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1. Introduction 
 

In the wide field of civil engineering, Structural Health 

Monitoring (SHM) and the associated development of 

consistent simulation tools, such as model updating (see 

e.g., Lee et al. 2007, Wu and Wang 2014, Ferrari et al. 

2015b, 2017, and references quoted therein), represent usual 

but non-trivial tasks. In the recent years, supported by the 

broad development of novel measurement technologies for 

structural identification purposes, Heterogeneous Data 

Fusion (HDF) approaches are increasingly adopted for 

supporting such activities (e.g., Xiao et al. 2005, Jiang et al. 

2005, 2006, Su et al. 2009, Zhao et al. 2010, Cho et al. 

2015a, Ferrari et al. 2015a, 2016, and cited references). 

Several pertinent contexts also concern the possible 

limitation and control of structural vibration, within 

different excitation regimes, by the insertion of appropriate 

damping devices (Salvi and Rizzi 2014, 2016, 2017, Salvi 

et al. 2015, and references quoted therein), which may need 

a fine tuning, as coupled to the same identification process 

(Wang and Lin 2015).   

Data fusion procedures consist in integrating 

measurements acquired from different types of sensors, so 

that the resulting information may be characterized by a 

lower degree of uncertainty. In addition, if the measured 

data display a heterogeneous nature (for example,  
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displacements and accelerations), an appropriate fusion is 

required for rendering a comprehensive description of the 

structure of interest (this can also alleviate errors of 

displacements computed on the basis of numerical 

integration from accelerometer records). In fact, while 

acceleration-based monitoring may detect variations on the 

structural condition, displacement records may alert for the 

presence of excessive service loads, as well as to enable for 

fatigue estimation. Also, they may be remotely acquired, in 

a convenient way. 

While data fusion may represent a usual procedure in 

many research areas where signal analysis is commonly 

involved, its application to the civil engineering domain has 

not been deeply explored yet (first contributions in this field 

may be found in Smyth and Wu 2007, Chatzi and Smyth 

2009, Chatzi and Fuggini 2012, 2015, Park et al. 2013, 

Ferrari et al. 2016). A crucial aspect is that, within this 

scenario, known difficulties commonly related to structural 

identification are augmented by issues connected to the 

necessary calibration of the filters employed within the data 

fusion procedure.  

In this work, a Kalman Filter (KF) (Kalman 1960) 

implementation is developed for fusing simulated noise-

added displacements and accelerations of a numerical 

structural system, for several types and levels of added 

noise. This aims at simulating measurements that may be 

extensively acquired “on field”, through displacement 

sensors, and at exploring the perspective of their use for 

SHM and modal identification purposes, possibly 

complemented by the information coming from a few 

acceleration measurements. 
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Data fusion approaches between displacement and 

acceleration measurements involving KF are available in 

the very recent literature (see e.g., Kim et al. 2016, Lei et 

al. 2016, Lin and Luo 2016, Liu et al. 2016), through which 

KF should assist in estimating the condition of structures 

that undergo ambient vibrations, allowing for predicting 

potential damage and evaluating the residual performance 

capacity of a structure (Lei et al. 2015, Yuqing 2015). 

Appropriate damage detection may also require for an 

optimal design of the adopted sensor network, in terms of 

number, type and spatial deployment of sensors (Capellari 

et al. 2017). 

Here, these goals may be pursued through modal 

dynamics identification techniques, which aim at 

determining the modal dynamics characteristics of a 

structure, primarily the natural frequencies. It is well-known 

that the variation of these quantities during the life-cycle of 

a structure may reveal potential changes in its performance 

characteristics. In the present identification perspective, 

main remote displacement signals are taken for the modal 

frequency extraction, possibly corroborated by a few 

acceleration response signals, in order to clear the 

frequency targeting, through effective data fusion based on 

Kalman filtering. 

Papadimitriou et al. (2012) first suggested the 

possibility to adopt the structural dynamic response for 

fatigue damage identification purposes. In the last years, 

many other scientists have dealt with the topic of the 

dynamic response estimation of a structural system within a 

stochastic framework, and several algorithms have been 

developed to treat both linear models, e.g., Kalman Filter 

(Kalman 1960), and non-linear models, e.g., Particle Filter 

(Gordon et al. 1993) and Unscented Kalman Filter (Julier 

and Uhlmann 1998). The state of the system is represented 

in terms of displacements and velocities of the response at 

specific locations along the structure. In practice, however, 

it is not always possible to measure displacements and 

velocities of the considered structural system (Lee et al. 

