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1. Introduction 
 

Recently the subject of CNTs has attracted attentions of 

researchers because of their excellent physical and chemical 

properties such as high tensile strengths, high stiffness, high 

aspect ratio and low density (Yakobson et al. 1996, Saito et 

al. 1998, Qian et al. 2002, Yu et al. 2000). Numerous 

investigations are carried out to study different aspect of 

behavior of CNTs and the results of these studies shows that 

CNTs have extraordinary mechanical, electronic, 

electromechanical and thermal properties (Esawi and Farag, 

2007, Liew et al. 2015, Shi and Feng 2004). Xiaodong et al. 

(2006) investigated the non-linear forced vibration of 

axially moving viscoelastic beams. By referring to the 

quasi-static stretch assumption, the partial-differential non-

linearity is reduced to an integro-partial-differential one. 

The method of multiple scales is directly applied to the 

governing equations with the two types of non-linearity, 

respectively. The amplitude of near- and exact-resonant 

steady state is analyzed by use of the solvability condition 

of eliminating secular terms. Rougui et al. (2007) studied 

the geometrically non-linear free and forced vibrations of 

simply supported circular cylindrical shells. The non-linear 

dynamic variational problem obtained by applying 

Lagrange‟s equations was then transformed into a static 

case by adopting the harmonic balance method. Dynamic 

analysis of an embedded single-walled carbon nanotube  
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(SWCNT) traversed by a moving nanoparticle, which was 

modeled by Simsek (2011) as a moving load, was 

investigated in this study based on the nonlocal Timoshenko 

beam theory, including transverse shear deformation and 

rotary inertia. Multiple time scale solutions were presented 

by Shooshtari and Rafiee (2011) to study the nonlinear 

forced vibration of a beam made of symmetric functionally 

graded (FG) materials based on Euler–Bernoulli beam 

theory and von Kármán geometric nonlinearity. The effects 

of material property distribution and end supports on the 

nonlinear dynamic behavior of FG beams were discussed. 

He et al. (2012) provided the analysis of nonlinear forced 

vibration of multi-layered graphene sheets. Based on the 

vdW explicit formulation, a nonlinear continuum model is 

developed for the vibrations of MLGSs subjected to out of 

plane harmonic excitation in spectral neighborhood of 

lower resonances. Ghayesh et al. (2013a) presented the 

nonlinear forced vibrations of a microbeam based on the 

strain gradient elasticity theory. Hamilton‟s principle is used 

to derive the nonlinear partial differential equation 

governing the motion of the system which is then 

discretized into a set of second- order nonlinear ordinary 

differential equations (ODEs) by means of the Galerkin 

technique. A change of variables is then introduced to this 

set of second-order ODEs, and a new set of ODEs is 

obtained consisting of first-order nonlinear ordinary 

differential equations. This new set is solved numerically 

employing the pseudo-arclength continuation technique. 

The geometrically nonlinear size-dependent behaviour of a 

Timoshenko microbeam was examined numerically by 

Ghayesh et al. (2013b). Ghayesh et al. (2013b) studied the 
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nonlinear resonant dynamics of a microscale beam. Assadi 

et al. (2013) analyzed the size dependent forced vibration of 

nanoplates with consideration of surface effects. The effects 

of surface properties including surface elasticity, surface 

residual stresses and surface mass density are considered 

which are bases for size dependent behaviors due to 

increase in surface to volume ratios at smaller scales. By 

using the superposition principle, closed form solution is 

derived for time response of nanoplates under general 

harmonic loads. Ghayesh et al. (2013d) investigated the 

nonlinear size-dependent behaviour of an electrically 

actuated MEMS resonator based on the modified couple 

stress theory. Rafiee et al. (2013) provided the nonlinear 

free and forced thermo-electro-aero-elastic vibration and 

dynamic response of piezoelectric functionally graded 

laminated composite shells. The governing equations are 

derived using improved Donnell shell theory ignoring the 

shallowness of cylindrical shells and kinematic nonlinearity 

and the physical neutral surface concept are taken into 

consideration. The nonlinear forced vibrations of a 

microbeam were investigated by Ghayesh et al. (2013e), 

employing the strain gradient elasticity theory. Farokhi et al. 

