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1. Introduction 
 

Building structures commonly exhibit non-linear 

dynamical behavior with uncertain and complex governing 

laws. Accurate mathematical representation of such systems 

is essential for system identification and damage detection 

purposes. The Bouc-Wen hysteretic model is extensively 

used in the literature to simulate the complex non-linear 

dynamics of structural elements. The Bouc-Wen model, 

consisting of a first order nonlinear differential equation, 

relates the input displacement to the output restoring force 

that is function of not only the input but also incorporates 

some history dependence. Hassani et al. and Ismail et al. 

presented review works and surveys in hysteresis modeling 

and identification, especially concerning the hysteretic 

Bouc-Wen model (Ismail et al. 2009, Hassani et al. 2014). 

On the other hand, many authors, such as Song and Der 

Kiureghian 2006, Ye and Wang 2007, Ikhouane et al. 2007, 

Zhang et al. (2002), studied the model parameters, mainly 

for  parameters  (𝛼, 𝛽, 𝛾, 𝑛 𝑎𝑛𝑑 𝐴) ,  and the dynamic 

properties of the Bouc-Wen hysteretic model (Zhang et al. 

2002, Song and Der Kiureghian 2006, Ikhouane et al. 2007, 

Ye and Wang 2007). As parameter 𝛼 represents the ratio of  
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linear to nonlinear response of the system, parameter n, on 

the other side, governs the smoothness of the transition 

from the linear to the nonlinear range. Parameters 𝛽 𝑎𝑛𝑑 𝛾 

influence the hardening and softening behavior of the 

system. These two previously mentioned parameters, along 

with parameter A, control the general shape and size of the 

hysteresis loop. The challenge lies in developing robust 

system identification techniques that can be used for 

characterizing such mathematical model parameters for 

SHM and damage detection purposes.  

With the recent developments in monitoring 

technologies such as high performance sensors, optical or 

wireless networks, and the global position system, SHM 

measurement data became very abundant which leads to the 

problem of dealing with the large flow of data (Doebling et 

al. 1996, Sohn et al. 2002, Chang et al. 2003, Farrar and 

Worden 2007, Goyal and Pabla 2015). Data assimilation 

(DA) techniques are commonly adopted to characterize the 

state and parameters of unknown systems using observed 

measurements. They were first developed for weather 

forecasting and ocean state estimation (Daley 1997, Kalnay 

2003), then started to be used for many other applications 

including the system identification and SHM fields. The DA 

techniques are classified into two main categories: 

variational data assimilation and sequential data 

assimilation. The first class aims at minimizing a certain 

cost function that describes the misfit between the model 

and actual data to find a solution to a numerical forecast 

model, using gradient-based optimization and adjoint 

methods (LeDimet and Talagrand 1986, Navon et al. 1992). 

The main drawback of this class of data assimilation 

methods is that it is computationally expensive. Whereas 
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the second class, Sequential Data Assimilation, is based on 

predicting information forward in time to estimate the state 

of the system using its probabilistic framework and 

therefore overcoming the need to derive an inverse model 

and saving computational burden (Evensen 1994, Bertino et 

al. 2003).  

The sequential data assimilation techniques consist 

mainly of the Bayesian probabilistic approach and the 

Kalman filter technique with its different variations. The 

Kalman filter is an optimal recursive Bayesian filter for the 

case of linear dynamical systems with Gaussian errors. 

Extensions of the original KF to the extended Kalman filter 

(EKF) based on some linearization techniques are suggested 

in the literature to handle more general cases (Chui and 

Chen 1991, Corigliano and Mariani 2004). For highly 

nonlinear models and for models subjected to significant 

non-Gaussian noise, the EKF does not provide consistent 

estimations of the state and model parameters (Lei et al. 

2015, Xu and He 2015). Other variations of the standard KF 

were suggested in the literature to overcome the major 

drawbacks of the EKF. Some of the nonlinear extensions of 

the standard KF are based on sampling techniques, such as 

the unscented KF (Kandepu et al. 2008, Chatzi and Fuggini 

2015, Liu et al. 2015, Al-Hussein and Haldar 2016), the 

particle filter (Chatzi and Smyth 2009, Chatzi and Smyth 

2013), the cubature filter (Arasaratnam and Haykin 2009) 

and the ensemble Kalman filter (Ghanem and Ferro 2006, 

Evensen 2009, Slika and Saad 2016) and others are based 

on non-sampling techniques, such as the polynomial chaos 

Kalman filter (Saad and Ghanem 2009, Saad and Ghanem 

2011, Slika and Saad 2016, Slika and Saad 2017). Due to 

their computational efficiency, the sequential data 

assimilation techniques are more commonly adopted in the 

literature for damage detection and system identification 

problems than the variational data assimilation methods.  

Many researchers have investigated the use of sequential 

data assimilation techniques for SHM purposes in a number 

of publications in the past years. A number of works 

presenting a comparison between the UKF and EKF 

techniques in estimating the system state and parameters are 

available in the literature (St-Pierre and Gingras 2004, 

Kandepu et al. 2008, Chowdhary and Jategaonkar 2010). In 

these works, the UKF required higher computational burden 

while maintaining comparable or slightly better 

performance than the EKF in terms of robustness and 

accuracy. Chatzi and Smyth compared the UKF to two 

different particle filter (PF) techniques, the generic PF and 

the Gaussian mixture sigma point particle filter (GMSPPF), 

based on the computational expediency and the efficiency 

in estimating the state and parameters of nonlinear complex 

systems using the Bouc-Wen model (Chatzi and Smyth 

2009). While the UKF was found to be the most 

computationally efficient method, the GMSPPF was the 

most accurate and robust technique in estimating the model 

parameters. These aforementioned authors then proposed a 

novel method, the mutated PF (MPF), for nonlinear, non-

Gaussian online state and Bouc-Wen parameter estimations 

for SHM purposes (Chatzi and Smyth 2013). The proposed 

algorithm outperformed the standard PF and the UKF in 

both computational cost and accuracy.  

Hommels et al. (2009), applied the EnKF and the UKF 

on a conceptual nonlinear case study based on the 

construction of a road embankment (Hommels et al. 2009). 

While both methods needed the same computational time, 

the EnKF outperformed the UKF. Ghanem and Ferro 

proved that the EnKF plays a role of a good estimator of the 

system state (Ghanem and Ferro 2006). In their work, they 

combined the EnKF with a non-parametric modeling 

technique and compared it to the EKF method to show the 

benefits of their method. Evensen (2009) presented a 

detailed literature review on the applications of the EnKF as 

a sequential Monte Carlo (MC) method and concentrated on 

its use for state and parameter estimation through a number 

of numerical examples. Slika and Saad developed a robust 

non-destructive EnKF based SHM framework for assessing 

the health conditions of a structure and predicting its 

remaining service life without corrosion using a finite 

element/finite difference scheme (Slika and Saad 2016).  

