using the output gain matrix, desired algorithm can be 

created for the structure. If we consider a five-story 

structure for as example, the algorithm will be as follows. 

k =

[
 
 
 
 
k11 0 0 0 0
0 k22 0 0 0
0 0 k33 0 0
0 0 0 k44 0
0 0 0 0 k55]

 
 
 
 

 (29) 

Based on the linear feedback control law, 𝑢(𝑡) =
𝑘𝐶𝑦𝑋(𝑡) = 𝐺𝑋(𝑡), when the sparsity pattern in Eq. (29) is 

used to determine control force at each story, only state 

space variables on the same story are needed. For this 

purpose, the 𝑄𝑅  and 𝑌𝑅 matrices in Eq. (2) can be 

considered as 

𝑄𝑅 =

[
 
 
 
 
𝑄𝑅11 0 0 0 0
0 𝑄𝑅22 0 0 0
0 0 𝑄𝑅33 0 0
0 0 0 𝑄𝑅44 0
0 0 0 0 𝑄𝑅55]

 
 
 
 

  

 𝑌𝑅 =

[
 
 
 
 
𝑌𝑅11 0 0 0 0
0 𝑌𝑅22 0 0 0
0 0 𝑌𝑅33 0 0
0 0 0 𝑌𝑅44 0
0 0 0 0 𝑌𝑅55]

 
 
 
 

 

(30) 

In the uncoupled case, the control force on one story in 

each substructure is determined based on the state space 

variables of stories in the same substructure. The output 

gain matrix in the static-output feedback controller should 

take the following configuration 

k =

[
 
 
 
 
k11 k12 0 0 0
k21 k22 0 0 0
0 0 k33 k34 k35

0 0 k43 k44 k45

0 0 k53 k54 k55]
 
 
 
 

 (31) 

In this special case, the five-story building structure is 

divided in to the two substructures that one of the 

substructures has two stories and the other one has three  

Computing the 

System 

Matrices 

Solving 

Optimization 

Problem 

Obtaining 

Parameters  

η, G 
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stories. Hence, the variable matrices should get the form 

that is adopted with the output gain matrix. Therefore, we 

have 

𝑄𝑅 =

[
 
 
 
 
𝑄𝑅11 0 0 0 0
0 𝑄𝑅22 0 0 0
0 0 𝑄𝑅33 0 0
0 0 0 𝑄𝑅44 0
0 0 0 0 𝑄𝑅55]

 
 
 
 

  

 𝑌𝑅 =

[
 
 
 
 
𝑌𝑅11 0 0 0 0
0 𝑌𝑅22 0 0 0
0 0 𝑌𝑅33 0 0
0 0 0 𝑌𝑅44 0
0 0 0 0 𝑌𝑅55]

 
 
 
 

 

(32) 

For the coupled case, that occurs overlapping between 

substructures, the state variables from both the ith story and 

neighboring stories are used to determine the control force 

of the ith story. For the five-story building structure with 

two substructures including three stories, the output gain 

matrix in the static-output feedback controller will have the 

following form 

k =

[
 
 
 
 
k11 k12 k13 0 0
k21 k22 k23 0 0
k31 k32 k33 k34 k35

0 0 k43 k44 k45

0 0 k53 k54 k55]
 
 
 
 

 (33) 

Similarly, to compute control static-output feedback 

controller gain matrices for this case, variable matrices 

should be defined that satisfy the gain matrix (33). Then, 

there were 

𝑄𝑅 =

[
 
 
 
 
𝑄𝑅11 0 0 0 0
0 𝑄𝑅22 0 0 0
0 0 𝑄𝑅33 0 0
0 0 0 𝑄𝑅44 0
0 0 0 0 𝑄𝑅55]

 
 
 
 

  (34) 

 

 

𝑌𝑅 =

[
 
 
 
 
𝑌𝑅11 𝑌𝑅12 𝑌𝑅13 0 0
𝑌𝑅21 𝑌𝑅22 𝑌𝑅23 0 0
𝑌𝑅31 𝑌𝑅32 𝑌𝑅33 𝑌𝑅34 𝑌𝑅35

0 0 𝑌𝑅43 𝑌𝑅44 𝑌𝑅45

0 0 𝑌𝑅53 𝑌𝑅54 𝑌𝑅55]
 
