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1. Introduction 
 

Vehicle suspension systems can play the role of a 

dynamic system and simulate the response of the vehicle to 

various inputs and disturbances using vehicle properties. 

Suspension system isolates chassis and passengers from the 

roughness of the road to provide a more comfortable ride. 

Ride comfort is mainly affected by vehicle properties 

located in suspension system. Researchers have conducted 

several studies on suspension to improve the vehicle ride 

comfort. Uys et al. (2007) have surveyed the ride comfort 

of off-road vehicles and correspond optimal suspension. 

Tong and Guo (2012), while considering vehicle ride 

comfort, built a new type of suspension to even the vertical 

loads of each wheel. Chen et al. (2013) applied the grey 

relational analysis and Taguchi method on the vehicle noise 

and vibration domain and showed improvement in vehicle 

vibration performance. 

Furthermore, the vehicle vibration can bring about 

driver’s fatigue (ride comfort), it also decreases in driving 

safety and vehicle operation stability (ride safety). Hence, 

designers in automotive industry try to improve suspension 

systems considering all ride parameters. Two principal 

parameters are sprung mass acceleration (Ihsan et al. 2008), 

determining ride comfort, and suspension deflection 

(Gündoğdu 2007), indicating the limit of the vehicle body 

motion. Another performance measure, also significantly  
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important, is the dynamic tire load applied on the pavement 

(Zhang et al. 2013). Since the passive suspension system is 

formed by springs and dampers with fixed rates with 

serious limitations, this cannot efficiently affect a 

compromise between ride comfort and ride safety. 

Therefore, the goals set by vehicle suspension system 

researchers in finding optimum suspension systems are to 

compromise between ride parameters. 

Researchers have applied various methods on different 

vehicle models. Vehicle models such as two-DOF, quarter 

vehicle, four or six-DOF, half vehicle, or seven-DOF full 

vehicle models. They use analytical methods where a linear 

vehicle model is investigated by solving linear ordinary 

differential equations. Because of simplicity, quarter vehicle 

models are mostly preferred. Liang et al. (2013) considered 

a quarter vehicle model to design an optimal vibration 

controller in order to prolong the working life of suspension 

system and improve ride comfort. Since the quarter vehicle 

model is insufficient to provide information on the angular 

motions of a vehicle, some researchers utilized more 

complex models like half and full vehicle models. These 

models supply information about the pitch, roll and bounce 

motions of a vehicle body. Barbosa (2011) applied a half 

vehicle dynamic model and spectral method to obtain the 

frequency response of the model to a measured pavement 

roughness. Jin et al. (2016) considered an 11 degrees of 

freedom of vehicle model to study the influence of ratio 

between unsprung and sprung mass on ride comfort of 

vehicles driven by in-wheel motors. Mahmoodabadi et al. 

(2018) applied weighted sum method to optimize multiple 

objective functions of two- and five-DOF vehicle vibration 

models. 
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Genetic algorithms represent an intelligent exploitation 

of a random search based on the evolutionary ideas of 

natural selection and genetics used to solve optimization 

problems. Optimization problems in engineering are first 

formulated as mathematical models consisting of functions 

which provide optimal system performance and then 

attempts are made to optimize the model or the function 

components. The idea behind a genetic algorithm is using 

optimization strategies known as Darwinian Evolution, 

efficiently and successfully, and transforming to 

mathematical form. Hada et al. (2007) applied genetic 

algorithm to achieve an optimum trade off among ride 

comfort, handling quality, and suspension stroke 

simultaneously for random input. Seifi et al. (2015) 

optimized full vehicle model using genetic algorithm to 

improve the ride comfort, road holding, workspace and 

preventing rollover. 