In case of highly nonlinear systems, the EnKF requires a 

large number of ensembles to properly approximate the 

model state statistics. To solve this problem, the Polynomial 

Chaos Kalman Filter (PCKF) was introduced by Saad and 

Ghanem (Saad 2007, Saad and Ghanem 2009, Saad and 

Ghanem 2011). Polynomial chaos decompositions of the 

uncertain parameters are propagated forward in time using 

the Galerkin projection approach, then updated every time 

measurements are recorded (Ghanem 1999, Ghanem and 

Spanos 2003). Li and Xiu (Li and Xiu 2009) presented a 

variation of the PCKF where he proposed to use a set of 

EnKF algorithms based on generalized polynomial chaos 

(gPC) expansion. The method is a two-step approach; two 

different routines can be used to solve the system of state 

equations in the first step (forecast step), the stochastic 

Galerkin and the stochastic Collocation approaches. The 

gPC expansion is then applied to generate arbitrarily large 

ensemble of realizations to find the state estimates in the 

second step (analysis step) for both approaches. 

Spiridonakos et al (2016) suggested a new method, based 

on combining the polynomial chaos expansion (PCE) 

method with the independent component analysis (ICA) 

algorithm, to monitor the health conditions of structures 

subjected to operational variability (Spiridonakos et al. 

2016). 

The main challenge associated with the aforementioned 

existing sequential data assimilation methods is the 

presence of different forms of uncertainties due to many 

sources of errors when dealing with complex and nonlinear 

systems. These errors are magnified due to regular aging 

factors and deterioration of the structure or due to some 

extreme events, such as earthquakes, that could alter its 

behavior unexpectedly.  

This study highlights the importance of uncertainty 

quantification in SHM frameworks, and presents a 

comparative analysis between intrusive and non-intrusive 

techniques in quantifying uncertainties for SHM purposes 

through two different variations of the Kalman Filter (KF) 

method, the Ensemble Kalman filter (EnKF) and the 

Polynomial Chaos Kalman Filter (PCKF) 

These two approaches are applied on a four-degrees-of-

freedom system subjected to El-Centro earthquake 
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excitation. All DOFs are assumed to undergo degrading 

hysteretic behaviors described by the Bouc-Wen model. A 

predefined damage of the first DOF is imposed ten seconds 

after the excitation hits the system. The comparison is based 

on the ability of each method in quantifying the uncertainty 

for SHM purposes with the least computational burden and 

leading to the most accurate results. 

The paper is divided into five sections. The second 

section represents the mathematical formulations of the 

different sequential data assimilation techniques used. The 

third section consists of a numerical problem composed of a 

four-DOF system subjected to seismic excitation and used 

to compare the EnKF with the PCKF methods in 

quantifying the uncertainty. The results of the numerical 

problem are exposed and discussed in the fourth section. 

Finally, general conclusions are drawn in section five. 

 

 
2. Mathematical formulations of sequential data 
assimilation techniques 

 
The Kalman Filter (KF) (Kalman 1960, Burgers et al. 

1998, Welch and Bishop 2006, Grewal and Andrews 2008) 

is an optimal recursive data processing estimator that 

approximates the state of linear dynamical systems 

perturbed by Gaussian white noise, using observations that 

are subjected to Gaussian errors. This process involves two 

stages, the first stage is the forecast or predictive stage, 

where the model state at time k is propagated forward in 

time, and the second stage is the update or corrective stage, 

where the variables describing the state of the system are 

adjusted based on the actual measurements at time k+1.  

 
2.1 Ensemble Kalman Filter 
 
For the case of nonlinear systems or systems subjected 

to non-Gaussian errors, many variations of the Kalman 

Filter can be used. One of the most widely used 

approximate techniques is the EKF that was first introduced 

by Chui and Chen (Chui and Chen 1991) and clearly 

discussed in (Welch and Bishop 2006); it is based on some 

linearization processes. But this variation of the KF showed 

some drawbacks, especially regarding its high 

computational cost and its difficulty to be a good estimator 

in the case of highly nonlinear systems and significant non-

Gaussian noise. The EnKF was introduced by Evensen 

(Evensen 1994) to overcome some of the limitations of the 

standard KF and the EKF, and then improved and 

developed in many works (Burgers et al. 1998, Evensen 

2003, Gillijns et al. 2006, Welch and Bishop 2006, Evensen 

2009). The EnKF is a non-intrusive technique based on 

Monte Carlo sampling; it propagates an ensemble of 

realizations forward in time and solves the forward problem 

under consideration using a black-box model, then corrects 

the propagated system states and parameters whenever 

measurements are available. 

The EnKF consists of first evaluating the ensemble 

matrix A, holding the ensemble members xi 
 

𝐴 = (𝑥1, 𝑥2, … , 𝑥𝑁)     𝐴 ∈ 𝑅𝑛×𝑁 , 𝑥𝑖 ∈ 𝑅𝑛 (1) 

where n is the size of the model state vector and N is the 

number of ensemble members. 

The ensemble mean and ensemble perturbation matrices 

are respectively evaluated as follows 

�̅� = 𝐴1𝑁 �̅� ∈ 𝑅𝑛×𝑁 (2) 

 

𝐴′ = 𝐴 − �̅� = 𝐴(𝐼 − 1𝑁)     𝐴′ ∈ 𝑅𝑛×𝑁 (3) 

where 1𝑁 ∈ 𝑅𝑁×𝑁 is a matrix having its elements equal to 

1/N. 

The ensemble covariance matrix is next calculated as 

𝑃 = 
1

𝑁 − 1
𝐴′𝐴′𝑇     𝑃 ∈ 𝑅𝑛×𝑛 (4) 

The analysis equation is the following 

𝐴𝑎 = 𝐴𝑓 + 𝐾𝐺(𝐷 − 𝐻𝐴𝑓) (5) 

where KG is the same Kalman Gain used in the standard 

KF 

𝐾𝐺 = 𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅);1 (6) 

D is the ensemble of observation matrix holding the 

measurement vectors 𝑑 ∈ 𝑅𝑚 

𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑁)     𝐷 ∈ 𝑅𝑚×𝑁 (7) 

where m is the number of measurements, and  

𝑑𝑗 = 𝑑 + 𝜖𝑗   𝑗 = 1, … , 𝑁 (8) 

where 𝜖𝑗 is the measurement noise vector. 

H is the measurement operator connecting the true state to 

the observations and R is the measurement error covariance 

matrix defined by 

𝑅 =
1

𝑁 − 1
𝛾𝛾𝑇     𝑅 ∈ 𝑅𝑚×𝑚 (9) 

where 𝛾 is the ensemble of perturbations expressed as 

𝛾 = (𝜖1, 𝜖2, … , 𝜖𝑁)     𝛾 ∈ 𝑅𝑚×𝑁 (10) 

 

2.2 Polynomial chaos Kalman Filter 
 
Although the EnKF solves the major limitations of the 

standard KF and the EKF, it still faces some challenges, 

especially in accurately approximating the model state and 

parameters of the system when a small ensemble size is 

used. Furthermore, for highly nonlinear problems, the EnKF 

requires a large ensemble size which increases the 

computational cost, that’s why the PCKF was proposed to 

be used instead (Saad 2007, Saad and Ghanem 2009, Saad 

and Ghanem 2011). Before going through the details of the 

PCKF, a brief overview of the Polynomial Chaos Expansion 

(PCE) (Ghanem and Spanos 2003) is presented next. 

