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Abstract.  This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes
(CNTSs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load.
Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka
approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration
effect. The motion equations are derived using Hamilton’s principle and the differential quadrature method (DQM) is employed to solve
them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs
volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational
characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of
system decreases while considering the CNTs agglomeration effect has an inverse effect.
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1. Introduction

Recently the subject of CNTs has attracted attentions of
researchers because of their excellent physical and chemical
properties such as high tensile strengths, high stiffness, high
aspect ratio and low density (Yakobson et al. 1996, Saito et
al. 1998, Qian et al. 2002, Yu et al. 2000). Numerous
investigations are carried out to study different aspect of
behavior of CNTs and the results of these studies shows that
CNTs have extraordinary mechanical, electronic,
electromechanical and thermal properties (Esawi and Farag,
2007, Liew et al. 2015, Shi and Feng 2004). Xiaodong et al.
(2006) investigated the non-linear forced vibration of
axially moving viscoelastic beams. By referring to the
quasi-static stretch assumption, the partial-differential non-
linearity is reduced to an integro-partial-differential one.
The method of multiple scales is directly applied to the
governing equations with the two types of non-linearity,
respectively. The amplitude of near- and exact-resonant
steady state is analyzed by use of the solvability condition
of eliminating secular terms. Rougui et al. (2007) studied
the geometrically non-linear free and forced vibrations of
simply supported circular cylindrical shells. The non-linear
dynamic variational problem obtained by applying
Lagrange’s equations was then transformed into a static
case by adopting the harmonic balance method. Dynamic
analysis of an embedded single-walled carbon nanotube
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(SWCNT) traversed by a moving nanoparticle, which was
modeled by Simsek (2011) as a moving load, was
investigated in this study based on the nonlocal Timoshenko
beam theory, including transverse shear deformation and
rotary inertia. Multiple time scale solutions were presented
by Shooshtari and Rafiee (2011) to study the nonlinear
forced vibration of a beam made of symmetric functionally
graded (FG) materials based on Euler-Bernoulli beam
theory and von Karman geometric nonlinearity. The effects
of material property distribution and end supports on the
nonlinear dynamic behavior of FG beams were discussed.
He et al. (2012) provided the analysis of nonlinear forced
vibration of multi-layered graphene sheets. Based on the
vdW explicit formulation, a nonlinear continuum model is
developed for the vibrations of MLGSs subjected to out of
plane harmonic excitation in spectral neighborhood of
lower resonances. Ghayesh et al. (2013a) presented the
nonlinear forced vibrations of a microbeam based on the
strain gradient elasticity theory. Hamilton’s principle is used
to derive the nonlinear partial differential equation
governing the motion of the system which is then
discretized into a set of second- order nonlinear ordinary
differential equations (ODEs) by means of the Galerkin
technique. A change of variables is then introduced to this
set of second-order ODEs, and a new set of ODEs is
obtained consisting of first-order nonlinear ordinary
differential equations. This new set is solved numerically
employing the pseudo-arclength continuation technique.
The geometrically nonlinear size-dependent behaviour of a
Timoshenko microbeam was examined numerically by
Ghayesh et al. (2013b). Ghayesh et al. (2013b) studied the
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nonlinear resonant dynamics of a microscale beam. Assadi
et al. (2013) analyzed the size dependent forced vibration of
nanoplates with consideration of surface effects. The effects
of surface properties including surface elasticity, surface
residual stresses and surface mass density are considered
which are bases for size dependent behaviors due to
increase in surface to volume ratios at smaller scales. By
using the superposition principle, closed form solution is
derived for time response of nanoplates under general
harmonic loads. Ghayesh et al. (2013d) investigated the
nonlinear size-dependent behaviour of an electrically
actuated MEMS resonator based on the modified couple
stress theory. Rafiee et al. (2013) provided the nonlinear
free and forced thermo-electro-aero-elastic vibration and
dynamic response of piezoelectric functionally graded
laminated composite shells. The governing equations are
derived using improved Donnell shell theory ignoring the
shallowness of cylindrical shells and kinematic nonlinearity
and the physical neutral surface concept are taken into
consideration. The nonlinear forced vibrations of a
microbeam were investigated by Ghayesh et al. (2013e),
employing the strain gradient elasticity theory. Farokhi et al.
(2013f) nvestigated the nonlinear dynamics of a
geometrically imperfect microbeam numerically on the
basis of the modified couple stress theory. Alijani et al.
(2014) implemented the non-linear static bending and
forced vibrations of rectangular plates retaining
nonlinearities in rotations and thickness deformation. The
boundary conditions of the plate are assumed to be simply
supported immovable and the equations of motion are
derived by using a Lagrangian approach. The numerical
solutions are obtained by using pseudo arc-length
continuation and collocation scheme. The three-dimensional
nonlinear size-dependent motion characteristics of a
microbeam were investigated by Ghayesh et al. (2014)
numerically, with special consideration to one-to-one
internal resonances between the in-plane and out-of-plane
transverse modes. Three-dimensional elasticity solution was
extended by Javanbakht (2012) to investigate a functionally
graded piezoelectric material (FGPM) finite length, simply
supported shell panel under dynamic pressure excitation.
Based on the high-order theory (HOT) of sandwich
structures, the response of sandwich cylindrical shells with
flexible core and any sort of boundary conditions under a
general distributed static loading was investigated by
Shokrollahi et al. (2015). A trigonometric refined beam
theory for the bending, buckling and free vibration analysis
of carbon nanotube-reinforced composite (CNTRC) beams
resting on elastic foundation was developed by Tagrara et
al. (2015). Gholipour et al. (2015) the in-plane and out-of-
plane nonlinear size-dependent dynamics of a microplate
resting on an elastic foundation, constrained by distributed
rotational springs at boundaries. Tadi Beni et al. (2015)
considered the nonlinear analysis of forced vibration of
nonlocal third-order shear deformable beam model of
magneto-electro-thermo elastic nanobeams. The equations
are discretized using the GDQ method. Thereafter, using a
Galerkin-based numerical technique, the set of nonlinear
governing equations is reduced into a time varying set of
ordinary differential equations of Duffing type. Ghayesh