 
 
 

 

Now the state gain matrix can be computed as follows:  
𝐺 = 𝑘𝐶𝑦 

 

 

4. Numerical example  
 

4.1 Five-story building structure 
 

In order to demonstrate the procedure for the use of 

decentralized 𝐻∞ control and its advantages for the robust 

control against matched case uncertainties, the numerical 

example of a five-degree-freedom structure, equipped with 

active tendons in all its stories, is considered. As shown in 

Fig. 3, in the shear model of the structure, one actuator is 

considered between two adjacent stories. The actuators at 

each floor produce a pair of adversary control forces. 

Earthquake ground acceleration, �̈�𝑔, is applied at the base of 

the structure. 

The mass and stiffness matrices in Eq. (1) for the 

structure are assumed as the following. 

𝑀 = 103 ×

[
 
 
 
 
215.2 0 0 0 0

0 209.2 0 0 0
0 0 207 0 0
0 0 0 204.8 0
0 0 0 0 266.1]

 
 
 
 

  𝑘𝑔 

𝐾 = 106 ×

[
 
 
 
 

260 −113 0 0 0
−113 212 −99 0 0

0 −99 188 −89 0
0 0 −89 173 −84
0 0 0 −84 84 ]

 
 
 
 
𝑁

𝑚
 

(35) 

 

 

(a) fully decentralized control      (b) partially decentralized control   (c) hierarchical decentralized control 

Fig. 2 Configuration of the decentralized information 
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By considering a 5% damping ratio between two first 

modes of the structure the Rayleigh damping matrix is 

determined. 

𝐶 = 105 ×

[
 
 
 
 

6.5042 −2.3111 0 0 0
−2.3111 5.4894 −2.0248 0 0

0 −2.0248  4.9864 −1.8203 0
0 0 −1.8203 4.6675 −1.7180
0 0 0 −1.7180 3.1853 ]

 
 
 
 
𝑁𝑠

𝑚
 (36) 

Based on the location of the actuators in Fig. 3, the 

control force location matrix is 

𝐵 =

[
 
 
 
 
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1 ]

 
 
 
 

 (37) 

The excitation location vector 𝐸 in Eq. (1) is calculated 

as 

103 × ,−215.2  – 209.2  – 207  – 204.8  − 266.1-𝑇 (38) 

For considering the uncertainty, the Norm-Bounded 

uncertainties are taken as ∆𝑀 = +10%𝑀.  ∆𝐾 =
+10%𝐾 𝑎𝑛𝑑 ∆𝐶 = −10%𝐶. It is evidence that by creation 

of changes in the mass matrix, the uncertainties are applied 

to the 𝐸𝑤 , too. By considering Eq. (17) and ‖∆𝐷𝐵𝑘‖ ≤
0.2222 ‖𝐵𝑢2

−1𝐷𝑘‖ = 2.0937 × 108 = 𝛿𝑚𝑎1. ‖∆𝐷𝐵𝑐‖ ≤
0.2222‖𝐵𝑢2

−1𝐷𝑐‖ = 5.2694 × 105 = 𝛿𝑚𝑎2.  and𝛿𝑚𝑎 =
2.0937 × 108. Also, from Eq. (16), we have 𝛥𝐵𝐵𝑢  that it 

is assumed 𝛥𝐵𝐵𝑢 ≤ 0.1. The uncertainties percent that are 

represented above, create the smallest 𝐷𝑐 + ∆𝐷𝑐 , by 

considering ∆𝐶 = −0.1𝐶 and ∆𝑀 = 0.1𝑀 and the largest 

𝐷𝑘 + ∆𝐷𝑘 from ∆𝐾 = 0.1𝐾 and ∆𝑀 = 0.1𝑀. Hence, from 

𝐷𝑘 = 𝑀−1𝐾 , we will have 𝐷𝑘2 = (1.1)−1𝑀−1(1.1)𝐾 =
𝑀−1𝐾 , therefore,  ∆𝐷𝑘 = 0 . Similar to previous 

computations, ∆Dc = 0.1819Dc  and ∆Bu = −0.1  are 

computed. Now, system matrices A and Bu  take the 

following form 

 

 
u5(t)

u4(t)

u3(t)

u2(t)

u1(t)-u2(t)