Wiener (1938) was the first one to introduce the 

Polynomial chaos theory in the form of Homogeneous 

Chaos Expansion that uses Hermite polynomials to model 

stochastic processes with Gaussian random variables. Every 
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source of uncertainty in the system under consideration is 

independently represented by a vector of random variables 

ξ(θ). All these independent random variables are then 

correlated with an individual random event θ. Therefore, for 

each specific problem, the researcher has to determine the 

size of the vector holding the random variables based on the 

available sources of uncertainty. A multidimensional 

orthogonal basis is formed through the expansion of the 

nonlinear functionals of an appropriate set of ξ. Hence, this 

multidimensional orthogonal basis is considered as Hermite 

polynomial in case the random variable under consideration 

is Gaussian (Saad et al. 2007). 

Any random process 𝑢(𝑥, 𝜃) with prescribed 

probability density function, can be expanded as a 

polynomial function of Multi-dimensional Hermite 

polynomials in Gaussian random variables (Ghanem and 

Spanos 2003), as 

𝑢(𝑥, 𝜃) = ∑𝑢𝑖(𝑥)𝜓𝑖(𝜉(𝜃))

∞

𝑖<0

 (11) 

where *𝑢𝑖, 𝑖 = 0, … ,∞+  are deterministic expansion 

coefficients that can be evaluated using different methods 

(Projection Method, Collocation Method,…), 

𝜓𝑛(𝜉𝑖1, … , 𝜉𝑖𝑛) is the nth order Polynomial Chaos in the 

Gaussian variables (𝜉𝑖1, … , 𝜉𝑖𝑛) and *𝜓𝑖 , 𝑖 = 0, … ,∞+ are 

the orthogonal multidimensional Hermite polynomials. 

After truncating the polynomial chaos expansion at the Pth 

term, the above relation becomes 

𝑢(𝑥, 𝜃) = ∑𝑢𝑖(𝑥)𝜓𝑖(𝜉(𝜃))

𝑃

𝑖<0

 (12) 

where P+1 is the total number of terms in a polynomial 

chaos expansion. For an order less than or equal to p and a 

dimension equals to M, P+1 is equal to 

𝑃 + 1 =
(𝑝 + 𝑀)!

𝑝!𝑀!
 (13) 

The PCKF is a sampling-free intrusive sequential data 

assimilation method based on representing the system state 

and parameters by their corresponding polynomial chaos 

representations (Saad 2007, Saad and Ghanem 2009). 

Instead of propagating an ensemble of realizations forward 

in time, as in the case of the EnKF, the PCKF allows the 

propagation of the PC representations of the unknown 

variables. This intrusive technique requires the user to go 

through the black-box model and modify the equation of 

motions to account for these PC decompositions, which 

makes it a more complicated method than the ordinary 

EnKF approach. 

In the PCKF (Saad 2007, Saad and Ghanem 2009), the 

forecast step is based on propagating the state vector 

forward in time and applying the Galerkin projection 

method to solve the system. 

The matrix holding the chaos coefficients is represented as 

follow 

𝐴 = (𝑥0, 𝑥1, … , 𝑥𝑃)     𝐴 ∈ 𝑅𝑛×(𝑃:1) (14) 

 

where x0 is the mean of the model state x, stored in the first 

column of A, *𝑥1, … , 𝑥𝑃+ are the model state perturbations, 

stored in the remaining columns of A, P+1 is the total 

number of terms in the polynomial chaos representation of 

the model state, n is the size of the model state vector x that 

is represented as 

𝑥 = ∑𝑥𝑖(𝑥)𝜓𝑖(𝜉(𝜃))

𝑃

𝑖<0

     𝑥 ∈ 𝑅𝑛 (15) 

where *𝜓𝑖+ is the set of Hermite polynomial functions of 

the Gaussian random variables 𝜉. 

The model state error covariance matrix is given by 

𝑃 = ∑𝑥𝑖𝑥𝑖
𝑇〈𝜓𝑖

2〉

𝑃

𝑖<1

     𝑃 ∈ 𝑅𝑛×𝑛 (16) 

where the operator 〈. 〉 represents the expected value. 

Given a measurements vector d, its polynomial chaos 

representation is as follows 

𝑑 = ∑ 𝑑𝑖𝜓𝑖(𝜉(𝜃))

𝑃

𝑖<0

     𝑑 ∈ 𝑅𝑚 (17) 

where m is the total number of measurements, d0 is the 

mean, given from the actual measurement vector, and 
*𝑑1, … , 𝑑𝑃+  are the measurement uncertainties. The 

polynomial chaos representation of d can be stored in 

matrix B 

𝐵 = (𝑑0, 𝑑1, … , 𝑑𝑃)     𝐵 ∈ 𝑅𝑚×(𝑃:1) (18) 

The measurement error covariance matrix can then be 

represented as 

𝑅 = ∑𝑑𝑖𝑑𝑖
𝑇〈𝜓𝑖

2〉

𝑃

𝑖<1

     𝑅 ∈ 𝑅𝑚×𝑚 (19) 

The analysis or corrector step is stated as follows 

𝐴𝑎 = 𝐴𝑓 + 𝐾𝐺(𝐵 − 𝐻𝐴𝑓) (20) 

where H is the observation matrix and KG is the Kalman 

gain, having the same formulation as the one used in the 

standard KF 

𝐾𝐺 = 𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅);1 (21) 

To avoid the curse of dimensionality due to the 

incorporation of temporal independent sources of 

uncertainty of the model errors and measurement errors in 

the PCKF framework, the practical implementation scheme 

of PCKF presented in (Slika and Saad 2016, 2017) is 

adopted in this study. This scheme relies on limiting the 

PCE bases to finite number of terms to keep the 

computational cost minimal yet without scarifying the 

accuracy of the filter. In this setting, once the allocated 

dimensions for model error and/or measurement error are 

utilized, the error covariance Pa is projected on a first order 

PCE with only Mp dimensions, to be able to represent 

additional uncertainties, as demonstrated below 
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Before projection 

𝑢(𝑥, 𝜃) ≈ ∑𝑢𝑖(𝑥)𝜓𝑖(𝜉(𝜃))

𝑃

𝑖<0

 (22) 

 

𝑃𝑎 = ∑𝑢𝑖𝑢𝑖
𝑇 < 𝜓𝑖

2

𝑃

𝑖<1

> (23) 

After projection 

𝑢(𝑥, 𝜃) ≈ ∑ 𝑢′
𝑗(𝑥)𝜓𝑗(𝜉(𝜃))

𝑃

𝑗<0

, 𝑤𝑒𝑟𝑒 (24) 

 

𝑢0
′ = 𝑢0 𝑎𝑛𝑑 𝑢′𝑗 = 0 𝑖𝑓 𝑗 > 𝑀𝑝 (25) 

Estimating the set of coefficients *ui
′+

1

Mp
 requires solving 

the system of non-linear equations outlined above. Given a 

state vector of size  𝑛 , then the number of unknowns 

is Mp × n , and the number of equations is n2. Therefore 

Mp must be equal at least to 𝑛, to guarantee a solution for 

the nonlinear system of equations. With such relaxed 

formulation, having the number of equations less than the 

unknown parameters, the system of equations could have 

multiple solutions. Usually the solution is estimated, up to a 

pre-specified tolerance, in the neighborhood of a specified 

initial guess, which in this case could be the set of uj′s with 

the highest contribution to the covariance matrix (Slika and 

Saad 2017). 

 

 

3. Numerical example 
 

The numerical problem consists of four-degrees of 

freedom system, as shown in Fig. 1 subjected to El-Centro 

Earthquake ground excitation. A pre-defined damage of the 

first DOF is imposed 10 seconds after the excitation hits the 

system. Additionally, all DOFs are assumed to undergo 

hysteretic behaviors characterized by the Bouc-Wen model. 