In order to solve mathematical optimization problems 

involving more than one objective function to be optimized 

simultaneously, several modeling methods have been 

developed in solving multi-objective optimization problem 

(MOOP). Costas et al. (2014) applied a surrogate-based 

multi-objective optimization to a crash-worthiness problem 

of a frontal crash absorber. Busch et al. (2014) considered 

an active all-wheel-steering car and formulated Model-

based objectives and summarized in a multi-objective 

optimization problem, then achieved unconstrained problem 

by defining a penalty function. Li et al. (2018) presented a 

multi-objective optimization control method of active 

suspension system for solving the negative vibration issues, 

and derived Pareto solution set of optimal parameters. Gu et 

al. (2013) combined a Kriging model and a Non-dominated 

sorting genetic algorithm II (NSGA-II) for MOOP of design 

for vehicle occupant restraint system under frontal crash, 

and obtained some enhanced results compared with the 

original design. Shojaeefard et al. (2017) investigated the 

optimal design of suspension system using NSGA-II and 

technique for order of preference by similarity to ideal 

solution. 

In the present research, our main contribution as follow: 

a Pareto optimization method based on a Non-dominated 

sorting genetic algorithm II (NSGA-II) is provided and 

applied on a full vehicle model. In this full vehicle model 

having eight-DOFs, vertical movement of passenger seat, 

vehicle body and four tires are considered. Furthermore, in 

this three dimensional model, pitch acceleration, and roll 

acceleration of vehicle body are dealt with. Using the 

presented method, full set of ride comfort and ride safety 

parameters of the vehicle (passenger seat acceleration, 

vehicle body pitch acceleration, vehicle body roll 

acceleration, dynamic tire forces, tire velocity, and 

suspension deflections), which are in conflict with others, 

are considered simultaneously. Also, a special optimization 

technique is used to minimize all ride parameters with 

Pareto optimization. Using weighted sum method in this 

technique, the Pareto double-objective optimization is 

transformed to Pareto full-objective optimization which can 

minimize all objectives, simultaneously. Moreover, road 

profile considered in the form of step function makes 

optimal points independent of excitation frequency. Then, 

the trade-off design points correspond to ride parameters are 

defined and the optimum suspension parameters are 

derived. 

 

 

2. Optimization methods and Non-dominated sorting 
genetic algorithm II 
 

There are several optimization methods, finding 

intended optimal design parameters and satisfying certain 

constraints, to minimize or maximize the value of desired 

objective function. Usually, a single-objective optimization 

problem can be mathematically described as follows (Lin et 

al. 2018) 

Find the vector 

  ,,...,, 21

T

nxxxX
 

(1) 

to minimize or maximize objective function 

   ,,...,, 21 nxxxFF X
 

(2) 

subject to constraints 

  ,,...,2,1,0 mjg j X
 

(3) 
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(4) 

here X∈ℜn is the vector of design variables, F(X) is the 

objective function, which must be minimized or maximized, 

gj(X) is the j-th constraint function, and the last set of 

constraints in Eq. (4) are variable bound constraints, where 

restrict value of each variable xk to get a value between a 

lower bound xkl and an upper bound xku, in optimization 

process.  

In multi-objective optimization problem (MOOP), a 

number of objective functions are to be minimized or 

maximized. Therefore, the multi-objective optimization has 

similar mathematical form as single-objective optimization, 

with the difference that in Eq. (2), objective function vector 

is defined as follows (Lin et al. 2018) 

         ,,...,, 21

T

pfff XXXXF 
 

(5) 

whereF(X)∈ℜp is the vector of objective functions, which 

must minimized or maximized and fq(x), q=1,2,…,p is q-th 

objective function. 

Weighted sum method is used in multi-objective 

optimization to optimize a number of objective functions 

simultaneously. In this method, an aggregated objective 

function is obtained by multiplying each objective function 

by a weighting factor and then summing up all weighted 

objective functions as follows (Deb 2001) 
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(6) 

where wq (q=1,2,…,p) is a weighting factor and sq 

(q=1,2,…,p) is a scaling factor for the q-th objective 

function. 
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In Pareto optimization, Pareto domination concept is 

used to compare any of the two solutions to each other. It 

can be described as a vector R=[r1,r2,…,rp]
T∈ℜp 

similar Eq. 

(5), is dominate to vector S=[s1,s2,…,sp]
T∈ℜp

, if there is at 

least one rq (q=1,2,…,p) which is smaller than sq 

(q=1,2,…,p), the remaining rs are either smaller or equal to 

corresponding ss. The Pareto optimality concept can be 

defined as the solution with vector X
0
 is Pareto optimal 

(minimal), if no other solution can be found to dominate to 

F(X
0
) using the definition of Pareto domination concept. 