2007); thus, when the knowledge of such quantities may be 

required, KF represents an important tool for accurately 

reconstructing the whole dynamic response, starting from 

incomplete measurements (Lee and Yun 2008, Azam et al. 

2015, Ding and Guo 2016, Eichstadt 2016, Kim and Sohn 

2017). 

In this paper, a Kalman Filter is implemented into a 

HDF process in order to combine numerically-determined 

data from heterogeneous sensors, i.e., displacement and 

accelerometer sensors, aiming at deriving accurate 

displacement estimates of a studied dynamical system, 

adopted then for modal dynamics identification purposes, 

based on displacement data. Both displacement and, to a 

lesser extent, acceleration measurements are considered to 

be affected by errors, represented by noise added to the 

signals, in order to simulate the difficulty in the “on field” 

detection of such a kind of data.      

Then, thanks to the use of the enhanced KF estimated 

displacements, through the adoption of appropriate FDD 

inverse analysis algorithms for output-only modal dynamics 

identification (e.g., Zghal et al. 2014, Pioldi et al. 2015a, b, 

2017, Chatzis et al. 2017, and wide reference frameworks 

discussed therein) it becomes possible to extract the natural 

frequencies of the benchmark structure, from displacement 

signals. Finally, from a comparison between these 

frequencies and the numerically-determined natural 

frequencies, it is possible to cross-evaluate the accuracy of 

the achieved KF estimates. 

The main goal of the present research investigation is 

twofold: 

 firstly, it aims at demonstrating the effectiveness of a 

KF implementation in civil contexts for SHM and 

identification purposes. Differently from what it has 

been previously shown in Ferrari et al. (2016), in which 

the efficacy of the fusion procedure has been 

preliminary demonstrated for a specific case study, 

concerning historic reinforced concrete Brivio 

bridge (1917), this paper provides a wider and more 

general treatment on the use of KF in HDF procedures, 

by exploring strengths and weaknesses of such a 

technique, and aiming at achieving a clarifying and 

comprehensive framework on the topic, within a 

controlled environment based on synthetic response 

signals; 

 secondly, it extensively attempts to investigate the 

possibility of employing displacement data for modal 

identification purposes. Although modal properties may 

be conveniently extracted from acceleration 

measurements only, the perspective of alternatively 

using displacement recordings toward the same end 

may open up new scenarios in the signal acquisition 

stage, since it would make possible to monitor a 

specific structure (and to deduce its current modal 

properties) without directly acting on it (or only 

partially involving the structure through the placement 

of a few accelerometers), for example by using a total 

station. 

The main achievements of the present research work 

may be resumed as follows: 

 the adoption of remote displacement signals, possibly 

enriched by reliable acceleration recordings, through an 

original KF implementation included within the Data 

Fusion procedure, is shown to become effectively 

useful for structural monitoring purposes, as leading to 

a truthful reconstruction of the original structural 

response, despite for possible disturbances of various 

kinds;  

 the maximum level of noise that may be tolerated on 

displacement and acceleration measurements is defined, 

to allow for a successful HDF and to achieve reliable 

estimates of the current structural dynamic response; 

within this process, filtered displacements (taking 

benefit from DF processing) reveal to be more sensitive 

to noise-affected accelerations than to noise-affected 

displacements (as raw displacement data); 

 the multi-rate KF feature allowing for a relatively low 

sampling rate for the displacement measurements, 

fundamental to overcoming low-frequency integration 

errors, and for higher sampling rates for the 

accelerations (i.e., within the frequency range where 

accelerometers result more accurate), is revealed, 

enabling each sensor type to play its role on its inherent 
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strengths. 

The paper is organized as follows. Section 2 provides a 

brief description of the benchmark dynamical system taken 

into consideration for the entire analysis, i.e., a 3-DOF 

shear-type frame. The main points followed during the 

analysis are outlined, and the multi-rate Kalman Filter 

scheme involved in the HDF procedure, as originally 

derived by Smyth and Wu (2007), is further elaborated 

through a dedicated numerical implementation. Section 3 

presents various scenarios of numerical analysis, involving 

the Kalman filter algorithm, aiming at improving the 

displacement response of a linear dynamic system by 

complementary acceleration data. Different artificial 

random noise signals are added to the observed 

(numerically-determined) synthetic displacements of a    

3-DOF frame under random force top-floor loading, 

simulating the error that may occur in the displacement 

sensors during the “on field” measurement acquisition 

stage. Also, the cases of noise-free accelerations and (slight) 