The mass for each DOF is assumed to be equal such that 

𝑀1 = 𝑀2 = 𝑀3 = 𝑀4 = 2 𝐾𝑔  (Ghanem and Ferro 2006, 

Chatzi and Smyth 2009, Saad and Ghanem 2011). 

 

 

 
Fig. 1 Model of the four-DOF System 

The displacements and velocities of the different DOFs 

of the system are assumed to be monitored at all times. The 

performance and robustness of both the non-intrusive 

ensemble Kalman filter and the intrusive polynomial chaos 

Kalman filter methods are tested on this numerical problem 

through the estimation of the displacement and velocity of 

each DOF as well as the system’s unknown parameters. 

The system dynamics are mathematically represented by 

the following equation of motion 

𝑀�̈� + 𝐶�̇�(𝑡)+∝ 𝐾𝑒𝑙𝑢(𝑡) + (1−∝)𝐾𝑖𝑛𝑧(𝑥, 𝑡)
= −𝑀𝜏�̈�𝑔(𝑡) (26) 

 

[

𝑀1 0 0 0
0 𝑀2 0 0
0 0 𝑀3 0
0 0 0 𝑀4

] [

�̈�1

�̈�2

�̈�3

�̈�4

]

+ [

𝑐1 + 𝑐2 −𝑐2 0 0
−𝑐2 𝑐2 + 𝑐3 −𝑐3 0
0 −𝑐3 𝑐3 + 𝑐4 −𝑐4

0 0 −𝑐4 𝑐4

] [

�̇�1

�̇�2

�̇�3

�̇�4

] 

+∝ [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘3 + 𝑘4 −𝑘4

0 0 −𝑘4 𝑘4

] [

𝑢1

𝑢2

𝑢3

𝑢4

] 

+(1−∝) [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘3 + 𝑘4 −𝑘4

0 0 −𝑘4 𝑘4

] [

𝑧1

𝑧2

𝑧3

𝑧4

] 

=

[
 
 
 
𝐹1(𝑡)

𝐹2(𝑡)

𝐹3(𝑡)

𝐹4(𝑡)]
 
 
 

 

(27) 

where M is the mass matrix, C is the damping matrix, 𝐾𝑒𝑙  

and 𝐾𝑖𝑛 are respectively the elastic and inelastic stiffness 

matrices and are both assumed to be equal to the ordinary 

stiffness matrix of the system, ∝ is the ratio of the post 

yielding stiffness to the elastic stiffness and is taken to be 

equal to 0.15 for this special numerical problem, 𝜏 is an 

influence vector, u is the displacement vector and z is the 

evolutionary hysteretic vector of dimension n and whose ith 

component is expressed by the Bouc-Wen model by 

(Ghanem and Ferro 2006, Chatzi and Smyth 2009, Saad and 

Ghanem 2011) 

�̇�𝑖 = 𝐴𝑖�̇�𝑖 − 𝛽𝑖|�̇�𝑖||𝑧𝑖|
𝑛𝑖;1𝑧𝑖 − 𝛾𝑖�̇�𝑖|𝑧𝑖|

𝑛𝑖      

 𝑖 = 1, … , 𝑛 
(28) 

where  𝐴 = 1 , x is the inter-story drift vector and 

 𝛽, 𝑛 𝑎𝑛𝑑  𝛾  are the Bouc-Wen hysteretic model 

parameters. Parameter n is taken to be equal to 1 for 

simplicity reasons to avoid using Taylor series 

approximations for the power of a non-polynomial for the 

PCKF method. The purpose of this numerical problem is to 

identify the states of the system as well as the 

parameters  𝛽𝑖 , 𝛾𝑖 , 𝑘𝑖  𝑎𝑛𝑑 𝑐𝑖 , where 𝑖 = 1,… ,4  is the 

number of degrees of freedom.  

To synthetically generate the measured data, the 

stiffness is assumed to be constant and equal to  𝑘 =
8.5 𝑁/𝑚 on all DOFs, the damping is also assumed to be 

constant for all DOFs such that 𝑐 = 0.27, and the values of 

the Bouc-Wen hysteretic parameters, before the damage 
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occurs at the first DOF of the system, are assumed to be 

𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 2 𝑎𝑛𝑑  𝛾1 = 𝛾2 = 𝛾3 = 𝛾4 = 1  
(Chatzi and Smyth 2009). An increase of 50% to the values 

of hysteretic parameters of the first DOF is added once the 

damage is imposed to create a softening character(Shen et 

al. 2005). Therefore, the values of 𝛽 𝑎𝑛𝑑 𝛾 of the first 

DOF ten seconds after the excitation hits the system under 

consideration become 𝛽1 = 3 𝑎𝑛𝑑 𝛾1 = 1.5. Measurements 

are assumed to available every 20 time steps with a fixed 

time step dt = 0.01 seconds. It should be noted that a 

sensitivity analysis was performed to select this time step 

value. An additive Gaussian white noise perturbation with a 

standard deviation equals to 5% of the exact data is added 

to the simulated displacements and velocities of the 

system’s DOFs to represent the measurement errors. The 

fourth-order Runge-Kutta integration scheme is used to 

solve the differential Eq. (27) to determine the system 

responses of the displacements and velocities. 

For data assimilation purposes, the state variable vector 

and its first order derivative are respectively represented in 

the following two equations as 

𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑢1

𝑢2

𝑢3
𝑢4

�̇�1

�̇�2

�̇�3

�̇�4

 𝑧1
 𝑧2

 𝑧3

 𝑧4

𝛽1

𝛽2

𝛽3

𝛽4

 𝛾1

 𝛾2

 𝛾3

 𝛾4

𝑘
𝑐 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (29) 

 

�̇� =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

�̇�7

�̇�8

�̇�9

�̇�10

�̇�11

�̇�12

�̇�13

�̇�14

�̇�15

�̇�16

�̇�17

�̇�18

�̇�19

�̇�20

�̇�21

�̇�22]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̈�1

�̈�2

�̈�3

�̈�4

�̇�1

�̇�2

�̇�3

�̇�4

�̇�1

�̇�2

�̇�3

�̇�4

�̇�1

�̇�2

�̇�3

�̇�4

�̇�
�̇� ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(30) 

 

�̇� =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑋5

𝑋6

𝑋7

𝑋8

−
1

𝑀1
[

−�̈�𝑔 + (𝑋17 + 𝑋18)𝑋5 − 𝑋18𝑋6

+𝛼,(𝑋13 + 𝑋14)𝑋1 − 𝑋14𝑋2-

+(1 − 𝛼),(𝑋13 + 𝑋14)𝑋9 − 𝑋14𝑋10-

]

−
1

𝑀2
[

−�̈�𝑔 − 𝑋18𝑋5 + (𝑋18 + 𝑋19)𝑋6 − 𝑋19𝑋7

+𝛼,−𝑋14𝑋1 + (𝑋14 + 𝑋15)𝑋2 − 𝑋15𝑋3-

+(1 − 𝛼),−𝑋14𝑋9 + (𝑋14 + 𝑋15)𝑋10 − 𝑋15𝑋11-

]