-u3(t)

-u4(t)

-u5(t)

Xg
 

Fig. 3 Shear Modeling of the five-story structure with active 

tendon system 

 

A = [
05×5 I5×5

−(Dk + ∆Dk) −(Dc + ∆Dc)
]

= [
05×5 I5×5

−Dk −0.8181Dc
] 

Bu = [
0

0.9Bu
] 

(39) 

 

 

4.1.1 Perturbed centralized static-output feedback 
controllers 

By supposing above perturbed system matrices and 

solving the LMI optimization problem in Eq. (27) with 

normal symmetric configuration for 𝑄𝑠 , 𝑄𝑅  and general 

configuration for 𝑌𝑅 matrix, the optimum values for η and 

LMI variables, 𝑌𝑅 . 𝑄𝑅 , are calculated. Then by 

considering 𝑘 = 𝑌𝑅𝑄𝑅
−1  and 𝑘𝐶𝑦 = 𝐺 , that in former 

sections is displayed, velocity state gain matrix, 𝐶𝑢𝑐 for the 

perturbed centralized case is obtained as follows 

106

[
 
 
 
 
0 0 0 0 0  −3.3472 0.4567 0.3003   0.1221 0.0918
0 0 0 0 0  0.5125 −3.1368 −0.0084 0.2168 0.0681
0 0 0 0 0  0.3743  0.0678 −2.9287  0.1117 0.1597
0 0 0 0 0  0.1983  0.2810   0.1341  −3.1065 0.0746
0 0 0 0 0 0.1233 0.1168 0.1824  0.0814 −3.2552]

 
 
 
 

 (40) 

Based on the minimization of the 𝐻∞  transform 

function in the centralized case, the optimization value of 

the 𝛿 gets as, 𝛿𝑜 = 0.7115. 

 

4.1.2 Perturbed decentralized static-output feedback    
controllers  

 

4.1.2.2 Fully decentralized controller 
For the fully decentralized control system, the gain 

matrix has a diagonal form. Based on the matrices form in 

Eq. (31), since 𝑘𝑄𝑅 = 𝑌𝑅, we will have 𝑘 = 𝑌𝑅𝑄𝑅
−1, hence 

for getting the desired form of the gain matrix, defining 

diagonal form for 𝑌𝑅  and 𝑄𝑅  matrices is necessary. 

Similar to the former section the perturbed state velocity 
gain matrix, Gudf in this case is computed as follows 

106

[
 
 
 
 
0 0 0 0 0    −3.8206 0 0    0 0
0 0 0 0 0  0  −2.4182 0    0 0
0 0 0 0 0    0   0   −1.8441 0 0
0 0 0 0 0 0  0   0   −1.5084 0
0 0 0 0 0 0 0 0  0 −1.3473]

 
 
 
 

 (41) 

 

4.1.2.3 Perturbed partial decentralized controller 
(uncoupled) 

In the uncoupled form, subsystems do not have any 

overlapping with each other. Then, the perturbed gain 

matrix and its construction matrices get matrix forms in 

Eqs. (31) and (32) respectively. The perturbed state gain 

matrix calculation process is similar to before sections. In 

this example a five story building structure is divided in to 

two substructures. First substructure is constructed of first 

and second stories and second substructure is included with 

third, fourth and fifth stories. 

106

[
 
 
 
 
0 0 0 0 0    −3.8206 0 0    0 0
0 0 0 0 0  0  −2.4182 0    0 0
0 0 0 0 0    0   0   −1.8441 0 0
0 0 0 0 0 0  0   0   −1.5084 0
0 0 0 0 0 0 0 0  0 −1.3473]

 
 
 
 

 (42) 

 

 

552



 

Robust decentralized control of structures using the LMI 𝑯∞controller with uncertainties 

4.1.2.4 Perturbed partial decentralized controller 
(coupled) 

In this case, based on the output gain matrix form in Eq. 

(33), we have the following matrix for Gudc. 