The concept of Pareto set can be defined as; a Pareto set is 

a set consisting of all the Pareto optimal vectors such as 

X
0
where there is no other vector X that F(X) dominate any 

F(X
0
) correspond to X

0
in Pareto set. In other words, the 

Pareto set is a set of the vectors of design variables with 

dominated vectors of objective functions, where vectors of 

objective functions non-dominate with themselves. Also, 

The Pareto front concept can be defined as; a Pareto front 

is a set of vector such as F(X
0
), which are obtained using 

the vectors X
0
in the Pareto set. In other words, the Pareto 

front is a set of the dominated vectors of objective functions 

that non-dominate with themselves. Since, in Pareto 

optimization, it is almost impossible to obtain a single 

solution to optimize all objectives simultaneously and 

finding corresponding objective function vector of one 

solution which dominates other ones is difficult; therefore, 

Pareto optimal solutions (non-dominated solutions of all 

possible solutions in its solution space) are the desired 

solution. 

Non-dominated sorting genetic algorithm is a multi-

objective optimization algorithm and is an instance of an 

evolutionary optimization algorithm which is an extended 

form of the genetic algorithm (Sedighizadeh et al. 2014). 

NSGA is an extension of the genetic algorithm for multi-

objective function optimization. The algorithm uses an 

evolutionary process including normal selection, genetic 

crossover, and genetic mutation, as being in genetic 

algorithm. In addition, integral parts of NSGA-II are fast 

ranking of non-dominated solutions, crowding distance and 

elitist strategy (Bharti et al. 2012). The main steps of the 

NSGA- II are provided below: 

Step 1. Initialize a population randomly. 

Step 2. Implement the multi-objective operation, consist of 

non-dominated sorting, crowding distance calculation and 

sorting the solutions. 

Step 3. Start main loop. 

Step 4. Generate offspring from crossover method. 

Step 5. Generate offspring from mutation method. 

Step 6. Aggregate the parents and offspring. 

Step 7.Same operation in Step 2. 

Step 8. Select the fittest solutions. 

Step 9.Same operation in Step 2. 

Step 10. Return to Step 3 and repeat the algorithm until 

establishing stopping condition. 

 

 

3. Mathematical model 
 

An eight-DOF vehicle model is considered in this study 

as is shown in Fig. 1. The model consists of one passenger 

seat and sprung mass that is supported on springs and 

unsprung masses which refer to the mass of wheel assembly. 

The model considers heave, pitch and roll of the sprung 

mass and vertical motions of the four unsprung masses and 

passenger seat. The suspension, tire, passenger seat are 

modeled by linear springs in parallel with dampers. 

Parameters ms, m1, m2, m3, m4, mp, Ix and Iy, are expressed as 

sprung mass, front right tire mass, front left tire mass, rear 

right tire mass, rear left tire mass, seat mass, pitch moment 

of inertia of sprung mass and roll moment of inertia of 

sprung mass, respectively. Parameters ki, ci, kti, cti, kp and cp, 

where i=1,2,3,4, denote spring and damping coefficient of 

suspension, spring and damping coefficient of tire and 

spring and damping coefficient of passenger seat, 

respectively. 

Using the Newton’s second law of motion, the following 

equations of motion for sprung mass, unsprung masses and 

passenger seat are derived. 
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Fig. 1 Full vehicle model 

 

 

 

Fig. 2 Excitation shape created by step function road 

profile 
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Whereδ0, θ0and ϕ0 are sprung mass heave, pitch and roll, 

respectively, and δi and δp are vertical movement of i-

thunsprung mass and passenger seat, respectively. Moreover 

(xi-x0) and (yi-y0), are distance between i-th unsprung mass 

connection point to sprung mass and center of gravity of 

sprung mass, on x and y direction, respectively, and (xp-x0) 

and (yp-y0) are distance between passenger seat connection 

point to sprung mass and center of gravity of sprung mass, 

on x and y direction, respectively.  