(2013f) nvestigated the nonlinear dynamics of a 

geometrically imperfect microbeam numerically on the 

basis of the modified couple stress theory. Alijani et al. 

(2014) implemented the non-linear static bending and 

forced vibrations of rectangular plates retaining 

nonlinearities in rotations and thickness deformation. The 

boundary conditions of the plate are assumed to be simply 

supported immovable and the equations of motion are 

derived by using a Lagrangian approach. The numerical 

solutions are obtained by using pseudo arc-length 

continuation and collocation scheme. The three-dimensional 

nonlinear size-dependent motion characteristics of a 

microbeam were investigated by Ghayesh et al. (2014) 

numerically, with special consideration to one-to-one 

internal resonances between the in-plane and out-of-plane 

transverse modes. Three-dimensional elasticity solution was 

extended by Javanbakht (2012) to investigate a functionally 

graded piezoelectric material (FGPM) finite length, simply 

supported shell panel under dynamic pressure excitation. 

Based on the high-order theory (HOT) of sandwich 

structures, the response of sandwich cylindrical shells with 

flexible core and any sort of boundary conditions under a 

general distributed static loading was investigated by 

Shokrollahi et al. (2015). A trigonometric refined beam 

theory for the bending, buckling and free vibration analysis 

of carbon nanotube-reinforced composite (CNTRC) beams 

resting on elastic foundation was developed by Tagrara et 

al. (2015). Gholipour et al. (2015) the in-plane and out-of-

plane nonlinear size-dependent dynamics of a microplate 

resting on an elastic foundation, constrained by distributed 

rotational springs at boundaries. Tadi Beni et al. (2015) 

considered the nonlinear analysis of forced vibration of 

nonlocal third-order shear deformable beam model of 

magneto-electro-thermo elastic nanobeams. The equations 

are discretized using the GDQ method. Thereafter, using a 

Galerkin-based numerical technique, the set of nonlinear 

governing equations is reduced into a time varying set of 

ordinary differential equations of Duffing type. Ghayesh 

and Farokhi (2015a) studied the nonlinear dynamics of a 

microplate based on the modified couple stress theory. 

Farokhi et al. (2015) investigated the three-dimensional 

motion characteristics of perfect and imperfect Timoshenko 

microbeams under mechanical and thermal forces. The 

nonlinear dynamical behaviour of a geometrically imperfect 

microplate was examined by Farokhi and Ghayesh (2015) 

based on the modified couple stress theory. Ghayesh and 

Farokhi (2015b) investigated the complex sub and 

supercritical global dynamics of a parametrically excited 

microbeam. Jump and bifurcation phenomena for 

geometrical nonlinear cantilever beam were investigated by 

Motallebi et al. (2016) regarding forced vibration. The size-

dependent dynamical performance of a microgyroscope was 

investigated by Ghayesh et al. (2016) via use of the 

modified couple stress theory. The nonlinear ODE of 

system is obtained by using Galerkin method. Dey et al. 

(2017) presented the non-linear vibration analysis of 

laminated composite circular cylindrical shells. Donnell‟s 

shell theory incorporating first order shear deformation, in-

plane and rotary inertia is used to model the cylindrical 

shell. Galerkin‟s method is used to reduce the governing 

partial differential equations to a set of non-linear ordinary 

differential equations. These equations are solved using 

Incremental Harmonic Balance (IHB) method to obtain 

frequency-amplitude responses for free and forced 

vibration. Dai et al. (2016) studied the Surface effect on the 

nonlinear forced vibration of cantilevered nanobeams. The 

nonlinear partial differential equation (PDE) is discretized 

into a set of nonlinear ODEs by means of the Galerkin's 

technique. Sofiyev (2016) implemented the nonlinear free 

vibration of shear deformable orthotropic functionally 

graded cylindrical shells. The equations of motion of the FG 

orthotropic cylindrical shells are derived from the Donnell‟s 

non-linear shell theory, and then the superposition and 

Galerkin methods are adopted to convert the equation of 

motion into a non-linear ordinary differential equation. 