and Farokhi (2015a) studied the nonlinear dynamics of a
microplate based on the modified couple stress theory.
Farokhi et al. (2015) investigated the three-dimensional
motion characteristics of perfect and imperfect Timoshenko
microbeams under mechanical and thermal forces. The
nonlinear dynamical behaviour of a geometrically imperfect
microplate was examined by Farokhi and Ghayesh (2015)
based on the modified couple stress theory. Ghayesh and
Farokhi (2015b) investigated the complex sub and
supercritical global dynamics of a parametrically excited
microbeam. Jump and bifurcation phenomena for
geometrical nonlinear cantilever beam were investigated by
Motallebi et al. (2016) regarding forced vibration. The size-
dependent dynamical performance of a microgyroscope was
investigated by Ghayesh et al. (2016) via use of the
modified couple stress theory. The nonlinear ODE of
system is obtained by using Galerkin method. Dey et al.
(2017) presented the non-linear vibration analysis of
laminated composite circular cylindrical shells. Donnell’s
shell theory incorporating first order shear deformation, in-
plane and rotary inertia is used to model the cylindrical
shell. Galerkin’s method is used to reduce the governing
partial differential equations to a set of non-linear ordinary
differential equations. These equations are solved using
Incremental Harmonic Balance (IHB) method to obtain
frequency-amplitude responses for free and forced
vibration. Dai et al. (2016) studied the Surface effect on the
nonlinear forced vibration of cantilevered nanobeams. The
nonlinear partial differential equation (PDE) is discretized
into a set of nonlinear ODEs by means of the Galerkin's
technique. Sofiyev (2016) implemented the nonlinear free
vibration of shear deformable orthotropic functionally
graded cylindrical shells. The equations of motion of the FG
orthotropic cylindrical shells are derived from the Donnell’s
non-linear shell theory, and then the superposition and
Galerkin methods are adopted to convert the equation of
motion into a non-linear ordinary differential equation.
Fernandes et al. (2016) formulated a nonlinear finite strain
and velocity gradient framework for the Euler—Bernoulli
beam theory. Forced vibration analysis of a simple
supported viscoelastic nanobeam was studied by Akbas
(2016) based on modified couple stress theory (MCST).
This formulation includes finite strain and the strain
gradient within the strain energy generalization as well as
velocity and its gradient within the Kinetic energy
generalization. Shokravi and jalili (2017) investigated
nonlocal temperature-dependent dynamic buckling analysis
of embedded sandwich micro plates reinforced by
functionally graded carbon nanotubes (FG-CNTs). Simsek
et al. (2017) presented the size-dependent forced vibration
of an imperfect FGM microplate with porosities subjected
to a moving load using the modified couple stress theory.
The equations of motion of FG microplate are solved in
time domain by means of Newmark’s method. Pasha
Zanoosi et al. (2017) studied free and forced vibration of
flexible polyurethane foam using multiple time scales
method. The governing equation of motion was an integro-
differential equation. The coupled nonlinear mechanical
behaviour of extensible functionally graded microbeams,
when both viscoelasticity and imperfection are present, was
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investigated by Ghayesh (2018a). Ghayesh (2018b)
investigated the nonlinear vibration characteristics of
axially functionally graded (AFG) shear deformable tapered
beams subjected to external harmonic excitations. Ghayesh
(2018c) presented a size-dependent continuum-based model
for the coupled nonlinear dynamics of extensible
functionally graded (FG) microbeams with viscoelastic
properties.