noise-affected accelerations are investigated through several 

numerical analyses, at increasing displacement noise levels, 

and for different inherent modal damping ratios of the 

underlying structural system. Limits of applicability of such 

a technique are explored and filter effectiveness is evaluated 

in terms of RMS error between originally uncorrupted 

displacements and filtered displacements, and on the basis 

of the modal parameters (natural frequencies) that can be 

extracted from the KF response estimation, based on 

displacement signals, through appropriate inverse analysis 

algorithms. The results related to the analyzed cases are 

presented and commented. It is worth noting that all the 

assertions provided within this paper hold true for synthetic 

signals generated from direct time integration prior to the 

filter and identification analysis. Conclusions and global 

remarks are finally outlined in Section 4, and a few future 

perspectives are disclosed. 

 

 

2. Theory 
 

2.1 Description of the benchmark structural system 
 
The dynamic structural system taken into consideration 

for the present numerical simulation analyses is a 3-DOF 

shear-type building, as schematically represented in Fig. 1.  

This choice is motivated by the simplicity of the 

geometrical and structural properties that characterize such 

a kind of system, thus allowing for easy analytical and 

numerical treatments. Furthermore, this structural 

modelization may be good enough to represent real 

benchmark structures, within the realm of dynamic response 

inspected here.      

In order to make the analyses the more reliable as 

possible, plausible values of mass, stiffness, damping and 

geometrical structural characteristics are assumed. Mass m 

of each floor is taken equal to 144 tons, and the stiffness of 

the columns is set as follows: EJ1 = 3.75∙10
7
 kN/m for the 

left columns and EJ2 = 1.56∙10
8
 kN/m for the right ones. 

Columns display a height h of 3 m. Additionally, modal 

damping ratios ζi are assumed to be equal to 1%, 3% or 5% 

for all the modes, according to each analyzed case, 

spanning the whole dynamic response at increasing sub-

critical realistic inherent structural damping. 

Concerning input load F(t) to be applied to the 

dynamical system, a common trend for KF estimation 

purposes (Kitanidis 1987, Hsieh 2000, Gillijns and DeMoor 

2007) is to avoid using any a-priori knowledge of such an 

input force. In fact, structural systems are inherently 

characterized by uncertainty, relating to measurement 

errors, sensor noise, inefficacy of the numerical models, and 

lack of a-priori knowledge on both the system and the 

loading conditions. In order to comply with that, in the 

analyses presented later, a zero-mean random load F(t) at 

around 1∙10
5
 kN is considered, as applied to the top floor of 

the building (Fig. 1), to compute the floor responses. Later 

on, these are output-only processed, without knowing 

source excitation F(t). 

Numerically-determined undamped modal natural 

frequencies fn,i of the benchmark structure are obtained as: 

fn,1 = 2.658 Hz, fn,2  = 7.448 Hz and fn,3 = 10.763 Hz.  

Damped modal frequencies fd,i = fn,i / 2
1 i

 have also been 

calculated for the damped cases with ζi  = 1%, 3% and 5%, 

for all the modes. Reference results are reported in Table 1. 

Damped natural frequencies fd,i will be later used as 

comparison terms for evaluating the accuracy of the 

Kalman Filter estimations. 

 

 

 

Fig. 1 Schematic view of the analyzed 3-DOF shear-type 

building under top-floor input force 

 

 

 

Table 1 Frequencies fd,i of the damped structural system 

(ζi  = 1%, 3% and 5%) 

 fd,1 [Hz] fd,2 [Hz] fd,3 [Hz] 

ζi 

1% 2.658 7.448 10.762 

3% 2.657 7.445 10.758 

5% 2.655 7.439 10.749 
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2.2 Procedure of analysis 
 
The procedure of analysis is summarized as follows: 

i. The dynamic response of the system is first determined 

in terms of displacements, velocities and accelerations, 

through the implementation of Newmark's method, 

consisting of a step-by-step direct time integration of 

the equations of motion. It is worth mentioning that 

only the third floor’s kinematic response is going to be 

monitored, as this may resume the whole structural 

response and be suitable enough for first SHM 

purposes based on a single-channel recording.   

ii. To simulate the measurement error that may occur in 

sensors during the data acquisition stage, a noise signal 

is selectively added to the original measurements. It is 

well-known that, for estimation purposes, KF provides 

the exact probability density function of the state of 

linear dynamical systems with a linear measurement 

model, with additive zero-mean Gaussian noise 

processes. Therein, the estimation capabilities of the 

filter are investigated for covering also non-Gaussian 

noises. In particular, a zero-mean random noise is 

employed to contaminate the data. During the 

analyses, both displacements (mainly) and 

accelerations are contaminated with different levels of 

noise. 

iii. Moreover, in the numerical analyses, displacement and 

acceleration measurements are considered to be 

sampled at different rates, in accordance with the 

common capability of the employable instrumentation. 