107

[
 
 
 
 
0 0 0 0 0 −3.8947 2.8771 0.1485 0 0
0 0 0 0 0 3.6626 −5.8266 2.6145 0 0
0 0 0 0 0 0.2273 2.9300  −5.6907 2.7357 − 0.0818
0 0 0 0 0 0   0   2.9630 −5.4345 2.6178
0 0 0 0 0 0 0 0.0398 2.5964 − 4.4558]

 
 
 
 

 (43) 

Unlike the uncoupled case, in the coupled case the 

control force in the overlapping story between substructures 

is calculated based on the state variables from that story and 

neighboring stories. In this case similar to uncoupled case, 

there are two substructures but the first substructure consists 

of first, second and third stories and second substructure 

contains of third, fourth and fifth stories. In the coupled 

case third story is overlapping story. 

 

4.1.3 Results 
Full-scale North-South Kobe 1995 seismic record with 

an absolute acceleration peak of 8.18 
m

s2  is used as the 

ground excitation for example model. The record 

acceleration and velocity are shown in Figs. 4 and 5 

respectively. 

As indicated, in each story of the structure, one actuator 

to produce active control force and importing it in to the 

story is deployed. It is supposed that the actuators don’t 

have any time delay and have unlimited capacity to 

generate the control force. For taking into account the 

uncertainty, the structure is modeled under uncertain 

conditions as shown in the previous section. The fifth story 

perturbed displacement and velocity time histories in five-

story building structure are shown in Figs. 6 and 7. As 

shown in figures, applying the control algorithms, make the 

notable decrease in the displacement and velocity amounts 

of the fifth floor.  

The maximum displacement in the uncontrolled case 

gets 48.67 cm value, this value decreases in centralized, 

fully decentralized, partial decentralized (uncoupled) and 

partial decentralized (coupled) cases to the following values 

respectively: 7.45, 9.53, 8.52 and 7.53 cm. The maximum 

velocity is 308.91 cm/s, but similar to the displacement, this 

parameter in the centralized, fully decentralized, partial 

decentralized in uncoupled and coupled cases gets the 

following values: 77.05, 86.41, 82.44 and 77.63 cm/s. 

according to the above results among the control cases after 

the centralized controller, decentralized controller in 

coupled case gets best values. Also based on the results, 

despite the perturbation, the decrease in displacement and 

velocity responses is notable. 

Comparing the results of the perturbed model containing 

uncertainty in its dynamical properties with the model 

without uncertainty can show the amount of the robustness 

of the control method. The results of the maximum inter 

story drifts for the perturbed and unperturbed models are 

plotted in Fig. 8. As shown in Fig. 8, all four controlled 

cases of control strategies are achieved a great reduction at 

inter story drifts in both perturbed and unperturbed models. 

In the four top stories, the biggest reduction in results has 

occurred in the decentralized case with uncoupled 

configuration, and the smallest reduction is related to fully 

decentralized case, but there are not considerable 

differences among the controlled cases. 

It can be derived that partial decentralized cases are 

taken better performance and fully decentralized is showed 

worst performance. Fig. 8(b) includes the comparison 

results of the inter story drifts for the perturbed model with 

uncertainty. Results are similar to the unperturbed model 

(Fig. 8(a)) with a little increase in responses. Again, the best 

performance is resulted in partial decentralized case. The 

time history of control forces applied in the fifth floor for 

both the perturbed and unperturbed models are shown in 

Fig. 9. 

 

 

Fig. 4 The full-scale North-South Kobe 1995 seismic record 

acceleration 

 

 

 

Fig. 5 The full-scale North-South Kobe 1995 seismic record 

velocity 

 

 

 

Fig. 6 The time history of the perturbed displacement 

response of the example model in the fifth floor under 

earthquake excitation and applying several control 

strategies 
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Fig. 7 The time history of the perturbed velocity response of 

the example model in the fifth floor under earthquake 

excitation and applying several control strategies 

 

 

 
(a) unperturbed model 

 
(b) perturbed model 

Fig. 8 Inter story drifts for five story building structure 

 

 

The control forces in the perturbed and unperturbed 

models for three cases of decentralized control (fully 

decentralized, partial decentralized coupled and uncoupled), 

with a little difference, adapt with the centralized controller. 

Fig. 10 comprises an unperturbed model and a perturbed 

model for centralized and fully decentralized cases in 

displacement responses at supposed 8.94th second. It can be 

shown that the used algorithm has very good robustness 

against the uncertainty of the parameter. 