−
1

𝑀3
[

−�̈�𝑔 − 𝑋19𝑋6 + (𝑋19 + 𝑋20)𝑋7 − 𝑋20𝑋8

+𝛼,−𝑋15𝑋2 + (𝑋15 + 𝑋16)𝑋3 − 𝑋16𝑋4-

+(1 − 𝛼),−𝑋15𝑋10 + (𝑋15 + 𝑋15)𝑋11 − 𝑋16𝑋12-

]

−
1

𝑀4
[

−�̈�𝑔 − 𝑋20𝑋7 + 𝑋20𝑋8

+𝛼,−𝑋16𝑋3 + 𝑋16𝑋4-

+(1 − 𝛼),−𝑋16𝑋11 + 𝑋16𝑋12-

]

𝑋5 − 𝑋13|𝑋5|𝑋9 − 𝑋17𝑋5|𝑋9|

𝑋6 − 𝑋14|𝑋6|𝑋10 − 𝑋18𝑋6|𝑋10|

𝑋7 − 𝑋15|𝑋7|𝑋11 − 𝑋19𝑋7|𝑋11|

𝑋8 − 𝑋16|𝑋8|𝑋12 − 𝑋20𝑋8|𝑋12|
0
0
0
0
0
0
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(31) 

where �̈�𝑔is the El-Centro earthquake ground excitation. 

For both filters, the EnKF and the PCKF methods, the 

inverse model that is used to detect the behavior of the 

system under consideration is also expressed by the Bouc-

Wen model. 

The initial values of the displacements 𝑢𝑖, velocities �̇�𝑖 

and evolutionary hysteretic vector 𝑧𝑖  ( 𝑖 = 1,… ,4  ) are 

assumed to be the following 

𝑢1
0 = 𝑢2

0 = 𝑢3
0 = 𝑢4

0 = 0; 
 �̇�1

0 = �̇�2
0 = �̇�3

0 = �̇�4
0 = 0; 

𝑎𝑛𝑑 𝑧1
0 = 𝑧2

0 = 𝑧3
0 = 𝑧4

0 = 0 

(32) 

The initial guesses of the unknown parameters of the 

system are assumed to have the following mean values 

𝛽1
0 = 2.5; 𝛽2

0 = 2.5; 𝛽3
0 = 2.5; 𝛽4

0 = 2.5; 
 𝛾1

0 = 1.2; 𝛾2
0 = 1.2; 𝛾3

0 = 1.2; 𝛾4
0 = 1.2; 

𝑘0 = 7 𝑎𝑛𝑑 𝑐0 = 0.4 

(33) 

and a standard deviation of 10% of the initial assumptions. 

A fourth order Runge-Kutta time integrating method is 

implemented once again to propagate the system state 

forward in time. An additive Gaussian white noise having a 

standard deviation equals to 2.5% of the forecasted state 

vector and 5% of the forecasted parameters, is used every 5 

time steps to represent the model uncertainty. The perturbed 

synthetic measurements of the displacements and velocities 

of the DOFs are used to calibrate the model parameters and 

estimate the response of the system under consideration. 

For the PCKF method, the Galerkin projection method 

is used to solve Eq. (27) to determine the 

acceleration �̈�𝑖  (𝑖 = 1,… , 4). The Galerkin method is based 

on projection and is used to approximate solutions of 

differential equations. On the other hand, to solve Eq. (28) 
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and determine the evolutionary hysteretic vector  𝑧𝑖  (𝑖 =
1,… , 4), the Galerkin projection cannot be used because of 

the presence of the absolute value in the equation. 

Therefore, a linear fitting method (i.e., regression method) 

is used instead to solve Eq. (28). 

 

 

4. Uncertainty quantification 
 

As previously noted, development of SHM frameworks 

for complex nonlinear systems is accompanied by the 

presence of many sources of randomness. One major cause 

of uncertainty is the use of mathematical and numerical 

models to simulate the true physics of the system, and 

therefore leading to the creation of model errors coming 

from the inability of such models to adequately describe the 

system’s real behavior. Another main source of error is the 

measurement uncertainty that is due to the restricted ability 

of the measurement data to accurately describe the real 

observations. Parametric variability is an additional source 

of randomness coming from the limited knowledge about 

the exact values of the system’s input parameters.  

The different sources of randomness in modeling 

physical phenomena can be classified into two main 

categories, aleatoric and epistemic uncertainty (Helton 2000, 

Helton and Davis 2002, Ghanem and Spanos 2003, Helton 

and Oberkampf 2004, Der Kiureghiana and Ditlevsen 2009). 

The first category is due to natural randomness inherent in 

the behavior or environment of the system. The aleatoric 

uncertainty is also called irreducible uncertainty since it 

cannot be reduced by performing more experimental testing. 

In the presented numerical problem, this class of 

uncertainty is primarily detected in the input variables and 

parameters ( 𝛽𝑖 , 𝛾𝑖 , 𝑘 𝑎𝑛𝑑 𝑐 ) whose exact values are 

unpredictable. The second category, the epistemic 

uncertainty or reducible uncertainty, is mainly due to the 

lack of knowledge and available observational data. It can 

be reduced by conducting additional experimental studies or 

implementing a new better physical model, leading to an 

increased amount of knowledge about the behavior of the 

system under consideration. This category of uncertainty is 

detected in the numerical problem under consideration 

through the model errors that are associated with each 

state (𝑢𝑖, �̇�𝑖  𝑎𝑛𝑑 𝑧𝑖), and that are implemented to account 

for the simplifications in the mathematical models used to 

roughly represent the true physical state of the system. This 

reducible uncertainty is also spotted in the synthetic 

measured displacements and velocities of the different 

DOFs of the system and their restricted capacities to 

replicate the true observed data. 

 
4.1 Representation of the different sources of 

uncertainty 
 
For highly nonlinear systems that are subjected to many 

independent sources of errors, the EnKF requires a large 

ensemble size to properly estimate the system states and 

unknown parameters and to accurately detect and locate the 

damage. Therefore it is expected that a relatively large 

ensemble is required for the EnKF approach to acceptably 

identify the unknown states and variables of the 4-DOF 

system under consideration. 

On the other hand, regarding the PCKF method, the 

dimension is specified based on the number of independent 

sources of uncertainty available in the system under 

consideration. Therefore, one major challenge faced by the 

authors was the increase in the dimensionality of the PCE 

due to the presence of different independent sources of 

uncertainties, i.e., every time a measurement is recorded or 

a model error is implemented in the system to account for 

the physical and mathematical model simplifications, an 

additional increase in the dimensionality of the PCE is 

incorporated. To approach this problem, the PCKF 

implementation in (Slika and Saad 2016, 2017) is adopted 

where it maintains an accurate approximation of the 

covariance yet it limits the number of the required PCE 

terms or dimensions. Therefore, it overcomes the curse of 

dimensionality due to the incorporation of temporal 

independent sources of uncertainties at a cost of solving a 

nonlinear system of equations. 