In particular, displacements are sampled at lower 

frequencies than for accelerations. From the literature, 

a usual frequency range of acquisition has been 

observed as varying between 12.5 Hz and 100 Hz for 

displacements, and from 100 Hz up to 300 Hz for 

accelerations. Consequently, for the purposes of the 

present fusion procedure, a multi-rate Kalman filter 

scheme is adopted, as originally developed by Smyth 

and Wu (2007).    

iv. KF effectiveness is measured in two different ways. 

The first one is based on the calculation of the Root 

Mean Square (RMS) error between the estimated 

displacements after KF application and the original 

(noise-free, numerically-determined) displacements; 

the second one is based on the comparison between the 

modal frequencies that can be extracted via appropriate 

inverse analysis algorithms from the original (noise-

free, numerically-determined) displacement recordings 

and those that can be extracted from the filtered 

displacement estimations, possibly enriched by means 

of heterogeneous data fusion with a few reliable 

acceleration data, through appropriate output-only 

modal identification techniques applied on 

displacements. 

 
2.3 Numerical Kalman Filter implementation 
 
Kalman Filter is an algorithm that can be used to 

estimate the health conditions of linear dynamical systems  

 

perturbed by a zero mean Gaussian white noise, through the 

fusion of data that may also be affected by measurement 

errors. The mathematical model used in the derivation of 

such a filter constitutes a reasonable representation for 

many problems of a practical interest, including control 

problems as well as estimation problems.   

This section provides a schematic description of the 

linear multi-rate Kalman filter employed within the 

analyses for improving the estimation of measured 

displacements   ( )  (related here to SDOF top-floor 

displacement signal   ( ), see Fig. 1) by using measured 

accelerations  ̈ ( )  supposed to be acquired from 

acceleration sensors (here on the same monitored SDOF, 

i.e., related to   ( )   ̈ ( )). According to Smyth and 

Wu (2007), in the case in which accelerations and 

displacements are available to be measured, the 

measurement process can be modeled in state-space form 

as follows 

[
 ̇( )
 ̈( )

]  [
  
  

] [
 ( )
 ̇( )

]  [
 
 
]  ̈ ( )  [

 
 
] ( ) (1) 

  ( )  [  ] [
 ( )
 ̇( )

]   ( ) (2) 

where  ̈ ( )  denotes the exogenous input to the state 

transition function, which effectively coincides with the 

measured accelerations;   ( ) denotes the measured 

displacements;   ( )  and   ( )  are the process noise 

sources associated to accelerations and displacements, 

respectively (assumed to be Gaussian). By setting vector 

 ( )  [ ( )  ̇( )], representing the system state vector 

(i.e. the unknown output from the filter), formulated via 

aggregation of filtered displacement  ( ) and velocity  ̇( ) 
signals, Eqs. (1) and (2) may be compactly rewritten in 

matrix form as 

 ̇( )    ( )    ( )   ( ) (3) 

 ( )    ( )   ( ) (4) 

where  ( )   ̈ ( ) ,  ( )    ( ) ,  ( )  [   ( )] , 

and state matrix  , input matrix   and output matrix   are 

defined as follows 

  [
  
  

]       [
 
 
]         [  ] (5) 

Since these matrices are assumed to be known within the 

filtering analysis, this shall lead to a linear model-based (vs. 