Fernandes et al. (2016) formulated a nonlinear finite strain 

and velocity gradient framework for the Euler–Bernoulli 

beam theory. Forced vibration analysis of a simple 

supported viscoelastic nanobeam was studied by Akbas 

(2016) based on modified couple stress theory (MCST). 

This formulation includes finite strain and the strain 

gradient within the strain energy generalization as well as 

velocity and its gradient within the kinetic energy 

generalization. Shokravi and jalili (2017) investigated 

nonlocal temperature-dependent dynamic buckling analysis 

of embedded sandwich micro plates reinforced by 

functionally graded carbon nanotubes (FG-CNTs). Şimşek 

et al. (2017) presented the size-dependent forced vibration 

of an imperfect FGM microplate with porosities subjected 

to a moving load using the modified couple stress theory. 

The equations of motion of FG microplate are solved in 

time domain by means of Newmark‟s method. Pasha 

Zanoosi et al. (2017) studied free and forced vibration of 

flexible polyurethane foam using multiple time scales 

method. The governing equation of motion was an integro-

differential equation. The coupled nonlinear mechanical 

behaviour of extensible functionally graded microbeams, 

when both viscoelasticity and imperfection are present, was 
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investigated by Ghayesh (2018a). Ghayesh (2018b) 

investigated the nonlinear vibration characteristics of 

axially functionally graded (AFG) shear deformable tapered 

beams subjected to external harmonic excitations. Ghayesh 

(2018c) presented a size-dependent continuum-based model 

for the coupled nonlinear dynamics of extensible 

functionally graded (FG) microbeams with viscoelastic 

properties.  

According to the author's knowledge, to date no 

research for the nonlinear forced vibration of micro 

nanocomposite cylindrical shell has been found in the 

literature. However, size-dependent nonlinear forced 

vibration analysis of embedded micro Mindlin cylindrical 

shell subjected to magnetic field and harmonic mechanical 

load was studied in this research for the first time. The 

structure is reinforced with agglomerated CNTs. Based on 

energy method and Hamilton's principal, the motion 

equations are derived considering size effects using SGT. 

DQM is applied for obtaining the nonlinear frequency 

response and the effects of magnetic field, CNTs volume 

percent and agglomeration effect, boundary conditions, size 

effect and length to thickness ratio are discussed in detail. 

 

 

2. Mathematical formulation of problem 
 

Fig. 1 shows the geometry of the embedded micro 

cylindrical shell with radius, R , length, L , and thickness 

h . The structure is reinforced with agglomerated CNTs and 

is subjected to an axial magnetic field and harmonic 

mechanical load.  

 

2.1 Displacement field and kinematic relations 
 

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi, 

2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina 

2017, Menasria 2017, Chikh 2017, Zemri 2015, Larbi Chaht 

2015, Belkorissat 2015, Ahouel 2016, Bounouara 2016,  

 

 

Fig. 1 A micro cylindrical shell reinforced with 

agglomerated CNTs under transverse uniform harmonic 

load subjected to magnetic field 

Bouafia 2017, Besseghier 2017, Bellifa 2017, Mouffoki 

2017, Khetir 2017).  

Mindlin theory is applied for the micro cylindrical shell. 

Therefore, the displacement filed of the structure can be 

considered as (Tadi Beni et al. 2015) 

     0, , , , , , , ,xU x z t u x t z x t      (1) 

 

     0, , , , , , , ,V x z t v x t z x t      (2) 

 

   0, , , , , ,W x z t w x t   (3) 

where 
0 0 0( , , )u v w are the displacement components of 

the mid-plane of the shell along the axial, circumferential 

and transverse directions, respectively. Also, x and 

indicate the rotations of the cylindrical shell cross section 

about x- and  - directions, respectively. So, the nonlinear 

kinematic relations of the cylindrical shell may be obtained 

using Eqs. (1)-(3), as follows 
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2.2 Derivation of motion equations 
 

In this section, the governing equations of the structure 

are derived using energy method and based on the 

Hamilton‟s principle which may be described as follows 

 
0

0,
t

U K W dt     (5) 

where T is the kinetic energy; U and W are the total 

potential strain energy and the external works, respectively. 