According to the author's knowledge, to date no
research for the nonlinear forced vibration of micro
nanocomposite cylindrical shell has been found in the
literature. However, size-dependent nonlinear forced
vibration analysis of embedded micro Mindlin cylindrical
shell subjected to magnetic field and harmonic mechanical
load was studied in this research for the first time. The
structure is reinforced with agglomerated CNTs. Based on
energy method and Hamilton's principal, the motion
equations are derived considering size effects using SGT.
DQM is applied for obtaining the nonlinear frequency
response and the effects of magnetic field, CNTs volume
percent and agglomeration effect, boundary conditions, size
effect and length to thickness ratio are discussed in detail.

2. Mathematical formulation of problem

Fig. 1 shows the geometry of the embedded micro
cylindrical shell with radius, R, length, L, and thickness
h . The structure is reinforced with agglomerated CNTs and
is subjected to an axial magnetic field and harmonic
mechanical load.

2.1 Displacement field and kinematic relations

There are many new theories for modeling of different
structures. Some of the new theories have been used by
Tounsi and co-authors (Bessaim 2013, Bouderba 2013,
Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi,
2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili
2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia
2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina
2017, Menasria 2017, Chikh 2017, Zemri 2015, Larbi Chaht
2015, Belkorissat 2015, Ahouel 2016, Bounouara 2016,

f cos(wt)
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Fig. 1 A micro cylindrical shell reinforced with
agglomerated CNTs under transverse uniform harmonic
load subjected to magnetic field

Bouafia 2017, Besseghier 2017, Bellifa 2017, Mouffoki
2017, Khetir 2017).

Mindlin theory is applied for the micro cylindrical shell.
Therefore, the displacement filed of the structure can be
considered as (Tadi Beni et al. 2015)

U(x,6,z.t)=u,(x,0t)+z4 (x,0t), @
V (x,0,2,t)=v,(x,0,t)+24,(x,6,t), (2

W (x,0,z2,t)=w,(x,0,t), ©)

where (U,,V,,W,)are the displacement components of
the mid-plane of the shell along the axial, circumferential
and transverse directions, respectively. Also, ¢X and ¢€
indicate the rotations of the cylindrical shell cross section

about x- and @ - directions, respectively. So, the nonlinear
kinematic relations of the cylindrical shell may be obtained
using Egs. (1)-(3), as follows

2
£,y :8u0 +27 0, +l W g , (4a)
OX oX 2\ oX

1(ov, _ o4, 1 (ow,Y
=2 07 w2,  (4b
b r(aa 20 "j 2r2(80 40

gxezl(%+z%+l%+z_%+l%%jl (4C)
2\ ox OX rof r o r ox 00
1(ow,
g, =— + , 4d
X2 Z(ax ¢xj (4d)
1(1ow, Vv,
=—| — +9,—— |. 4
For 2[r 20 % r] tte)

2.2 Derivation of motion equations

In this section, the governing equations of the structure
are derived using energy method and based on the
Hamilton’s principle which may be described as follows

joa(u ~K -W )t =0, ®)

where T is the kinetic energy; U and W are the total
potential strain energy and the external works, respectively.