 
(a) unperturbed model 

 
(b) perturbed model 

Fig. 9 The time history of maximum control force in the 

fifth floor for five story building 

 

 

There happens a little increase in the value of 

displacement in the perturbed model compared to the 

unperturbed model. In the centralized case the difference is 

14 mm moderately, and this value for the fully decentralized 

case is 8 mm. 

The requirement of maximum control forces in the 

centralized, fully decentralized, partial decentralized 

(coupled and uncoupled) cases in the unperturbed model 

and perturbed model are compared in the Table 1. 

Intermediately there happens 0.15 N difference in the value 

of the maximum control force between the nominal model 

and perturbed model. This negligible difference indicates 

that the used control algorithm has notable robustness 

against the uncertainties. Also based on the results it can be 

seen that partial decentralized controller in uncoupled case 

gives the closest results to the centralized controller. Among 

four controlled cases, the largest peak control force value 

belongs to the partial decentralized coupled control case. 

To investigate the performance of the used control 

method, the maximum singular values of the closed loop 

pulse transfer function with different arrangement of gain 

matrices and the open loop pulse transfer function in the 

unperturbed and perturbed models are presented in Figs. 

11(a) and 11(b), respectively. It can be clearly seen the 
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structure resonant frequencies that in the uncontrolled 

system happen at the 1.03, 2.84, 4.51,5.81 and 6.76 Hz, 

with singular values 0.9276, 0.5228, 0.2656, 0.1509 and 

0.1063 are decreased considerably with 𝐻∞output-feedback 

controller in four cases. 

Fig.11(a) shows that all of the controlled cases that have 

an important role to mitigate the structural response in the 

resonant frequencies, but fully decentralized and centralized 

controllers have the largest decreasing in the building 

vibrational responses and partial decentralized controllers 

specially in frequencies larger than 3.5 Hz, have a little 

distance with them. These investigations are performed for 

the perturbed model. The results, in this case, are presented 

in Fig. 11(b). The graphic shows the building resonant 

frequencies are located at 1.01, 2.82, 4.49, 5.79 and 6.76 Hz 

and the singular values corresponding to these frequencies 

are 1.1335, 0.6381, 0.3232, 0.1813 and 0.1261. By 

comparing the unperturbed model and perturbed model, it 

can be seen that natural singular values have increased 

about 0.2 in the uncontrolled structure by entering 

uncertainties to the building model. The different control 

cases have shown a considerable reduction in resonant 

frequency responses in the perturbed model. There is a little 

increment in singular values at resonant frequencies about 

0.09 are occurring in the perturbed model.  

Fig. 12 shows the time history of inter-story drift 

responses in the fifth floor in the perturbed and nominal 

models for centralized and fully decentralized cases. It  

can be seen that in both of the centralized and fully 

decentralized cases, responses have notable reduction in 

comparison with uncontrolled case, also, nominal  and 

perturbed models get very similar results, that can be said 

they are coincident. 

By comparing four cases in Fig. 13, in the uncontrolled 

form there is the large value of 𝐻∞-norm that means the 

transfer function of excitation input 𝑤2 to control output z 

has a maximum value that is the worst-case. 

 

 

 

Fig. 10 Comparison of displacements for the unperturbed 

model and perturbed model in the centralized and fully 

decentralized cases at 8.94
th

 second 

 

 

 

 

Table 1 Comparison of maximum requirement control force 

in four control cases for nominal and perturbed model in the 

fifth story 

× 106𝑵 

 
Cen1 F.D2 P.D3 

coupled 

P.D 

uncoupled 

unperturbed  1.5246 1.7674 1.8056 1.715 

Perturbed  1.5444 1.9832 2.0554 1.8992 

Cen1: Centralized; F.D2: Fully Decentralized; P.D3: Partial Decentralized 

 

 

 
(a) unperturbed model 

 
(b) perturbed model 

Fig. 11 Maximum singular values for five story building 

structure 

 

 

Among the four controlled cases, the centralized control 

takes the minimum value of 𝐻∞ norm, because in this case 

all state variables are available to calculate the gain matrix 

and control decisions. The centralized control method has 

the best performance among the other control cases, and it 

needs all information about structural responses.  