model-free; Hamilton et al. 2016) Kalman filter, relying on 

minimizing the error between measured and filtered data, 

based on the availability of the above-mentioned matrices, 

governing corresponding state-space Eqs. (3) and (4), which 

represent the linear relationships between the states, the 

measurements and the associated measurement noises 

(Crawley and O’Donnell 1987). To implement the data 

fusion procedure, Eqs. (3) and (4) are then transformed into 

discrete form (zero-order hold assumption), as further 

indicated in the resuming flowchart of Fig. 2 (adapted from 

Ferrari et al. 2016). 
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In Fig. 2,  ̂    𝐄(    ) represents the estimated expected 

value (mean) of state vector      at time instant j, using 

measurements up to (and including) time instant i 

(conditional expectation); similarly,  ̂    𝑉 𝑟(    ) is the 

variance of state vector     ;   and   represent the 

covariance of associated process noise sources  ( ) and 

 ( );  ̂ is the so-called Kalman gain. Given matrices  , 

 ,  ,  ,  , and supposing to know state mean  ̂ and 

variance  ̂ at time k, the recursive procedure summarized in 

the flowchart of Fig. 2 is based on the calculation 

of Kalman gain  ̂ at same time step k, through which 

the knowledge about the state is updated, predicting 

quantities  ̂ and  ̂ at time k+1, using measurements up to 

time k+1. 
The selection of assumed process noise (p-noise) 

covariance matrix  , usually mainly based on intuition, and 

of observation noise (o-noise) covariance matrix   displays 

a significant effect on the estimation performance of the 

Kalman filter. A basic way to think of matrices   and   is 

that they constitute weighting factors between the 

prediction (state) equations and the measurement (output)  

 

 

 

 

equations, and this ratio is expressed within the Kalman 

gain equation. Considering a larger   is equivalent to 

accounting for a larger uncertainty in the state equations, 

which is equivalent to less trusting the result of these 

equations, effectively meaning that the filter should more 

correct, by the measurement update. Similarly, considering 

a larger   is equivalent to accounting for a larger 

uncertainty in the measurements, which is equivalent to less 

trusting the measurements, effectively meaning that the 

filter should less correct, by the measurement update. On 

the basis of this, p-noise has been intuitively set equal to 

10
−12

 for the whole analysis, since the model is considered 

to be very robust (the lower this is, the more accurate the 

model is considered to be). Instead, o-noise, which reveals 

the confidence given to the acquired measurements, has 

been set at around 10
−3

, so that the increasing level of noise 

on the displacements provides the filter with much of a 

freedom to adjust itself, with the smaller mean square error 

for the estimated acceleration signals (the lower the 

observation noise, the more severely the Kalman filter 

estimator is forced to fit the recorded accelerations). Such 

values of process noise and observation noise are then kept 

 

Fig. 2 Multi-rate Kalman filter flowchart (adapted from Ferrari et al. 2016) 

 

Fig. 3 Schematic general conception of the treated HDF cases: noise-free acceleration case (excluding the part in blue 

colour) and noise-affected acceleration case (considering the whole scheme). Determination of filtered displacements and 

possible subsequent phase of modal identification, based on displacements 

635



 

Gabriele Ravizza, Rosalba Ferrari, Egidio Rizzi and Eleni N. Chatzi 

constant during the performed analyses, regardless of the 

noise level affecting the displacement data. From the 

assumed values of o-noise and p-noise, matrices   and   

are build up as follows (Smyth and Wu 2007): matrix   is 

a 2×2 matrix with zero entries, excepted for the o-noise 

level set in position S22; matrix   reduces to a scalar, 

which is indeed set to the selected p-noise value.   

Since accelerations and displacements are sampled at 

different time intervals, respectively named Ta and Td, 

where Ta / Td = n ϵ א (Chatzi and Fuggini 2012), the filter 

has been implemented in a multi-rate configuration (Smyth 

and Wu 2007). This means that, at times t = nTa, both the 

time and measurement update steps of the Kalman filter are 

performed, whereas when nTa < t < (n+1)Ta only the time 

update step (ignoring the observation innovation) is carried 

out. Despite that the outcomes of the filter represent the 

“updated” estimates of both the displacements and the 
velocities (derived from the acceleration input) of the 

benchmark structure, the present work plan focuses only on 

the displacement output. 
 
 
3. Analysis results 
 

In this section, a selection of the results from the 

numerical analyses performed by involving the multi-rate 

Kalman Filter algorithm are reported. Two main scenarios 

are presented. Initially, only the displacements are 

considered as affected by noise, while the accelerations are 

taken as noise-free. This might represent a quite realistic 

scenario, since accelerometers are able to capture signals 

with a higher level of accuracy than for displacement 

sensors (Smyth and Wu 2007). Secondly, also the 

acceleration data are “noisified” with a slight zero-mean 

random noise. Indeed, also data acquired via accelerometers 

may be subjected to measurement errors, albeit smaller than 

errors affecting displacements. Additional simulation results 

are available in Ravizza (2017).     