Also  denote the variation operator. 
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Based on the SGT, the potential strain energy of 

structure can be expressed as follows (Assadi 2013) 

    1 11
,

2

s s

ij ij i i ijk ijk ij ij

V

U P m dV          
(6) 

where ij , i , 
)1(

ijk  and ij denote the strain tensor, the 

dilatation gradient vector, the deviatoric stretch gradient 

tensor and the symmetric rotation gradient tensor, 

respectively and can be can be written as (Assadi 2013) 
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in which “,” refer to the partial derivative; iu  and ij

indicate the displacement vector and the Kronecker delta, 

respectively. Also, the rotation vector ( i ) can be defined 

as (Assadi 2013) 
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where u  is the displacement vector. Substituting Eqs. (1)-

(4) into Eqs. (7)-(11), the non-zero components of the 

dilatation gradient vector, the deviatoric stretch gradient 

tensor and the symmetric rotation gradient tensor may be 

written by 
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Furthermore, the higher-order stresses including ip , 
(1)

ijk

and 
s

ijm can be given by the following relations (Assadi 

2013) 

2 ,ij kk ij ijtr       (15) 
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in which ij is the classical stress tensor; ip , 
)1(

ijk and 

ijm  are the higher order stresses;   and  indicate the 

bulk and shear modulus and ),,( 210 lll  are the material 

length scale parameters. Substituting Eqs. (12(a))-(12(c)), 

(13(a))-(13(j)) and (14(a))-(14(f)) into Eqs. (15)-(18), the 

stresses tensor components can be expressed as following 

relations 
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The kinetic energy of the structure can be calculated 

using the following equation 

2 2 2
2

2

0 0
2

1

2

h
l

h

U V W
K dxd dz

t t t



 


        
        

         
  

 
(23) 

where   denotes the density of structure. 

The external work due to the axial magnetic field and 

uniform transverse load can be given as (Kolahchi et al. 

2016, Pasha Zanoosi et al. 2017) 

2
2

2
h ,m x

w
W H wdA

x

 

  
 

  (24a) 

 

 cos( t) ,tW f wdA   (24b) 

where   is the magnetic permeability of the CNTs and 

xH is related to the magnetic field; f  and   are 

amplitude and excitation frequency, respectively.  

 

2.3 Material properties of the structure 
 

In this section, the Mori-Tanaka model is used since in 

this theory, the agglomeration of CNTs can be assumed. The 

effective material properties of the CNTs reinforced 

cylindrical shell are obtained based on the Mori-Tanaka 

approach which is able to consider the agglomeration effect 

of CNTs. The experimental results indicate that the 

assumption of uniform distribution for CNTs in the matrix 

material is not accurate and the most of CNTs are 

agglomerated in some regions of the matrix material. These 

regions are in spherical shapes, and are named as 

„„inclusions‟‟ with different elastic properties from the other 

regions. Therefore, the Mori-Tanaka approach is used which 

is simple and accurate even at high volume fractions of the 
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inclusions. The total volume rV  of CNTs can be divided 

into two parts described as follows (Shi and Feng 2004) 

,inclusion m

r r rV V V   (25) 

in which 
inclusion

rV and
m

rV are the volumes of CNTs dist

ributed in the spherical inclusions and in the matrix m

aterial, respectively. To define the agglomeration of CN

Ts, two parameters  and   are presented as below 
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V
   (26) 

 

.
inclusion

r

r

V

V
   (27) 

Also, the average volume fraction rc of CNTs in the 

equivalent composite are considered as 

.r
r

V
C

V
  (28) 

Assuming the randomly orientation of the CNTs in the 

matrix material, the effective bulk modulus (K) and 

effective shear modulus (G) may be calculated by the 

following relations (Shi and Feng 2004) 
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in which 

 

 

3
,

3

r m r r

in m

r r r

K C
K K

C C

  

  


 

 
 (31) 

 

  

   