Second class among the controlled cases is decentralized 

case that is divided in to three groups. From this class, the 

fully decentralized case has the largest 𝐻∞ norm among the 

controllers. This result is reasonable because the least 

accessibility to information about the structure for each 

control device occurs in this case. In the decentralized class, 
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there are coupled and uncoupled cases that coupled case has 

the lowest 𝐻∞  norm among the decentralized cases. 

Because, existence stories in every substructure have 

relation with the stories from the other substructures, hence, 

that takes more information about the structure comparing 

the other decentralized cases. Other part of Fig. 13 is 

appertained to perturbed model of the structure. It can be 

easily shown the increase of norms compared rather than 

the nominal case. This is because of the existence of the 

uncertainty in the structural parameters. 

 

4.2 The 20-story benchmark building with uncertainty 
 

To investigate the operation of 𝐻∞  control and its 

robustness against uncertainties in large-scale structures, a 

20 story benchmark building structure is simulated. The 

building is modeled as a lumped-mass shear structure that 

actuators are located between the neighboring stories. 

 

 

 
(a) centralized model in perturbed case with 

uncertainty(centralized.u) and in nominal 

case(centralized.n) 

 
(b) fully decentralized model in perturbed case with 

uncertainty (fully decentralized.u) and in nominal 

case(fully decentralized.n) 

Fig. 12 The time history of inter story drifts in the fifth 

floor for five story building 

 

 

The mass and stiffness parameters of building for every 

story have the following values 

𝑚1 = 1.126 × 106𝑘𝑔.𝑚2 − 𝑚19 = 1.1 × 106𝑘𝑔.𝑚20

= 1.17 × 106𝑘𝑔. 𝑘1 − 𝑘5

= 862.07 ×
106𝑁

𝑚
. 𝑘6 − 𝑘11

= 554.17 ×
106𝑁

𝑚
. 𝑘12 − 𝑘14

= 453.51 ×
106𝑁

𝑚
. 𝑘15 − 𝑘17

= 291.23 ×
106𝑁

𝑚
. 𝑘18 − 𝑘19

= 256.46 ×
106𝑁

𝑚
. 𝑘20 = 171.7 ×

106𝑁

𝑚
 

the damping ratio is %5. A Kobe 1994 full scale earthquake 

is applied to the base of the building. The 𝐻∞ controller is 

designed in centralized and decentralized cases. Also, the 

decentralized controller is implemented in four cases that 

are shown in Fig. 14. 

Each case in Fig. 14 has some substructures that include a 

limited number of stories and there is one controller for 

each substructure. A substructure’s controller is allowed to 

access the sensor data within that substructure. 

Centralized controller has one substructure that covers 20 

stories, fully decentralized case has 20-substructures that 

each substructure covers one story, the partial decentralized 

controller in the uncoupled case has five substructures 

covering four stories in every substructure. 
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Fig. 13 H∞ norms of the open loop transfer function Hzw 

and the closed loop transfer function Hzw  in different 

degrees of centralization 
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Also, the partial decentralized controller in coupled case has 

two formats, first with three substructures covering equal 

story numbers in each substructure and second with three 

substructures covering different story numbers in each 

substructure. In the coupled case, there are overlaps 

between substructures. For stories that there exist in 

overlapping substructures, controllers should have access to 

data from all the overlapping substructures. Simulations are 

performed for above cases in the nominal model and 

perturbed model. Fig. 15 shows maximum-inter story drifts 

in six cases for nominal and perturbed models, respectively. 

 

 

 

 

 

 

 

As shown in Fig. 15, in all control schemes, the 

maximum inter-story drifts are reduced compared to the 

uncontrolled case. The partial decentralized controller 

results similar values for the maximum inter story drifts in 

all stories in coupled case with different numbers of stories 

in each substructure (partial decentralized-coupled-d), 

coupled case with the same numbers of stories in each 

substructure (partial decentralized-coupled-s) and 

uncoupled case. Also, it achieves larger mitigation of drifts 

at all stories compared to the fully decentralized and 

centralized controllers. 
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(a) Centralized 

controller 

(b) fully decentralized 

controller 
(c) partial decentralized 

controller (uncoupled) 
(d) partial decentralized 

controller (coupled) 

equal stories 

(e) partial decentralized 

controller (coupled) 

different stories 

Fig. 14 Different controller algorithms for the 20 story benchmark building 

  