All the analyses have been developed within an autonomous 

MATLAB implementation environment. A general 

resuming conceptual scheme of the treated HDF cases, with 

and without noise affecting the accelerations, also including 

the possible subsequent modal identification analysis 

performed on the filtered displacements, is synoptically 

depicted in Fig. 3. 
 

3.1 Noise-free acceleration case 
 
Acceleration data are here assumed as noise-free. In 

practice, it means to consider accelerometer measurements 

without errors, as illustrated in the synoptic scheme in 

Fig. 3 (i.e., without considering the part in blue colour). 

In particular, 5%, 10%, 25%, 50%, 150% and 300% 

random noise levels are considered as applied to the 

displacements, for the different considered underlying 

modal damping ratios, namely ζi  = 1%, 3% and 5%. From 

the analyses, it emerges that by involving KF into the fusion 

procedure it is possible to obtain refined displacement 

estimations, namely displacements endowed with an 

improved accuracy. 

 

Fig. 4 KF response estimation for 25% noise level  

(ζi = 1%) 

 
 
Table 2 RMS error [%] of KF response estimation for 

increasing displacement noise levels and damping ratios  

ζi (noise-free acceleration case) 

 
displacement noise 

5% 10% 25% 50% 150% 300% 

ζi 

1% 0.15 0.16 0.19 0.24 3.28 9.71 

3% 0.16 0.18 0.20 0.25 3.21 9.22 

5% 0.13 0.17 0.18 0.37 3.75 9.91 

 
 

In particular, from Fig. 4, which shows displacements 

before and after the fusion procedure, it is possible to 

appreciated how the curves, representing the original 

displacements (blue curve) and the KF estimated 

displacements (red curve), show a similar trend for a 

displacement random noise level of 25%. In Table 2, the 

RMS errors between the original displacements and the KF 

estimated displacements are reported for each examined 

scenario. 

From Table 2, it is possible to observe that the proposed 

HDF technique is very robust, if accelerations are set as 

noise-free, despite for the very high noise levels on 

displacements. In fact, the RMS error is less than 1%, for 

displacement noise levels up to 50%, independently from 

the value of considered damping ratio ζi. 

Notice that RMS noise levels greater then 25% are 

considered to be quite unrealistic for civil engineering 

applications (Smyth and Wu 2007). RMS errors of about 

3% and 9% refer, instead, to the cases characterized by a 

displacement noise level equal to 150% and 300%, 

respectively. 
Fig. 5 shows the qualitative behavior of the RMS error 

for increasing random noise levels and damping ratios. 

From the graph, it clearly emerges how, up to a 50% of 

noise level, the RMS error lies well below 1%. It is 

interesting to note that the three depicted curves seem to 

present the same trend, with a very light influence of the 

inherent damping ratios, especially for noise levels below 

50%. Consequently, it is possible to affirm that the Kalman 

Filter algorithm provides very consistent displacements for 
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all the cases considered so far. This also demonstrates the 

effectiveness of the filter in case of smaller values of 

displacements, as derived from the adoption of greater 

damping ratios. 

Effectiveness of the Kalman Filter is also tested based 

on an inverse analysis conducted for modal identification 

purposes from standard FDD, based on displacement 

signals. In particular, the procedure of modal identification 

has been applied to the displacements before (thus 

unprocessed by DF) and after (thus taking benefit from DF 

with accelerations) Kalman Filter application, and results 

have been reported for each of the analyzed cases. 
From the comparison presented in Fig. 6, it is immediate 

to note how the peaks identified after the filtering procedure 

look much clearer than the same peaks identified from the 

unfiltered displacement data, especially when the noise 

level becomes considerable. This is primarily due to the 

beneficial effect induced by reliable acceleration data 

involved within the fusion procedure, which indeed display 

a relatively better information in the high-frequency 

regions, to enrich displacements. 
 

 

Fig. 5 RMS error trend of KF estimation at increasing 

displacement noise levels (noise-free acceleration case). 

A visible kink is recorded at 50% noise level 

 

 

Fig. 6 FDD modal frequency identification on 

displacements for 25% noise level (ζi = 1%) 

From the analyzed noise-free acceleration case, it can be 

asserted that the Kalman Filter algorithm is only slightly 

influenced by the amount of sub-critical structural damping, 

with a modal damping ratio in the order of a few percents, 

since in each case the RMS error remains at around 1%, for 

displacement noise levels up to 50% (see Fig. 5). It is worth 

to note that this may be considered as rather reliable for 

damping ratios typical of civil engineering structures; for 

higher damping ratios, further analyses may become 

necessary.    