3 1
,

3 1 1 1

r r m r

out m

r r r

C K
K K

C C

  

   

 
 

      

 (32) 

 

 

 

3
,

2

r m r r

in m

r r r

G C
G G

C C

  

  


 

 
 (33) 

 

  

   

3 1
,

2 1 1 1

r r m r

out m

r r r

C G
G G

C C

  

   

 
 

      

 (34) 

where , , ,r r r r    are assumed as 
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(38) 

in which kr، lr، nr، pr , mr are the Hills elastic modulus of 

the CNTs. Also, Km and Gm are the bulk and shear moduli of 

the isotropic and elastic matrix material which can be 

written in terms of the Young‟s modulus mE  and the 

Poisson‟s ratio m as 
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Moreover, ,  are considered in the following form 
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Eventually, the elastic modulus (E) and poison‟s ratio (υ) 

may be obtained as 
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Finally, substituting Eqs. (6), (23)-(25) into Eq. (5), the 

motion equations of the structure can be expressed as 
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In superior equations, 1 2,I I  and 3I  are the moment 

inertia and are assumed as 

   22
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   (51) 

Furthermore, the stress resultants can be defined as 
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 (52) 

Using Eqs. (19(a))-(19(e)), (20(a))-(20(c)), (21(a))-

(21(j)) and (22(a))-(22(f)), the expansion of above stress 

resultants can be derived which are 
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It is notable that conniving 0l , 1l  and 2l in the obtained 

motion equations leads to achieve the motion equations for 

the two reduced form of the SGT i.e. the modified couple 

stress theory ( 0 1 0l l  ) and the classical cylindrical 

shell theory ( 0 1 2 0l l l   ).  

In addition, based on Hamilton's principle, the boundary 

conditions can be written as 
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3. Solution method 
 

3.1 DQM 
 

There is a lot of numerical method to solve the 

initialand/or boundary value problems which occur in 

engineering domain. Some of the common numerical 

methods are finite element method (FEM), Galerkin method, 

finite difference method, GDQM, etc. FEM and FD method 

for higher order modes require to a great number of grid 

points. Therefore, these solution methods for all these 

points need to more CPU time, while the GDQM has 

several benefits that are listed as below (Civalek 2004): 

 

1. GDQM is a powerful method which can be used to solve 

numerical problems in the analysis of structural and 

dynamical systems. 

2. The accuracy and convergence of the GDQM are higher 

than FEM. 

3. GDQM is an accurate method for solution of nonlinear 

differential equations in approximation of the derivatives. 

4. This method can easily and exactly satisfy a variety of 

boundary conditions and require much less formulation and 

programming effort. 

5. Recently, GDQM has been extended to handle irregular 

shaped. 

The DQM is utilized to solve the equation of motion. In 

this numerical method, the partial differential equations can 

be estimated by a first order algebraic equation using 

opportune weighting coefficients. Based on a mathematical 

point a view, the implementation of the DQM to a partial 

differential equation can be written as a function of x and 

  as below (Kolahchi et al. 2016) 
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where
)(n

ikA  and 
)(m

jlB are the weighting coefficients 

associated with n
th

-order partial derivative of ),( xF  

with regard to x and m
th

-order derivative with regard to 

at the discrete points ix and 
i , respectively. The election 

of the grid points positions is accomplished using 

Chebyshev polynomials as below (Kolahchi et al. 2016) 
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So, the weighting coefficients can be calculated as 

(Kolahchi et al. 2016) 
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in which 
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and for higher order derivatives we have 
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Eventually, the motion equations can be expressed in the 

matrix form as below 

 [ ][ ] [ ][ ] [ cos( t)],L NLK K d M d f     (83) 

where 0 0 0[ ] [ ]Txd u v w   is the displacement vector;

 LK  and  NLK represent the linear and nonlinear 

stiffness matrices, respectively. Furthermore  M is the 

mass matrix. 