Also ¢ denote the variation operator.
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Based on the SGT, the potential strain energy of
structure can be expressed as follows (Assadi 2013)

1 S S
v :EI(O'U. &+ P +Tijk(1)’7ijk(l) +My X )dV ) (6)
v

@)
where Ei Vi MK

: and y;; denote the strain tensor, the

dilatation gradient vector, the deviatoric stretch gradient
tensor and the symmetric rotation gradient tensor,
respectively and can be can be written as (Assadi 2013)

1
& =§(ui‘j +u;, +uk,iuk,j)7 ©)

7i = mm,i ! (8)

ik :%(‘C"jk,i &G T & )_%é‘ij (gmm,k +2‘9mk,m)
)
_%[5jk (gmm,i + 2gmi m ) + 5ki (gmm,j + ngj m ):|'

Zijszé(gi,i +'91,i)’ (10)

in which “” refer to the partial derivative; U; and 5"-
indicate the displacement vector and the Kronecker delta,
respectively. Also, the rotation vector (Hi ) can be defined
as (Assadi 2013)

6, = (%curl (u)ji : (12)

where U is the displacement vector. Substituting Egs. (1)-
(4) into Egs. (7)-(11), the non-zero components of the
dilatation gradient vector, the deviatoric stretch gradient
tensor and the symmetric rotation gradient tensor may be
written by
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Furthermore, the higher-order stresses including ; , z'iﬁ)

and m; can be given by the following relations (Assadi
2013)

oy = Mre, o5 +2ug;, (15)
p, =245, (16)

rlijk = 2,u|1277;k, (17)
=2ul} i (18)

D

in which o is the classical stress tensor; [3;, 7y, and

m;; are the higher order stresses; A and 4 indicate the

bulk and shear modulus and (l,,l;,1,) are the material
length scale parameters. Substituting Egs. (12(a))-(12(c)),
(13(a))-(13(j)) and (14(a))-(14(f)) into Egs. (15)-(18), the
stresses tensor components can be expressed as following
relations
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The kinetic energy of the structure can be calculated
using the following equation

SRR (AT o

where p denotes the density of structure.

The external work due to the axial magnetic field and
uniform transverse load can be given as (Kolahchi et al.
2016, Pasha Zanoosi et al. 2017)

W, j[ H262ijdA,

_low, |
r ox
2
_Z_8¢9 4
r oxo6

(22f)

(24a)

W, =-— _[ (f cos(wt))wdA, (24b)

where 77 is the magnetic permeability of the CNTs and

H, is related to the magnetic field, f and @ are

amplitude and excitation frequency, respectively.
2.3 Material properties of the structure

In this section, the Mori-Tanaka model is used since in
this theory, the agglomeration of CNTs can be assumed. The
effective material properties of the CNTs reinforced
cylindrical shell are obtained based on the Mori-Tanaka
approach which is able to consider the agglomeration effect
of CNTs. The experimental results indicate that the
assumption of uniform distribution for CNTs in the matrix
material is not accurate and the most of CNTs are
agglomerated in some regions of the matrix material. These
regions are in spherical shapes, and are named as
“inclusions” with different elastic properties from the other
regions. Therefore, the Mori-Tanaka approach is used which
is simple and accurate even at high volume fractions of the
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inclusions. The total volume V, of CNTs can be divided
into two parts described as follows (Shi and Feng 2004)

V ; =V rinclusion +V rm ’ (25)

in which V""" andV "are the volumes of CNTs dist

ributed in the spherical inclusions and in the matrix m
aterial, respectively. To define the agglomeration of CN

Ts, two parameters Sand ( are presented as below

Vi
— |ncu5|on, 26
4 VEE (26)
Vinclusion
=— 27
g v (27)

r

Also, the average volume fraction C, of CNTs in the
equivalent composite are considered as

cC =2 (28)