   

3.2 Noise-affected acceleration case 
 
The noise-affected acceleration case (slight noise) is 

now considered. This represents a further common scenario 

in practical cases, because in reality not only displacement 

sensors but also acceleration sensors may present 

measurement errors, though of a slight amount for the latter 

sensors. To take this into account, a slight random noise 

level has been added to the acceleration data, too. Damping 

ratios ζi, instead, have been maintained as constant and all 

equal here to 1%, as representative of a slight sub-critical 

damping, in the whole analysis. The analysis follows again 

the scheme of Fig. 3, now also including the part 

highlighted in blue colour. 

As previously stated, in this section the focus is now 

placed on the HDF scenario involving noise-affected 

acceleration measurements, even though here very low 

noise levels are applied. 

In particular, 0%, 5%, 10%, 25% and 50% random noise 

levels are considered as applied to displacements, for 

simultaneous slight acceleration noise levels equal to 1%, 

2% and 3%. From the results of the noise-affected 

acceleration case, it emerges that KF seems to be 

significantly affected by the level of slight noise added to 

the accelerations. 

In fact, from Fig. 7, which shows the displacement 

histories before and after the fusion procedure with 

acceleration data, it is possible to appreciate how the 

curves, representing the original displacements (blue curve) 

and the KF estimated displacements (red curve), take 

different trends, already for low levels of acceleration 

random noise. 
 

 

Fig. 7 KF response estimation for 25% noise level  

(1% acceleration noise) 
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Table 3 RMS error [%] of KF response estimation at 

increasing displacement noise level (noise-affected 

acceleration case) 

 
displacement noise 

0% 5% 10% 25% 50% 

acc. noise 

1% 1.17 1.97 2.72 4.01 6.67 

2% 8.72 11.03 12.41 13.08 16.98 

3% 19.67 25.93 27.51 32.77 35.24 

 
 

 

Fig. 8 RMS error of KF response estimation at increasing 

displacement noise levels (for 1%, 2% and 3% 

acceleration noise levels) 

 
 
In Table 3, RMS errors are reported for each examined 

scenario. It is worth to note that only the 1% noise 

acceleration scenario may be considered to be acceptable 

for SHM purposes. In fact, the estimate errors related to the 

other two cases become too high; this could lead to an 

unreliable prediction of the dynamic response of the 

structural system. 

From Table 3, it is possible to observe how the RMS 

error rapidly increases with the increase of the acceleration 

noise level, up to values over 30%, for an acceleration noise 

of 3%. However, in practice, considering the sensitivity of 

sensors, the more common scenario is to inherit a 1% noise 

level on accelerations and a displacement noise level 

between 5% and 10%. Within such a range, RMS errors 

below 3% have been recorded. This may also be graphically 

observed in Fig. 8, in which the three trends are depicted. 
About the inverse identification method, from the FDD 

analyses based on displacements it emerges that the modal 

frequency identification has been anyway successful after 

Kalman Filter employment, as it can finally be appreciated 

from Fig. 9, in which a comparison between the frequencies 

identified from displacement signals before (DF 

unprocessed) and after (DF processed) KF application, 

through fusion of acceleration signals, is provided. This is 

probably due to the frequency content, which still remains 

good despite for the high levels of added noise. 

 

 

Fig. 9 FDD modal frequency identification on 

displacements for 25% noise level (1% acceleration 

noise) 

 

 

An important assertion that can be derived from the 

analysis presented in this section is that Kalman Filter, 

differently from the modal identification procedure, is 

strongly affected by the level of noise added to the 

acceleration data.  

The reason why filtered displacements seem to be very 

sensitive to noise-affected accelerations and, at the same 

time, rather insensitive to noise-affected displacements, has 

to be located in the adopted preliminary calibration of the 

Kalman filter. In fact, in the developed data fusion 

procedure, a crucial step is constituted by the a-priori 

definition of the degree of confidence to be given to the 

initial conditions of the model, stated in a probabilistic way. 

Such a degree of confidence has to be set within the state-

space model in terms of process noise and observation 

noise, as previously stated in Section 2.3. 
In practice, from the acquired understanding of the 

present data fusion analysis, acceleration measurements 

bring in a more powerful information than displacement 

records; thus, noise affecting acceleration data more readily 

affects the filtered displacements and then the identification 

outcomes that can be extracted from them. 