 

3.2 Newmark time integration scheme 
 

Here, the average acceleration method of Newmark-   

(Simsek and Kocatu r̈k, 2009) in conjunction with an 

iteration method is used. Based on this method, the time 

domain Eq. (76) can be reduced to the following set of 

nonlinear algebraic equations 

,)( 11

*

  ii QdK  (85) 

where subscript i+1 shows the number of steps for the 

concerned time t=ti+1; )( 1

*

idK is the effective stiffness 

matrix and 1iQ  is the effective load vector, which can be 

written as 

*

1 1 0( ) ( ) ,i L NL iK d K K d M     (85) 

 

 *

1 1 0 1 2 ,i i i i iQ Q M d d d        (86) 

where (Simsek and Kocatűrk 2009) 
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 (87) 

and 5.0  and 25.0  (Simsek and Kocatu r̈k, 

2009). Based on this iteration method, Eq. (85) at any fixed 

time can be solved; and then, the new acceleration and 

velocity vectors can be obtained as follows 

1 0 1 1 2( ) ,i i i i id d d d d        (88) 

 

1 3 4 1,i i i id d d d      (89) 

This procedure should be repeated for each time step for 

obtaining the frequency–response curves of the structure. 

 

 

4. Numerical results 
 

In this section, the geometrical and mechanical 

properties of the structure are presented to obtain the 

numerical results and examine the effect of various 

parameters on the behavior of the system. The length to 

radius ratio (L/R) and thickness to radius ration of (h/R) of 

the micro cylindrical shell are considered to be 3 and 0.1, 

respectively. The structure is made of polystyrene with the 

Young‟s modulus of 1190mE MPa  and Poisson‟s ratio 

of 0.3m   (Kolahchi et al. 2016) as the matrix material 

which is reinforced with CNTs with the Hills elastic 

modulus (Shi and Feng, 2004). In this section, initially, the 

validation of present work and convergence and accuracy of 

DQM will be implement and then the effects of diverse 

parameters on the dimensionless frequency 

( /R E   ) and nonlinear frequency-response curves 

of the structure will studied.  

 

4.1 Validation 
 

In order to ensure the accuracy and validity of the 

proposed numerical results, regardless of some terms 
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including CNTs as reinforcer, magnetic field, 0l  and 1l , 

the present results are compared with the other available 

literature. For this purpose, based on modified couple stress 

theory, the vibrational behavior of a nano cylindrical shell 

with Young‟s modulus of 1.06E TPa , mass density of 

32300 /Kg m  ,Poisson's ratio of 0.3  , length to 

radius ratio of / 1L R  and radius of 2R nm , is 

considered. In Table 1, the variation of dimensionless 

frequency parameter for different thickness to radius ratio 

(h/R) and circumferential wave number is listed. The 

obtained results on the basis of DQM are compared with 

those reported by Tadi Beni et al. (2015). It can be seen that 

the results of present work have a good agreement with the 

obtained results by Tadi Beni et al. (2015). 

 

4.2 DQM convergence 
 

In Fig. 2, the convergence and accuracy of DQM are 

studied. According to the plotted diagram it can be stated, 

the appropriate number of grid points to achieve the 

accurate results, is fourteen for two cases of normalized 

frequency (excitation frequency to linear frequency ratio). 

Therefore, in order to investigate the normalized frequency 

of the structure, 15 grid points are selected. 

 

4.3 Parametric study 
 

Fig. 3 shows the effect of CNTs volume percent on the 

frequency-response curve of the system. As depicted, 

increasing the CNTs volume percent leads to the decreases 

of amplitude peak. Accordingly, the maximum amplitude 

happens at higher frequencies. The reason is that the 

increasing of the volume fraction of CNTs enhances the 

rigidity of the material. 

In Fig. 4, the effect of various boundary conditions on 

the frequency-response curve of the system is shown. Three 

different boundary condition types are evaluated, including 

two ends simply-supported (SS), one end clamped and other 

one simply-supported (CS) and two ends clamped (CC). It 

is obvious that the amplitude frequency of the CC case is 

lower than two other boundary conditions. It can be inferred 

that the normalized frequency of the system in CC case 

occurs at lower amplitudes and thus, it can be said that 

choosing CC boundary condition type yields stiffer 

structure. 