Assuming the randomly orientation of the CNTs in the
matrix material, the effective bulk modulus (K) and
effective shear modulus (G) may be calculated by the
following relations (Shi and Feng 2004)
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B = (36)

r nr+2Ir+(2kr—lr)(3Km+ZGm—Ir)
3 k. +G,

) (37)

4G, p

n, -1 nir

(" r)+(|O,+Gm)
SGmmr(3Km+4Gm)

+ 1

3K, (m, +G,)+G, (7Tm, +G,)

2(k, —1,)(2G, +1,)

+

3(k, +G,,)

n = (38)

gl

in which k.« l.< n.< p, , m, are the Hills elastic modulus of
the CNTs. Also, K, and G, are the bulk and shear moduli of
the isotropic and elastic matrix material which can be

written in terms of the Young’s modulus E_ and the

Poisson’s ratio U, as

— Em
"T3(1-20,) 39
E
G =—"
" 2(1+0,) (40)
Moreover, [, are considered in the following form
1
oo o) a
3(1—Uout)
B 2(4—51)0ut)
p= 15(1-0y )’ 2
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. 3K, — 2G,,
ot 5K +2G,,

out

(43)

Eventually, the elastic modulus (E) and poison’s ratio (v)
may be obtained as

E- 9KG 1 (44)
3K+G
3K -2G
=, (45)
6K +2G

Finally, substituting Eqgs. (6), (23)-(25) into Eq. (5), the
motion equations of the structure can be expressed as
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Furthermore, the stress resultants

h
= I_Zhaijdz ,
I msdz
Y ij(kl) = I_g Tijkdz ' Tij(kl)
2
h
Y9 =[3Pdz, T
2

Using Egs.

can be defined as
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h
— |2 ms
_J.imijzdz,
2

h

_ |2 1
- J‘_Drijkzdz ,
2
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2

(50)

I,,1, and I, are the moment

(51)

(52)

(19(2))-(19(e)), (20(2))-(20(c)), (21(a))-

(21(j)) and (22(a))-(22(f)), the expansion of above stress

resultants can be derived which are
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It is notable that conniving |,, 1, and |, in the obtained

motion equations leads to achieve the motion equations for
the two reduced form of the SGT i.e. the modified couple

stress theory (I, =1,=0) and the classical cylindrical
shell theory (1, =1, =1, =0).

In addition, based on Hamilton's principle, the boundary
conditions can be written as
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3. Solution method
3.1 DQM

There is a lot of numerical method to solve the
initialand/or boundary value problems which occur in
engineering domain. Some of the common numerical
methods are finite element method (FEM), Galerkin method,
finite difference method, GDQM, etc. FEM and FD method
for higher order modes require to a great number of grid
points. Therefore, these solution methods for all these
points need to more CPU time, while the GDQM has
several benefits that are listed as below (Civalek 2004):

1. GDQM is a powerful method which can be used to solve
numerical problems in the analysis of structural and
dynamical systems.

2. The accuracy and convergence of the GDQM are higher
than FEM.

3. GDQM is an accurate method for solution of nonlinear
differential equations in approximation of the derivatives.

4. This method can easily and exactly satisfy a variety of
boundary conditions and require much less formulation and
programming effort.

5. Recently, GDQM has been extended to handle irregular
shaped.

The DQM is utilized to solve the equation of motion. In
this numerical method, the partial differential equations can
be estimated by a first order algebraic equation using
opportune weighting coefficients. Based on a mathematical
point a view, the implementation of the DQM to a partial
differential equation can be written as a function of x and
6 as below (Kolahchi et al. 2016)

d'f, (x;,6,) &

(' ) ZA<">f x.6,) n=1..,N -1 (72
d"f, (x;,60,) &

d(a"‘l ) ZB‘""f(xi,é’l)m:l,...,NH—l, (73)

dn+m fxy(xiigj) N, Ny

(”)B(m)f X, ,60), 74
da" ZZA (X.6), (74)

where A{Y and B{" are the weighting coefficients
associated with n"-order partial derivative of F(X,8)
with regard to X and m™-order derivative with regard to &

at the discrete points X; and &, , respectively. The election

of the grid points positions is accomplished using
Chebyshev polynomials as below (Kolahchi et al. 2016)

L i-1 .
X. =—|1-cos 1=1...,N
e g ] e
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6, _2T g cos| 2L 2] =1..,.N,  (76)
2 N, -1