The dynamic model is excited by a step function while 

height h=0.05 m and vehicle velocity v=20 m/s are utilized 

for the analysis. The road profile illustrated in Fig. 2. The 

right and left sides have same road profile amplitude but 

there is a time delay of d/v and also the rear wheel will 

follow the same trajectory as the front wheels with a time 

delay of (a+b)/v. This road input will help excite bounce, 

pitch and roll motion of vehicle body simultaneously. Also 

the road profile in the form of step function causing 

optimum points are independent of excitation frequency of 

road profile, where are explaining as follows. 

 

 

4. Objective functions 
 
To improve the ride comfort and ride safety, nearly in 

most works in this field, the vehicle is optimized to 

decrease two major parameters: passenger seat acceleration 

(SA) and dynamic tire force (TF), respectively. In the 

present research, while considering the full vehicle model, 

body pitch acceleration (PA), body roll acceleration (RA), 

tire velocity (TV) and suspension deflection (SD), are also 

included for objective functions. The objective functions are 

divided in two groups: the first group includes SA, PA and 

RA (ride comfort group) minimized to improve the ride 

comfort and the second group comprises TF, TV and SD 

(ride safety group) minimized to improve ride safety. 

In optimization process, the maximum absolute value of 

objective functions at time response have been considered 

as value of objective function. Therefore, the objective 

functions in Eq. (5) are defined as follows: 

SA: minimization of maximum absolute value of passenger 

seat acceleration 

   
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 pSA XfXf max1

 
(12) 

PA: minimization of maximum absolute value of body pitch 

acceleration 

   
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(13) 

RA: minimization of maximum absolute value of body roll 

acceleration 
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Since each wheel has a different performance, the values 

for the objective functions in ride safety group naturally 

become different. To present the value of the objective 

functions in ride safety group (TF, TV and SD) for whole 

vehicle, the sum value of maximum absolute of objective 

functions in wheels are setting at the objective function 

value, as follows 
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where F and Fi (i=1,2,3,4) are objective function of whole 

vehicle and each wheel, respectively. Therefore: 

TF: minimization of maximum absolute value of dynamic 

tire force 
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TV: minimization of maximum absolute value of tire 

velocity 
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SD: minimization of maximum absolute value of 

suspension deflection 
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Study shows that the two objective groups are in 

conflict. That is, these two objective groups cannot 

simultaneously generate higher levels of performance. 

Therefore, a Pareto optimization is needed to obtain a good 

trade-off. A Pareto solution will be obtained, and designers 

can select an effective design point from the solution set to 

satisfy different needs. 

 

 

5. Design variables and constraints 
 

A number of factors influence dynamic characteristic of 

vehicle and passenger seat. Some of these common factors 

are seat spring stiffness, seat damper coefficient, suspension 

spring stiffness, suspension damper coefficient, wheel mass 

and tire parameters. 

Most design variables have a converse influence on 

different objectives, that is, an improvement in one 

objective sacrifices another one. However, there are still 

some ways to find a compromise between these conflicting 

objectives. The present research adopts NSGA-II to 

optimize this latter problem. Table 1 provides a list of fixed 

parameters utilized in the analysis (Panzade 2005), and 

Table 2 gives the design variables and the corresponding 

lower and upper bounds (Panzade 2005). 

The constraints in Pareto optimization problem are 

variable bound constraints according to Eq. (4). With 

considering Table 2, constraints are defined as follows 
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(19) 

Table 1 Fixed parameters (Panzade 2005) 

Fixed parameters Values  Fixed parameters Values 

)(md  1.450  )(21 kgmm   85 

)(ma  1.524  )(43 kgmm   60 

)(mb  1.156  )/( mNkt  200000 

)(kgms  2160  )/.( msNct  0 

).( 2mkgI x  4140  )(me  0.375 

).( 2mkgI y  946  )(mf  0.234 

)(kgmp  100    

 

Table 2 Design variable ranges (Panzade 2005) 

Design variables Lower value Upper value 

)/(21 mNkk   75000 100000 

)/.(21 msNcc   875 3000 

)/(43 mNkk   32000 70000 

)/.(43 msNcc   875 3000 

)/( mNkp  90000 120000 

)/.( msNcp  400 900 

 