 

 

Table 1 Validation of this work 

h/R n Classical 
theory 

(Tadi Beni 
2015) 

MCST 
(Tadi Beni 

2015) 

Classical 
theory 

Present 
work 

MCST 
Present 

work 

0.1 1 0.933 1.126 0.9335 1.1264 

 2 0.776 1.0688 0.7764 1.0688 

 3 0.713 1.207 0.7132 1.2071 

0.2 1 1.048 1.537 1.0483 1.5373 

 2 0.971 1.590 0.9714 1.5901 

 3 1.052 1.928 1.0522 1.9284 

0.3 1 1.181 1.878 1.1812 1.8787 
 2 1.162 1.974 1.1626 1.9742 

 3 1.330 2.415 1.3305 2.4153 

 

 

Fig. 2 The effect of DQ grid points number on the 

normalized frequency 

 

 

 

Fig. 3 Frequency–response curves of the structure for 

different CNTs volume percent 

 

 

 

Fig. 4 Frequency–response curves of the structure for 

different boundary conditions 
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Fig. 5 Frequency–response curves of the structure for 

different theories 

 

 

 

Fig. 6 Frequency–response curves of the structure for 

agglomeration of CNTs 

 

 

Fig. 5 is plotted to study the effect of different theories 

including of strain gradient, couple stress and classical 

theories. As observed the strain gradient theory has the 

lowest amplitude of the system than two other theories. This 

is due to the SGT has the three additional expression 

consisting of dilatation gradient tensor, the deviatoric 

stretch gradient tensor and the rotation gradient tensor while 

the MCST considered only the rotation gradient tensor. 

Fig. 6 represents the effect of agglomeration of CNTs on the 

normalized frequency of the system. It can be seen that by 

considering agglomeration effects, the maximum amplitude 

increases and the linear frequency is decreased. It is since 

the CNTs agglomeration leads to decrease in the stability 

and rigidity of the structure. 

The effect of magnetic field on the frequency-response 

curve of the structure is accomplished using Fig. 7. As can 

be seen, by applying magnetic field the amplitude of the 

system will be reduced. On the other word, by applying the 

magnetic field, the stiffness of the structure increases. 

 

 

Fig. 7 Frequency–response curves of the structure for 

different magnetic field 

 

 

 

Fig. 8 Frequency–response curves of the structure for 

different material length scale parameter to thickness ratios 

 

 

 

Fig. 9 Frequency–response curves of the structure for 

different length to radius ratios 
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The effects of various material length scale parameter to 

thickness ratios on the frequency-response curve are shown 

in Fig. 8. It is obvious that by increasing the material length 

scale parameter to thickness ratio, the structure becomes 

more tenuous, thus the stiffness of the structure decreases. 

So, the amplitude of the system will be decreased. 

Fig. 9 demonstrates the effect of length to radius ratio of 

cylindrical shell on the frequency-response curve of the 

structure. As can be seen, with increasing the length to 

radius ratio, the amplitude of the structure is increased due 

to the reduction in the stiffness of structure. 

 

 

5. Conclusions 
 

Agglomeration effect on the forced vibration analysis of 

a micro cylindrical shell reinforced with CNTs is the main 

portion of the present study. Based on Mindlin theory, SGT 

and Hamilton‟s principle, the motion equations were 

derived. The DQM method was utilized to solve the 

problem and the effect of different parameters including 

magnetic field, CNTs volume percent and agglomeration 

effect, boundary conditions, size effect and length to 

thickness ratio on the nonlinear forced vibrational 

characteristic of the of the system was studied. Following 

results were obtained in this work: 

1. By enhancing the CNTs volume percent, the amplitude of 

system happens at lower region while considering the CNTs 

agglomeration effect has an inverse effect. 

2. The structure with CC boundary condition has the least 

displacement in comparison with others.  

3. By assuming the size effect, the stiffness of the structure 

increases and thus, the amplitude of the system was 

decreased. 

4. By considering the magnetic field, the amplitude of the 

system will be decreased. 

5. With increasing the length to radius ratio, the amplitude 

of the structure was increased.  
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