So, the weighting coefficients can be calculated as
(Kolahchi et al. 2016)

_MOD o s i j=12,0N,
(% =X )M (x;)
A =1 (77)
—ZA§” for i=j, i,j=12,..,N,
o=
__P@) for i=]j, i,j=12..,N,,
(9| _gj)P(gj)
Bigl) = Ny (78)
-> By for i=j, i,j=12,..,N,
5
in which
NX
M(Xi):l—!(xi_xj) (79)
o
NG
P©)=T1@-0) (60)
-
and for higher order derivatives we have
A('n_l)
-1 1
AP =0 AR -] e
(Xi - Xj)
B_(_mfl)
B{™ =m| B{" VB’ - (82)

(9i_‘9j)

Eventually, the motion equations can be expressed in the
matrix form as below

{[K, +Ky J[d]+[MI[d]}=I[f cos(@t)], (83)

where [d]=[u,v,w, @ @, isthe displacement vector;
[K.] and [K,, ] represent the linear and nonlinear
stiffness matrices, respectively. Furthermore [M]is the
mass matrix.

3.2 Newmark time integration scheme

Here, the average acceleration method of Newmark- £
(Simsek and Kocatu'rk, 2009) in conjunction with an
iteration method is used. Based on this method, the time
domain Eq. (76) can be reduced to the following set of

nonlinear algebraic equations

K (di+l) :Qi+1’ (85)
where subscript i+1 shows the number of steps for the
concerned time t=t.,; K (d.,,)is the effective stiffness

matrix and Q,, is the effective load vector, which can be
written as

K*(diﬂ):KL+KNL(di+1)+a0M ' (85)
QL. =Q..+M (aodi +ad; +ad, )1 (86)
where (Simsek and Kocatiirk 2009)
1 1 1
oy =——, o =—, o, =—-1,
ZAt JAt 2y (87)
a,=At(1-y), a, =Aty,

and =05 and 4=0.25 (Simsek and Kocatu'rk,

2009). Based on this iteration method, Eq. (85) at any fixed
time can be solved; and then, the new acceleration and
velocity vectors can be obtained as follows

di =, —d,)—ad; —ad,, (88)

i+l

d,,=d, +ad +ad (89)

i+17
This procedure should be repeated for each time step for
obtaining the frequency-response curves of the structure.

4. Numerical results

In this section, the geometrical and mechanical
properties of the structure are presented to obtain the
numerical results and examine the effect of various
parameters on the behavior of the system. The length to
radius ratio (L/R) and thickness to radius ration of (h/R) of
the micro cylindrical shell are considered to be 3 and 0.1,
respectively. The structure is made of polystyrene with the
Young’s modulus of E_=1190 MPa and Poisson’s ratio

of v, =0.3 (Kolahchi et al. 2016) as the matrix material

which is reinforced with CNTs with the Hills elastic
modulus (Shi and Feng, 2004). In this section, initially, the
validation of present work and convergence and accuracy of
DQM will be implement and then the effects of diverse
parameters on the dimensionless frequency
(Q=wR ,/p/ E ) and nonlinear frequency-response curves

of the structure will studied.
4.1 Validation

In order to ensure the accuracy and validity of the
proposed numerical results, regardless of some terms



542 H. Tohidi, S.H. Hosseini-Hashemi and A. Maghsoudpour

including CNTs as reinforcer, magnetic field, |, and I,

the present results are compared with the other available
literature. For this purpose, based on modified couple stress
theory, the vibrational behavior of a nano cylindrical shell
with Young’s modulus of E =1.06 TPa, mass density of

p =2300 Kg / m? Poisson's ratio of v=0.3, length to
radius ratio of L /R =1and radius of R =2 nm, is

considered. In Table 1, the variation of dimensionless
frequency parameter for different thickness to radius ratio
(h/R) and circumferential wave number is listed. The
obtained results on the basis of DQM are compared with
those reported by Tadi Beni et al. (2015). It can be seen that
the results of present work have a good agreement with the
obtained results by Tadi Beni et al. (2015).