 

6. Analysis and results 
 

A Non-dominated sorting genetic algorithm II (NSGA-II) 

introduced in the previous sections is employed for multi-

objective design of full vehicle model which is shown in 

Fig. 1. Between various possible pairs of objectives in two 

conflicting groups (ride comfort and ride safety group), five 

different pairs are considered in the Pareto double-objective 

optimization processes. Pairs of objectives to be optimized 

separately are (SA,TF), (SA,TV), (SA,SD), (PA,TF) and 

(RA,TF). A population of 200 individuals with a crossover 

probability of 0.7 and a mutation probability of 0.3 are 

utilized. Pareto fronts of each chosen pair are displayed in 

Figs. 3-7. As is observed by studying this figures, obtaining 

a better value for one objective would normally cause a 

worse value for another objective.  

Fig. 3 depicts the Pareto front of seat acceleration and 

dynamic tire force representing different non-dominated 

optimum points with respect to the conflicting objectives. 

The diamond dots are Pareto front points. The Pareto front 

provides a set of application solutions. Any point in the 

Pareto front can be a solution. In this figure, points X1 and 

Y1 stand for the best seat acceleration and the best dynamic 

tire force, respectively. It should be noted that all the 

optimum design points in this Pareto fronts are non-

dominated and can be chosen by a designer. As the figure 

clearly shows choosing a better value for any objective 

function in these Pareto fronts would cause a worse value of 

another objective function. Obviously, there are some 

important optimal design facts between these objective 

functions that can be observed readily in that Pareto front. 
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Fig. 3 Pareto front for seat acceleration and dynamic tire 

force 

 

 

 

Fig. 4 Pareto front for seat acceleration and tire velocity 

 

 

 

Fig. 5 Pareto front for seat acceleration and suspension 

deflection 

 

 

In Fig. 3, point Z1 is the point which demonstrates an 

important optimal design fact. Optimum design point Z1 

obtained in the present research exhibits a small increase in 

dynamic tire force in comparison with that of point Y1 (the 

design with the least dynamic tire force) whilst its seat 

acceleration improves considerably. In fact, the trade-off 

design point Z1, would not have been obtained without the 

application of the Pareto optimum approach presented in 

this study. 

 

 

 

 

Fig. 6 Pareto front for body pitch acceleration and 

dynamic tire force 

 

 

 

Fig. 7 Pareto front for body roll acceleration and 

dynamic tire force 

 

 

Also Fig. 3 demonstrates the optimum point W obtained 

from optimum design variables derived by Shirahatt et al. 

(2008). An eight-DOF passenger vehicle model has been 

considered by Shirahatt et al. (2008) and a single-objective 

optimization method has been applied to obtain the 

optimum suspension parameters to improve the ride 

comfort of vehicle model. Also, the genetic algorithm has 

been used to solve the problem, and the results have been 

compared to those obtained by simulated annealing 

technique. The optimum point W has been obtained from 

the results derived by genetic algorithm method. Fig. 3 

displays the fact that optimum points in Pareto front have 

improved objective values than point W. 

Such non-dominated Pareto fronts of the other chosen 

sets of objective functions are shown in Figs. 4-7. Design 

points X2 and X3 stand for the best SA and points X4 and X5 

stand for the best PA and RA, respectively, whilst points Y2 

and Y3 represent the best TV and SD, respectively, and 

points Y4 and Y5 represent the best TF. Similarly, the trade-

off design points Z2, Z3, Z4 and Z5 are those which 

demonstrate the important optimal design fact. In Figs. 3-5, 

the value of seat accelerations is improved about 17%, 17% 

and 14% from points Y1 to Z1, Y2 to Z2 and Y3 to Z3, 

respectively, although other objective functions increase 

small. Also, in Figs. 6 and 7, the values of body pitch 

accelerations and body roll accelerations improve about 
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16%and 11% from points Y4 to Z4 and Y5 to Z5, respectively. 