So, adopting this configuration of the filter, it is 

advisable to maintain an acceleration noise level 

approximately below 1%, so that reliable response 

estimations may be reached. Consequently, in practical 

cases, a great attention must be given to the acquisition 

stage of such a data; in this sense, also the preliminary study 

of the appropriate collocation of the acceleration sensors 

shall play a key role for the success of the whole 

Heterogeneous Data Fusion process. 

 

 

4. Conclusions 
 

By means of the performed numerical analyses, this 

paper sheds light on several critical aspects inherent to the 

adoption of Kalman Filter in civil engineering 
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implementations, including for Heterogeneous Data Fusion 

and modal identification purposes, based on displacements, 

possibly complemented by accelerations. This holds true in 

particular with reference to the maximum level of noise that 

may be tolerated on displacement and acceleration 

measurements, in order to allow for a successful HDF and 

thereby to achieve reliable estimates of the current 

structural dynamic response, perspectively based on 

extensive remote displacement response signals, 

corroborated by a few reliable acceleration response data. 

The following salient issues from the performed analysis 

apply: 

i. Noise-free acceleration case. From the analysis 

performed in this paper, it has been demonstrated that 

KF turns out able to provide reliable estimates of the 

structural dynamic response, for noise levels up to 50% 

in the displacement measurements. Indeed, in these 

cases, RMS errors below 1% between the estimated 

displacements after KF application and the original 

(noise-free, numerically-determined) displacements are 

recorded. This was made possible also by tuning the 

assumed noises of the filter, which usually constitutes a 

complex procedure to be made automatic. Further 

developments of the present study on these aspects may 

additionally be addressed in future work.   

ii. Noise-affected acceleration case. Numerical results 

have shown that only the 1% acceleration noise level 

may lead to reliable estimates of the dynamic response 

after data fusion by KF adoption. This could be 

improved, e.g. by providing an adequate procedure for 

the fine tuning of the filter (in terms of process and 

observation noise levels) and may constitute the subject 

of future investigations. Consequently, in the present 

scenario, the positioning and setting of the 

accelerometers shall play a key role for a true success 

in the KF estimates. In the current analysis, if the 

intrinsic error characterizing accelerometer recordings 

becomes greater than 1%, RMS errors greater than 8% 

between the estimated displacements after KF 

application and the original (noise-free, numerically-

determined) displacements, are observed. This 

constitutes, at present, a requirement of quality for the 

acceleration recordings, to be adopted within the 

current implementation settings, in the explored 

configuration.     

In addition to the comparison between numerically-

determined displacements and displacements obtained 

through KF application, integrating information from 

acceleration response signals, defined in terms of RMS 

error, an output-only FDD procedure of modal frequency 

identification in the Frequency Domain, based on 

displacement recordings, has been used to evaluate the KF 

effectiveness in terms of modal dynamics identification. It 

has been proven that the KF adoption has been useful also 

towards the modal identification purposes, considering the 

cases of noise-free and noise-affected accelerations. 

The present paper brought forth some interesting aspects 

inherent to the employment of a model-based Kalman Filter 

in Heterogeneous Data Fusion toward SHM purposes. The 

filter’s effectiveness has been successfully demonstrated, 

leading to the conclusion that KF shall constitute a strong 

tool for data fusion in the field of structural monitoring. 

Thanks to its robustness, a proper KF implementation may 

allow users to relax the acquisition rate of signals, shifting 

then the effort to the posterior stage of data processing. In 

this sense, KF could allow for handling practical situations 

in which, for different reasons, an optimal positioning of the 

sensors may not be feasible.  

Another consideration that may be drawn from the 

present investigation is the perspective of cross-using 

extensive remote displacement measurements for the 

purposes of structural identification, through the support of 

selected reliable acceleration data, apt to enrich the 

available information. Thanks to the implemented KF 

Heterogeneous Data Fusion implementation, it has been 

shown that not only accelerations but also estimated 

displacements, embedding partial information from 

accelerations, may be successfully employed within a 

modal identification procedure based on displacements. 

This may point out to the perspective of adopting wide 

displacement acquisitions for SHM and identification 

purposes, possibly corroborated by a few reliable 

acceleration recordings, through appropriate and effective 

Heterogeneous Data Fusion, as outlined here. 

This could be even explored further, in different structural 

contexts and application scenarios, eventually using real 

measurement data coming from true dynamical 

experimental campaigns (e.g., as those provided in Ferrari 

et al. 2015a, b, 2016, 2017), for a final assessment and 

validation. 
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