(a) (b) 

Fig. 15 Inter story drifts for 20 story building in the six cases in the (a) Unperturbed model and (b) Perturbed model 
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Fig. 16 Comparison of the maximum inter story drifts 

among all stories between nominal model and perturbed 

model 

 

 

There happens 89% reduction in drift response in the 20
th

 

story compared to an uncontrolled case in the partial 

decentralized control case. This reduction is 59% and 47% 

for the fully decentralized controller and centralized 

controller, respectively. The comparison between the fully 

decentralized controller and the centralized controller shows 

that these two cases have similar results in most of the 

stories, just in the two top stories centralized controller 

results inter story drifts larger than the fully decentralized 

controller. Fig. 15(b) includes the maximum inter story 

drifts for six cases in perturbed model. But, it should be 

considered that is similar to the nominal model. Partial 

decentralized controllers give the largest reduction in 

responses. The partial decentralized-coupled-d and the 

partial decentralized-coupled-s are almost coincident, but 

unlike the nominal model, the uncoupled case has a little 

distance with them. The fully decentralized controller and 

centralized controller have results close to each other alone 

in the 19
th

 and 20
th

 story. The fully decentralized controller 

has responses less than the centralized controller and this 

difference is 0.7 and 1.16 cm, respectively. In the perturbed 

model, responses are increased, but this increment is not 

notable. Fig. 16 shows the comparison between inter story 

drift responses in the two nominal and perturbed models. 

As shown in Fig. 16, the biggest growth in inter story 

drift responses in the perturbed model occurs in the fully 

decentralized case that it’s about 8 mm. This is not 

significant change and it can be said that the used control 

method is robust against the uncertainties in large scale 

building structures. 

 

 
5. Conclusions 
 

In this work, a static-output feedback control with 

centralized and decentralized approach to reduce the 

building structure’s responses by considering the 

uncertainties has been presented. For this purpose, a robust 

𝐻∞ controller is used to mitigate the complications of the 

robust controller. Moreover, the linear matrix inequalities 

are applied to the controller formulations. This approach is 

developed to consider the various forms of decentralization, 

including the fully decentralized controller, the partial 

coupled decentralized controller and the partial uncoupled 

decentralized controller with a change in the number of 

stories in substructures like substructures with the same 

number of stories and substructures with different number 

of stories and the effect of them on the structural responses. 

Also, the effect of uncertainties is investigated on the 

structural responses and the ability of the proposed control 

method for resistance against the uncertainties. 

Numerical examples including a five-story and a 20-

story shear building structures to illustrate the applicability, 

effectiveness and robustness of the implemented control 

method are used. In the proposed control method, a series of 

controllers with different degrees of centralization are 

considered that all of them are static-output feedback 

controllers. A centralized controller, a fully decentralized 

controller, partially coupled and uncoupled decentralized 

controllers, considering the uncertainties and without them 

lied in this series. The 𝐻∞-norms of the controllers with 

different degrees of centralization are compared. The inter 

story drifts, displacements, velocities and control forces 

responses of building structures using the full scale North 

South Kobe 1995 records for the different control 

configurations and two type models including the nominal  

and perturbed models are shown. The inter story drift 

response for fully decentralized and centralized controllers 

is compared and the needed control force in controllers with 

different structures is computed. To demonstrate the 

performance of the proposed controllers, the frequency 

response from them is investigated. Results show that the 

decentralized controllers considerably mitigate the structure 

responses. The fully decentralized controller in the both of 

the five-story and 20-story buildings takes the results 

similar to the centralized controller and among all of the 

controllers partial decentralized controllers have the best 

performances. Changing the number of stories in every 

substructure does not affect the results and coupled and 

uncoupled controllers get similar results. By entering the 

uncertainties to the computations, the responses are a little 

increased, but this is not notable and is negligible. Then, the 

used control method despite the uncertainties in different 

decentralized configurations shows very good robustness 

that is very important. Also it should be considered that 

despite the uncertainties, the increase in the number of 

stories doesn’t have any negative effect on the operation of 

the used method and this method shows good robustness in 

tall structures too. 
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