The derived optimum design points and corresponding 

values of objective functions and design variables related to 

these points and point W are listed in Table 3, where F1 and 

F2 are values of first and second objective function, 

corresponding with these points, respectively. The 

highlighted values in Table 3 are minimum optimum values 

of objective functions which has been used for obtaining the 

normalized objectives in ride comfort group and ride safety 

group, where are explaining as follows. 

The corresponding values of objective functions of the 

optimum point W (obtained by Shirahatt et al. (2008)) are 

also given in Table 4. 

A special optimization technique is applied to minimize 

all vehicle ride parameters by Pareto optimization, 

simultaneously. In this technique, in each group, all 

objective function is converted to one aggregate objective 

function by weighted sum method according to Eq. (6) as 

follows 

         min/min/ X
PA

fX
PA

fX
SA

fX
SA

fX
SNC

f 
 

    ,min/ X
RA

fX
RA

f
 

         min/min/ X
TV

fX
TV

fX
TF

fX
TF

fX
SNS

f 
 

    ,min/ X
SD

fX
SD

f  

(20) 

where fq(X) (q=SA,…,SD) are objective functions in Eqs. 

(12)-(18) and fq(X)min (q=SA,…,SD) are minimum 

optimum values of objective functions which have been 

derived in the previous Pareto double-objective 

optimization for the five pair objective function. Minimum 

derived values in the Pareto double-objective optimization 

for the five pair objective function have been highlighted in 

Table 3. The fSNC(X) and fSNS(X) are aggregate objective 

functions of ride comfort group and ride safety group which 

are said to SNC and SNS, respectively. Here with selecting 

weighting factor wq=1 (q=SA,…,SD), the weight of all 

objective functions are equal and with selecting scaling 

factor sq=fq(X)min (q=SA,…,SD), all objective functions are 

being normalized with their minimum optimum values. In 

this regard, SNC and SNS are said to be summation of 

normalized objectives in ride comfort group and ride 

safety group, respectively. In this section, a Pareto solution 

is derived by minimizing two aggregate objective function 

(SNC, SNS). Actually, by mentioned technique, the Pareto 

double-objective optimization is transformed to Pareto full-

objective optimization and six objective function are 

optimizing by this weighted sum Pareto optimization 

method, simultaneously.  

Non-dominated Pareto fronts of summation of 

normalized objectives in ride comfort group and ride safety 

group (SNC, SNS) are displayed in Fig. 8. It is observed in 

this Figure that obtaining a better value for one aggregate 

objective would normally cause a worse value for another 

aggregate objective. Also points X6 and Y6 stand for the best 

summation of normalized objectives in ride comfort group 

and ride safety group, respectively. Similarly, the trade-off 

design point Z6 are those which demonstrate the important 

optimal design fact. In Fig. 8, the value of summation of 

normalized objectives in ride comfort group improve about 

9% from points Y6 to Z6, although summation of normalized 

objectives in ride safety group increase small. Also, the 

optimum points corresponding to the previous Pareto 

double-objective optimization for the five pair objective 

functions are illustrated in Fig. 8. As can be observed, 

points in Pareto front are dominated to previous derived 

optimum points and point W. 

With selecting unequal values for weighting factors wq 

(q=SA,…,SD), various weights for objective functions are 

selected and the weighted sum Pareto optimization can 

optimize ride parameters of three dimensional vehicle 

model with different weights, simultaneously. 

The time behavior of the seat acceleration corresponding 

to optimum value of point Z1along with optimum point W 

proposed in Shirahatt et al. (2008) are shown for the sake of 

comparison in Fig. 9.  

This figure clearly indicates that the obtained values of 

seat acceleration derived via the design point Z1 in the 

present research are better than those derived via the design 

point W given in Shirahatt et al. (2008). In addition, the 

superiority of other optimum points in this research relative 

to point W can be shown. The maximum absolute value of 

seat accelerations corresponding to optimum points W, Z1, 

Z2, …, Z6 and their improvement percentage than the 

maximum absolute value of seat accelerations of point W 

are given in Table 5. 