In the problem at hand, the errors due to model 

uncertainty are assumed to be correlated for each state 

(𝑢, �̇� 𝑎𝑛𝑑 𝑧) and for the parameters 𝑐 𝑎𝑛𝑑 𝑘, whereas the 

errors representing the model uncertainties in 𝛽 𝑎𝑛𝑑 𝛾 are 

respectively assumed to be independent, resulting in a total 

of 13 independent sources of model errors. Next, the errors 

due to measurement uncertainties are also assumed to be 

respectively correlated for u and  �̇� , leading to two 

additional independent sources of errors. Finally, the initial 

guess errors are taken to be correlated for each 

parameter  (𝛽, 𝛾, 𝑐 𝑎𝑛𝑑 𝑘)  respectively, resulting in 4 

additional independent sources of errors. Table 1 presents 

further clarifications about the total number of independent 

sources of uncertainty adopted in this numerical example.  

In the adopted practical implementation scheme, the 

number of dimensions M is made up of two parts 𝑀𝑝 

and 𝑀𝑓. The 𝑀𝑝 dimensions are allocated to handle the 

projected covariance matrix such that 𝑀𝑝 is at least equal 

to n, the length of state vector, which is 22 in this case, 

while the 𝑀𝑓 dimensions are allocated to handle at least 

one addition of model error and measurement error after the 

projection (Slika and Saad 2016, 2017). 

 

 

Table 1 Total number of independent sources of Uncertainty 

Independent 

Sources of Errors 
Model Error 

Measurement 

Error 

Initial Guess 

Error 

𝒖𝒊 1 1 0 

�̇�𝒊 1 1 0 

𝒛𝒊 1 0 0 

𝜷𝒊 4 0 1 

𝜸𝒊 4 0 1 

𝒌 1 0 1 

𝒄 1 0 1 

Total 13 2 4 
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Therefore, in accordance with the above problem 

formulation, the minimum number of dimensions in this 

study is found to be equal to 45 (i.e., a minimum of 3 finite 

terms is taken for the model error (13 × 3), 1 finite term 

for the measurement error(2 × 1), and no additional terms 

for the initial guess errors; therefore the total number of 

PCE dimensions becomes: 13 × 3 + 2 × 1 + 4 = 45). 

 

 

5. Results and discussions 
 
Before proceeding with the results, it should be noted 

that sensitivity analyses on the ensemble size of the EnKF 

method and on the order and dimension of the PCKF 

method were performed. For this purpose, the mean of the 

predicted hysteretic parameter 𝛽1 and its standard deviation 

ten seconds after the damage is imposed on the first DOF 

are calculated for different ensemble sizes for the EnKF 

approach and different orders and dimensions for the PCKF 

method. While the PCKF method gives the same outcomes 

for different simulation runs having same order and 

dimension of the PCE, the results of the EnKF method 

slightly vary between different simulation runs for the same  

 

 

 

 

ensemble size. For this reason, five simulation runs were 

respectively executed for each ensemble size. Figs. 2 and 3 

respectively represent the values of the mean and standard 

deviation of the predicted parameter 𝛽1 at ten seconds post-

damage, calculated using the EnKF and PCKF approaches. 

It can be seen from Fig. 2 that as the ensemble size 

increases, the variability between the means of the predicted 

parameters 𝛽1 of the different simulation runs decreases to 

attain an acceptable variability for a 10,000 ensemble size, 

in addition to a relatively small percentage error (around 

0.05% error) if compared to a benchmark problem based on 

a sufficiently large ensemble size equals to 250,000 

ensemble. This observation is also valid for Fig. 3, where 

the results of the standard deviations of the predicted 

parameters 𝛽1, at ten seconds after the damage is imposed 

on the first DOF, attain acceptable variability between 

different simulation runs for an EnKF with 10,000 

ensemble size and a small percentage error (around 0.6% 

error) when compared to the benchmark problem with 

250,000 ensemble size. 

Similarly, as the order of the PCKF method is increased 

from 1 to 2, the method results in a closer approximation of 

the mean of the parameter 𝛽1 to the assumed exact 

 

Fig. 2 Mean of predicted parameter 𝛽1 vs. Ensemble size and PCKF dimension and order, 10 seconds after the damage 

 

Fig. 3 Standard deviation of predicted parameter 𝛽1 vs. Ensemble size and PCKF dimension and order, 10 seconds after 

the damage 
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measured value, as shown in Fig. 2, and in a slightly smaller 

standard deviation of parameter 𝛽1, as shown in Fig. 3. In 

addition, for PCKF order 2, a rough plateau in the values of 

the mean and standard deviation of parameter 𝛽1 is 

noticeable for different dimensions of the PCE. This is due 

to the new implementation of the PCKF method that 

maintains the covariance even for low dimensional PCE.  

The PCE with order 2 and dimension 45 recorded low 

percentage errors (around 0.019% for the mean of 

parameter 𝛽1 and 0.01% errors for the standard deviation of 

parameter 𝛽1) when compared to the benchmark problem 

based on 250,000 ensemble size, therefore the PCKF with 

order 2 and dimension 45 plays the role of a good parameter 

estimator. As a conclusion, an EnKF with 10,000 ensemble 

size and a PCE with order 2 and dimension 45 can be used 

for the comparative study in this numerical problem. 

Furthermore, while the duration for the PCKF parameter 

and state identification with dimension 45 and order 2 was 

3.0618x103 seconds, the computational time for the EnKF 

identification with size 10,000 ensembles of realizations 

was 7.1455x103 seconds on the same machine. As a result, 

for high accuracy requirements, while both filters are able 

to approximate the system state and unknown parameters 

and identify the damage in space and time, the PCKF 

method outperforms the EnKF approach, that requires high 

ensemble size to attain high precisions, in terms of 

computational expenses. 

Figs. 4-7 respectively represent for each DOF, a 

comparison between the EnKF and PCKF estimates of the 

displacement (part (a) of each figure), velocity (part (b) of 

each figure) and evolutionary hysteretic vector (part (c) of 

each figure), and their respective synthetic actual measured 

values. It can be clearly seen that there is a very good match 

between the three plots in each figure, which implies that 

both variations of the Kalman filter method play the role of 

very good estimators of the system state. 

The EnKF and PCKF estimates of the hysteretic model 

parameters 𝛽 and 𝛾 of each DOF are respectively presented 

in Figs. 8 and 9. 

 

 

 

Fig. 4 EnKF and PCKF estimates of First DOF 

displacement, velocity and evolutionary hysteretic 

 

 

 

 

 

 

Fig. 5 EnKF and PCKF estimates of Second DOF 

displacement, velocity and evolutionary hysteretic 

 

 

 

 

Fig. 6 EnKF and PCKF estimates of  Third DOF 

displacement, velocity and evolutionary hysteretic vector 

 

 

 

 

Fig. 7 EnKF and PCKF estimates of Fourth DOF 

displacement, velocity and evolutionary hysteretic 
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A perfect match between the EnKF and PCKF estimates of 

the different hysteretic model parameters can be obviously 

noticed in each figure. Furthermore, both filter variations 

were able to locate the imposed damage in time and space, 

which is represented by the jump of the different parameters 

at 10 seconds, followed by a correction and matching with 

the true values after few time steps.  

Same conclusions can be drawn for parameter k, 

represented in Fig. 10 part (a) and parameter c, represented 

in Fig. 10(b). Both filters were able to estimate the true  

 

 

 

 

 

 

values of parameters k and c, even when starting from 

relatively far initial guess values, and to locate the damage  

imposed 10 seconds after the excitation hits the system 

under consideration.  

Fig. 11 represents the hysteretic loop corresponding to 

the first DOF. The nearly perfect match between the actual 

hysteretic loop and its EnKF and PCKF estimates 

authenticates the validity of parameter approximation of 

both filters. 