4.2 DQM convergence

In Fig. 2, the convergence and accuracy of DQM are
studied. According to the plotted diagram it can be stated,
the appropriate number of grid points to achieve the
accurate results, is fourteen for two cases of normalized
frequency (excitation frequency to linear frequency ratio).
Therefore, in order to investigate the normalized frequency
of the structure, 15 grid points are selected.

4.3 Parametric study

Fig. 3 shows the effect of CNTs volume percent on the
frequency-response curve of the system. As depicted,
increasing the CNTs volume percent leads to the decreases
of amplitude peak. Accordingly, the maximum amplitude
happens at higher frequencies. The reason is that the
increasing of the volume fraction of CNTs enhances the
rigidity of the material.

In Fig. 4, the effect of various boundary conditions on
the frequency-response curve of the system is shown. Three
different boundary condition types are evaluated, including
two ends simply-supported (SS), one end clamped and other
one simply-supported (CS) and two ends clamped (CC). It
is obvious that the amplitude frequency of the CC case is
lower than two other boundary conditions. It can be inferred
that the normalized frequency of the system in CC case
occurs at lower amplitudes and thus, it can be said that
choosing CC boundary condition type vyields stiffer
structure.

Table 1 Validation of this work

h/R n Classical MCST Classical MCST
theory (Tadi Beni theory Present
(Tadi Beni  2015) Present work
2015) work
0.1 1 0.933 1.126 0.9335 1.1264
2 0.776 1.0688 0.7764 1.0688
3 0.713 1.207 0.7132 1.2071
0.2 1 1.048 1.537 1.0483 1.5373
2 0.971 1.590 0.9714 1.5901
3 1.052 1.928 1.0522 1.9284
0.3 1 1.181 1.878 1.1812 1.8787
2 1.162 1.974 1.1626 1.9742
3 1.330 2.415 1.3305 2.4153
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Fig. 5 is plotted to study the effect of different theories
including of strain gradient, couple stress and classical
theories. As observed the strain gradient theory has the
lowest amplitude of the system than two other theories. This
is due to the SGT has the three additional expression
consisting of dilatation gradient tensor, the deviatoric
stretch gradient tensor and the rotation gradient tensor while
the MCST considered only the rotation gradient tensor.

Fig. 6 represents the effect of agglomeration of CNTs on the
normalized frequency of the system. It can be seen that by
considering agglomeration effects, the maximum amplitude
increases and the linear frequency is decreased. It is since
the CNTs agglomeration leads to decrease in the stability
and rigidity of the structure.

The effect of magnetic field on the frequency-response
curve of the structure is accomplished using Fig. 7. As can
be seen, by applying magnetic field the amplitude of the
system will be reduced. On the other word, by applying the
magnetic field, the stiffness of the structure increases.
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The effects of various material length scale parameter to
thickness ratios on the frequency-response curve are shown
in Fig. 8. It is obvious that by increasing the material length
scale parameter to thickness ratio, the structure becomes
more tenuous, thus the stiffness of the structure decreases.
So, the amplitude of the system will be decreased.

Fig. 9 demonstrates the effect of length to radius ratio of
cylindrical shell on the frequency-response curve of the
structure. As can be seen, with increasing the length to
radius ratio, the amplitude of the structure is increased due
to the reduction in the stiffness of structure.

5. Conclusions

Agglomeration effect on the forced vibration analysis of
a micro cylindrical shell reinforced with CNTs is the main
portion of the present study. Based on Mindlin theory, SGT
and Hamilton’s principle, the motion equations were
derived. The DQM method was utilized to solve the
problem and the effect of different parameters including
magnetic field, CNTs volume percent and agglomeration
effect, boundary conditions, size effect and length to
thickness ratio on the nonlinear forced vibrational
characteristic of the of the system was studied. Following
results were obtained in this work:
1. By enhancing the CNTs volume percent, the amplitude of
system happens at lower region while considering the CNTs
agglomeration effect has an inverse effect.
2. The structure with CC boundary condition has the least
displacement in comparison with others.
3. By assuming the size effect, the stiffness of the structure
increases and thus, the amplitude of the system was
decreased.
4. By considering the magnetic field, the amplitude of the
system will be decreased.
5. With increasing the length to radius ratio, the amplitude
of the structure was increased.
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