 

 

 

Fig. 8 Pareto front for summation of normalized 

objectives in ride comfort group and ride safety group 

 

 

 

Fig. 9 Time responses of seat acceleration of points Z1 

and W 
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Table 4 Values of objective functions of optimum point W 

 SA PA RA TF TV SD 

Point 

W 
5.2355 2.9660 5.4177 39246 6.4802 0.1758 

 

 

Table 5 Maximum absolute value of seat acceleration of 

optimum points and their improvement percentage 

 


pMax  Improvement percentage 

W  5.235  

1Z  4.737 10% 

2Z  4.587 12% 

3Z  4.638 11% 

4Z  5.137 2% 

5Z  5.055 3% 

6Z  4.870 7% 

 

 

Also, the time behavior of the other objectives 

corresponding to optimum values of point Z1and the 

optimum values proposed in Shirahatt et al. (2008) are 

shown for the sake of comparison in Figs. 10-14. Here, for 

plotting the Figs. 12-14, the value of tire force, tire velocity  

 

 

and suspension deflection of whole vehicle are equalized to 

the sum value of absolute of function values in wheels, as 

follows 

,
4

1

4,3,2,1,




i

iD
i

FDF

 

(21) 

where F
D
 and Fi

D
 (i=1,2,3,4) are derived function value of 

whole vehicle and each wheel, respectively. 

 

 

 

Fig. 10 Time responses of body pitch acceleration of 

points Z1 and W 
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Table 3 The values of objective functions and their associated design variables of the optimum points and point W
 

 1F  2F  21 kk   43 kk   21 cc   43 cc   pk  pc  

1X  4.358 39510 76400 51318 1256 2104 93343 884 

1Y  5.698 39042 91079 64408 2817 2966 117078 416 

1Z  4.737 39152 79879 64407 2700 2856 94838 776 

2X  4.274 6.984 75284 57104 1007 2560 90251 846 

2Y  5.516 6.026 95749 66402 2901 2882 109505 557 

2Z  4.587 6.269 76715 57915 2595 2715 91651 795 

3X  4.397 0.1963 76170 63998 1159 2418 94950 827 

3Y  5.417 0.1599 96088 62794 2826 2942 110956 692 

3Z  4.639 0.1731 76415 63016 2701 2447 93657 807 

4X  2.053 39539 79554 33210 1080 2224 118190 577 

4Y  3.019 39068 95713 56587 2819 2873 100082 830 

4Z  2.540 39253 80903 38259 2646 2696 116515 801 

5X  4.446 39572 76586 47248 1962 906 112813 747 

5Y  5.532 39041 96359 67602 2916 2729 100698 660 

5Z  4.925 39258 77798 56863 2872 1959 108363 723 

6X  3.276 3.688 78324 41024 1773 928 94015 844 

6Y  3.916 2.998 89158 65163 2951 2938 104190 841 

6Z  3.579 3.175 78601 41345 2949 2408 95958 694 

W    96861 52310 2460 2281 98935 615 
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What is evident from these figures is that the values of 

the other objectives of the design point obtained from point 

Z1 in the present study are also better than those 

corresponding with the design point given in Shirahatt et al. 

(2008). In Figs. 10-14, the maximum absolute value of body 

pitch acceleration, body roll acceleration, and derived 

dynamic tire force, tire velocity and suspension deflection 

of whole vehicle are improved from point W to Z1 about 5%, 

2%, 5%, 8% and 11% respectively. According to derived 

results, point Z1 and other derived optimum points in this 

research are superior to results obtained by Shirahatt et al. 

(2008). 

 

 

 

Fig. 11 Time responses of body roll acceleration of 

points Z1 and W 

 

 

 

Fig. 12 Time responses of dynamic tire force of points Z1 

and W 

 

 

 

Fig. 13 Time responses of tire velocity of points Z1 and 

W 

When a dynamic system is excited by a suddenly 

applied nonperiodic excitation, the system response is 

transient and steady-state oscillations are generally not 

produced. In this condition, the system oscillates at its 

natural frequencies whose amplitude of vibration only 

depends on the type of excitation (Thomson and Dahleh 

1998). If periodic function is applied for road profile to 

excite three dimensional vehicle models, the maximum 

value of objective functions takes place in steady-state 

response and the optimization results depend on amplitude 

and frequency of considered road profile. In this research, 

step function has been applied for road profile whose 

system response is only transient; hence, the maximum 

value of objective functions and the optimization results are 

independent from excitation frequency of road profile. 