 

  
(a) First DOF (b) Second DOF 

  
(c) Third DOF (d) Fourth DOF 

Fig. 8 EnKF and PCKF estimates of Parameter 𝛽 

  
(a) First DOF (b) Second DOF 

  
(c) Third DOF (d) Fourth DOF 

Fig. 9 EnKF and PCKF estimates of Parameter 𝛾 
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Fig. 11 Hysteresis Loop of the first DOF 

 

 

6. Conclusions 
 
In the present work, the importance of uncertainty 

quantification is highlighted through a comparative study 

between intrusive and non-intrusive techniques used to 

quantify and represent the available uncertainties. For this 

reason, a comparison between two different variations of 

the Kalman filter technique, Ensemble Kalman Filter and 

Polynomial Chaos Kalman Filter, is performed. The 

comparison is based on the computational burden of the 

simulation runs required by each method to identify the 

system state and parameters and on the accuracy and 

performance of each filter in quantifying the uncertainty for 

SHM purposes. This is illustrated through a numerical 

example, consisting of a 4-degrees of freedom nonlinear 

system subjected to seismic excitation and suffering from 

hysteretic behaviors represented by the Bouc-Wen model. A 

pre-defined damage of the first degree of freedom is 

imposed ten seconds after the excitation hits the system.  

A sensitivity analysis was performed on the ensemble 

size for the EnKF method and a relatively large ensemble 

size equals to 10,000 was selected to attain a sufficiently 

high accuracy in estimating the parameters and response of 

this complex and highly nonlinear system for damage 

detection purposes. On the other hand, an exhaustive 

analysis was performed on the dimensionality of the PCE 

used that is increased every time an independent source of 

error, due to model or measurement uncertainty, is 

incorporated in the system. For this reason, the PCE bases 

were limited to finite terms while maintaining a good 

approximate propagation of the covariance matrix, resulting 

in a minimum dimension equals to 45 for the PCKF method. 

This minimum dimension of the PCE was used along with  

 

 

an order equals to 2 in the comparative analysis. 

While both variations of the Kalman filter method were 

able to locate the damage in space and time and to 

accurately approximate the system state and unknown 

parameters for SHM purposes, the PCKF method 

outperformed the ordinary EnKF approach in terms of 

computational effort. The underlying reason behind the 

adequate performance of both filters is that they both 

properly account for all sources of uncertainty in their 

formulation. If that was not the case, and an engineer 

decided to use a lower order filter formulation, the rendered 

filter outcome will not be useful.  

As a conclusion, since the EnKF belongs to the class of 

non-intrusive methods that use black-box models to solve 

forward problems, it is easier to implement if compared to 

the intrusive methods such as the PCKF approach that 

requires going through the black-box model and modifying 

the equations to account for the polynomial chaos 

representations of the unknown variables. On the other hand, 

for highly nonlinear and complex systems, the EnKF 

approach requires a relatively large ensemble size to attain a 

comparable high accuracy with the PCKF method and 

consequently a higher computational burden. Therefore, the 

optimal sequential data assimilation framework is a trade-

off between ease of use, numerical accuracy and 

computational burden. Based on the complexity of the 

mathematical model and the nature of the existing sources 

of uncertainty, the user can choose whether to adopt an 

intrusive or non-intrusive technique for handling the 

problem at hand.  

One limitation of this study is that  the drawn 

conclusions, although valueable, are based on synthetic 

data. Future plans include applying the two filters on real 

life problems and assessing their adequacy accordingly. 

 

 

References 
 

Al-Hussein, A. and Haldar, A. (2016), “Unscented Kalman filter 

with unknown input and weighted global iteration for health 

assessment of large structural systems”, Struct. Control Health 

Monit., 23(1), 156-175. 

Arasaratnam, I. and Haykin, S. (2009), “Cubature Kalman filters”, 

IEEE T. Autom. Control, 54(6), 1254-1269. 

Bertino, L., Evensen, G. and Wackernagel, H. (2003), “Sequential 

data assimilation techniques in oceanography”, International 

Stat. Rev., 71(2), 223-241. 

Burgers, G., Leeuwen, P. and Evensen, G. (1998), “Analysis 

  

(a) Parameter k (b) Parameter c 

Fig. 10 EnKF and PCKF estimates of Parameters k and c 

409



 

Dana E. Nasr, Wael G. Slika and George A. Saad 

scheme in the ensemble Kalman filter”, Mon. Weather Rev., 

126(6), 1719-1724. 

Chang, P., Faltau, A. and Liu, S. (2003), “Review Paper: health 

monitoring of civil infrastructure”, Struct. Health Monit., 2(2), 

257-267. 

Chatzi, E.N. and Smyth, A.W. (2009), “The unscented Kalman 

filter and particle filter methods for nonlinear structural system 

identification with non-collocated heterogeneous sensing”, 

Struct. Control Health Monit., 16(1), 99-123. 

Chatzi, E.N. and Smyth, A.W. (2013), “Particle filter scheme with 

mutation for the estimation of time-invariant parameters in 

structural health monitoring applications”, Struct. Control 

Health Monit., 20(7), 1081-1095. 

Chatzi, N. and Fuggini, C. (2015), “Online correction of drift in 

structural identification using artificial white noise observations 

and an unscented Kalman filter”, Smart Struct. Syst., 16(2), 295-

328. 

Chowdhary, G. and Jategaonkar, R. (2010), “Aerodynamic 

parameter estimation from flight data applying extended and 

unscented Kalman filter”, Aerosp. Sci. Technol., 14(2), 106-117. 

Chui, C. and Chen, G. (1991), Kalman Filtering with Real Time 

Applications, Springer. 

Corigliano, A. and Mariani, S. (2004), “Parameter identification in 

explicit structural dynamics: performance of the ectended 

Kalman filter”, Comput. Method. Appl. M., 193(36), 3807-3835. 

Daley, R. (1997), “Atmospheric data assimilation”, J. Meteorol. 

Soc. Japan Series 2, 75, 319-329. 

Der Kiureghiana, A. and Ditlevsen, O. (2009), “Aleatory or 

epistemic? Does it matter? ”, Struct. Saf., 31(2), 105-112. 

Doebling, S., Farrar, C., Prime, M. and Shevitz, D. (1996), 

Damage identification and health monitoring of structural and 

mechanical systems from changes in their vibration 

characteristics: a literature review, Los Alamos National Lab., 

NM (United States). 

Evensen, G. (1994), “Sequential data assimilation with a nonlinear 

quasi-geostrophic model using Monte Carlo to forecast error 

statistics”, J. Geophysical Research: Oceans (1978-2012), 

99(C5), 10143-10162. 

Evensen, G. (2003), “The ensemble Kalman filer: Theoretical 

formulation and practical implementation”, Ocean Dynam., 

53(4), 343-367. 

Evensen, G. (2009), “The ensemble Kalman filter for combined 

state and parameter estimation”, IEEE Control Syst. Mag., 83-

104. 

Farrar, C. and Worden, K. (2007), “An introduction to structural 

health monitoring”, Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, 

365(1851), 303-315. 

Ghanem, R. (1999), “Ingredients for a general purpose stochastic 

finite element formulation”, Comput. Method. Appl. M., 168(1), 

19-34. 