Therefore, trade-off design points obtained in this research 

are applicable for any type of road profile. The natural 

frequencies of the present vehicle model with design 

variable ranges in Table 2 are about 1-10 Hz. In this regard, 

to show the comprehensiveness of the results of this 

research, time response of the model excited by various 

road profile frequencies has been investigated. Shirahatt et 

al. (2008) has applied two successive sinusoidal bumps 

with height h=0.05 m and wavelength λ=20 m for road 

profile to excite the eight-DOF vehicle model with velocity 

v=20 m/s as shown in Fig. 15. This road profile excites the 

model at a frequency of 1 Hz. The model in this research 

has been excited by this road profile and the same time 

delay which were applied for the step function has been 

used between tires. The time behavior of the seat 

acceleration for present eight-DOF vehicle model excited 

by this road profile corresponds to the optimum values of 

point Z1along with optimum point W proposed in Shirahatt 

et al. (2008), are shown for the sake of comparison in Fig. 

16.  Also, the model has been excited by ten successive 

sinusoidal bumps with height h=0.05 m and wavelength 

λ=0.4 m (excitation frequency 50 Hz) as shown in Fig. 17. 

The time behavior of the seat acceleration for the model 

excited by this road profile corresponds to optimum values 

of point Z1along with optimum point W are shown in Fig. 

18. 

 

 

 

Fig. 14 Time responses of suspension deflection of 

points Z1 and W 
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Fig. 15 Excitation shape created by low frequency 

sinusoidal road profile 

 

 

 

Fig. 16 Time responses of seat acceleration of points Z1 

and W 

 

 

 

Fig. 17 Excitation shape created by High frequency 

sinusoidal road profile 

 

 

In both Figs. 16 and 18, the maximum absolute value of 

seat acceleration are improved from point W to Z1 about 

10%. These figures clearly indicate that even with applying 

the sinusoidal shape for road profile and various excitation 

frequency, the derived values of seat accelerations via the 

design point obtained in the present research are better than 

those using the design point given in Shirahatt et al. (2008) 

and the results in this research are comprehensive for all 

vibration conditions. 

 

 

 

Fig. 18 Time responses of seat acceleration of points Z1 

and W 

 

 

7. Conclusions 
 

A Non-dominated sorting genetic algorithm II (NSGA-

II) was employed to optimally design the full vehicle 

vibration model. Two objective groups, being in conflict 

with each other, were selected as ride comfort group and 

ride safety group. The ride comfort group consists of 

passenger seat acceleration, body pitch acceleration and 

body roll acceleration, and ride safety group comprises 

dynamic tire force, tire velocity and suspension deflection. 

With these ride parameters, objectives of the three 

dimensional vehicle models were also considered. A special 

optimizing technique combining weighted sum method and 

Pareto optimization was applied to transform Pareto double-

objective optimization to Pareto full-objective optimization 

which can minimize all objectives, simultaneously. The 

Pareto front obtained from this weighted sum Pareto 

optimization method has minimized the full set of ride 

parameters of three dimensional vehicle model as objective 

functions, simultaneously. The results were derived from 

Pareto double-objective optimization and Pareto full-

objective optimization which minimize pair objective and 

full objective respectively. It was shown that the unique 

trade-off design points in full-objective Pareto front can be 

selected minimizing weighted sum comfort parameters 

versus weighted sum safety parameters. A step function was 

used for road profile and was shown that, with such 

excitation form, optimum results are independent of 

excitation frequency. The comparison of the obtained 

optimum design points with those reported in the literature 

revealed the superiority and comprehensiveness of the 

results of the present research. For example, the optimum 

design point Z6 was derived which can minimize all 

conflicting ride parameters of three dimensional vehicle 

model, simultaneously. Such three dimensional vehicle 

model and the multi-objective optimization of this model 

could obtain very important design points between 

conflicting objective functions. 
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