Ghanem, R. and Ferro, G. (2006), “Health monitoring of strongly 

nonlinear systems using the ensemble Kalman filter”, Struct. 

Control Health Monit. 13(1), 245-259. 

Ghanem, R. and Spanos, P. (2003), Stochastic Finite Elements: A 

Spectral Approach, Courrier Corporation. 

Gillijns, S., Mendoza, O., Chandrasekar, J., De Moor, B., 

Bernstein, D. and Ridley, A. (2006), “What is the ensemble 

Kalman filter and how well does it work?”, Proceedings of the 

American Control Conference, Minneapolis. 

Goyal, D. and Pabla, B.S. (2015), “The vibration monitoring 

methods and signal processing techniques for structural health 

monitoring: a review”, Arch. Comput. Method. E., 1-10. 

Grewal, M. and Andrews, A. (2008), Kalman Filtering Theory and 

Applications using MATLAB, John Wiley & Sons. 

Hassani, V., Tjahjowidodo, T. and Do, T.N. (2014), “A survey in 

hysteresis modeling, identification and control”, Mech. Syst. 

Signal Pr., 49(1), 209-233. 

Helton, J.C. (2000), “Sampling-based methods for uncertainty and 

sensitivity analysis”, Multimedia Environ. Model., 32(2), 73. 

Helton, J.C. and Davis, F.J. (2002), “Illustration of sampling-based 

methods for uncertainty and sensitivity analysis”, Risk Anal., 

22(3), 591-622. 

Helton, J.C. and Oberkampf, W.L. (2004), “Alternative 

representations of epistemic uncertainty”, Reliab. Eng. Syst. Saf., 

85(1), 1-10. 

Hommels, A., Murakami, A. and Nishimura, S.I. (2009), “A 

comparison of the ensemble Kalman filter with the Unscented 

Kalman filter: application to the construction of a raod 

embankment”, Geotechniek, 13(1), 52. 

Ikhouane, F., Mañosa, V. and Rodellar, J. (2007), “Dynamic 

properties of the hysteretic Bouc-Wen model”, Syst. Control. 

Lett., 56(3), 197-205. 

Ismail, M., Lkhouane, F. and Rodellar, J. (2009), “The hysteresis 

Bouc-Wen model, a survey”, Arch. Omputat. Method. Eng., 

16(2), 161-188. 

Kalman, R. (1960), “A new approach to linear filtering and 

prediction problems”, J. Basic Eng., 82(1), 35-45. 

Kalnay, E. (2003), Atmospheric Modeling, Data Assimilation and 

Predictability, Cambridge University Press. 

Kandepu, R., Foss, B. and Imsland, L. (2008), “Applying the 

unscented Kalman filter for nonlinear state estimation”, J. 

Process Contr., 18(7), 753-768. 

LeDimet, F. and Talagrand, O. (1986), “Variational algorithms for 

analysis and assimilation of meteorological observations: 

Theoretical aspects”, Tellus A, 38(2), 97-110. 

Lei, Y., Chen, F. and Zhou, H. (2015), “A two-stage and two-step 

algorithm for the identification of structural damage and 

unknown excitations: numerical and experimental studies”, 

Smart Struct. Syst., 15(1), 57-80. 

Li, J. and Xiu, D. (2009), “A generazlized polynomial chaos based 

ensemble Kalman filter with high accuracy”, J. Comput. Phys., 

228(15), 5454-5469. 

Liu, L., Lei, Y. and He, M. (2015), “Locating and identifying 

model-free structural nonlinearities and systems using 

incomplete measured structural responses”, Smart Struct. Syst., 

15(2), 409-424. 

Navon, I., Zou, X., Derber, J. and Sela, J. (1992), “Variational data 

assimilation with an adiabatic version of the NMC spectral 

model”, Am. Meterol. Soc., 120(7), 1433-1446. 

Saad, G. (2007), “Stochastic data assimilation with application to 

multi-phase flow and health monitoring problems”, ProQuest. 

Saad, G. and Ghanem, R. (2009), “Characterization of reservoir 

simulation models using a polynomial chaod-based ensemble 

Kalman filter”, Water Resour. Res., 45(4). 

Saad, G. and Ghanem, R. (2011), “Robust structural health 

monitoring using a polynomial chaos sequential data 

assimilation technique”, Proceedings of the COMPDYN 2011, 

Corfu, Greece. 

Saad, G., Ghanem, R. and Masri, S. (2007), “Robust system 

identification of strongly non-linear dynamics using a 

polynomial chaos based sequential data assimilation technique”, 

Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics and Materials Conference, Honolulu. 

Shen, Y., Golnaraghi, M.F. and Heppler, G.R. (2005), “Analytical 

and experimental study of the response of a suspension system 

with a magnetorheological damper”, J. Intel. Mat. Syst. Str., 

16(2), 135-147. 

Slika, W. and Saad, G. (2016), “An ensemble Kalman filter 

approach for service life prediction of reinforced concrete 

structures subject to chloride-induced corrosion”, Constr. Build. 

Mater., 115, 132-142. 

Slika, W. and Saad, G. (2016), “A robust polynomial chaos 

Kalman filter framework for corrosion detection in reinforced 

410



 

Uncertainty quantification for structural health monitoring applications 

concrete structures”, Proceedings of the VII European Congress 

on Computational Methods in Applied Sciences and Engineering, 

Crete Island, Greece. 

Slika, W. and Saad, G. (2017), “A practical polynomial chaos 

Kalman filter implementation using non-linear error projection 

on a reduced polynomial chaos expansion”, Int. J. Numer. Meth. 

Eng., 112(12), 1869-1885. 

Sohn, H., Farrar, C., Hemez, F. and Czarnechi, J. (2002), “A 

review of Structural Health Monitoring litearture 1996-2001”, 

(LA-UR-02-2095). 

Song, J. and Der Kiureghian, A. (2006), “Generalized Bouc-Wen 

model for highly asymmetric hysteresis”, J. Eng. Mech., 132(6), 

610-618. 

Spiridonakos, M.D., Chatzi, E.N. and Sudret, B. (2016), 

“Polynomial chaos expansion models for the monitoring of 

structures under operational variability”, ASCE-ASME Journal 

of Risk and Uncertainty in Engineering Systems, Part A: Civil 

Engineering, B4016003. 

St-Pierre, M. and Gingras, D. (2004), “Comparison between the 

unscented Kalman filter and the extended Kalman filter for the 

position estimation module of an integrated navigation 

information system”, IEEE Intelligent Vehicules Symposium. 

Welch, G. and Bishop, G. (2006), An introduction to the Kalman 

Filter, North Carolina, US, University of North Carolina: Chapel 

Hill. 

Wiener, N. (1938), “The homogeneous chaos”, Am. J. Math., 897-

936. 

Xu, B. and He, J. (2015), “Substructural parameters and dynamic 

loading identification with limited observations”, Smart Struct. 

Syst., 15(1), 169-189. 

Ye, M. and Wang, X. (2007), “Parameter estimation of the Bouc-

Wen hysteresis model using particle swarm optimization”, Smart 

Mater. Struct., 16(6), 2341. 

Zhang, H., Foliente, G.C., Yang, Y. and Ma, F. (2002), “Parameter 

identification of inelastic structures under dynamic loads”, 

Earthq. Eng. Struct. D., 31(5), 1113-1130. 

 

 

HJ 

 

 

 

411




