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1. Introduction 
 

In recent years, computer-aided topology optimization 

has been receiving increasing attention. Since the 

pioneering study (Bendsøe and Kikuchi 1988), topology 

optimization has made remarkable progress as an 

innovative numerical and design method, attracting an 

enormous amount of attention from the scientific 

community (Lee and Shin 2015a, b, Olyaie and Razfar 

2013, Lee et al. 2016). It is a relatively new but rapidly 

expanding field of structural mechanics. It is used in an 

increasing rate in industrial applications and designing 

mechanical components such as manufacture field 

(Vatanabea et al. 2016, Liu and Ma 2016), laminated 

composite structures (Blasques and Stolpe 2012, Lund 

2009), thermoelastic structures (Xia and Wang 2008), 

piezoelectric material (Noha and Yoon 2012), multi-

functional designs (Chen et al. 2010, Chen et al. 2009) and 

other applications (Kutylowski and Szwechlowicz 2013, 

Goncalves et al. 2016). The reason of the feasibility is that 

it often achieves greater material savings and design 

improvements than shape optimization.  

In actuality, thick plate bending model has a wider range 

of applicability than thin plate theory. Because thick plate 

theory, particularly using Reissner-Mindlin theory, is taken 

into account shear deformations through the thickness of a 

plate. Therefore, there are several works have studied  
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the optimization problem of topology optimization of thick 

plate. Indeed, Belblidia et al. (2001) presented a novel  

topology optimization algorithm for single- or three-layered 

artificial material model. Goo et al. (2016) studied optimal 

topologies for thin plate structures with bending stress 

constraints. Yan et al. (2016) studied optimal topology 

design of damped vibrating plate structures subjected to 

initial excitations. Nevertheless, adding hard materials to 

keep the same amount of total material may produce stiffer 

structures than single material (Tavakoli and Mohseni 2014, 

Zhou and Wang 2006).  

In topology optimization fields, multi-material topology 

optimization is attractive part to finds optimal density 

distributions of different types of material in given 

conditions. Zhou and Wang (2007) introduced a phase field 

method for the muli-material structural topology 

optimization with a generalized Cahn-Hilliard model. 

Sigmund and Torquato (1997) introduced the design of 

materials with an extreme thermal expansion using three-

phase topology optimization. Alonso et al. (2014) studied 

topology synthesis of multiple materials by using a multi 

Sequential Element Rejection and Admission (SERA) 

method. Yun and Youn (2017) investigated optimized 

topologies using multiple materials for viscoelastically 

damped structures under time-dependent loading. In this 

study, to discover multi-material density distributions, an 

alternating active phase algorithm of optimal criteria 

introduced by Tavakoli and Mohseni (2014) is considered. 

The multi-material-phase field approach is based on a 

Cahn-Hilliard equation, and a general method to solve 

multiphase structure topology optimization problems was 

presented by Zhou and Wang (2006, 2007). Therefore, this 

study focuses on the usage of multiple materials to topology 

optimization for approximation of plate structures using 

Reissner–Mindlin plate theory. In addition, adjoint 
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sensitivity formulations of strain energy of Reissner–

Mindlin plates are derived with respect to multi-material 

densities.  

The obtained results are presented to demonstrate the 

success, performance, and effectiveness of the present 

method. This study contributes to engineers and designers 

the real-time design information for plate-like structures by 

using multi-material topology optimization.  

The outlines of this study are as follows. This study 

begins in Section 2 with a brief of Reissner-Mindlin plate 

theory. The analysis models of multi-material topology 

problem including a stiffness formulation and sensitivity 

analysis of compliance for plates structures are formulated 

in Section 3. Section 4 presents a computation procedure of 

the present method. Numerical applications to verify the 

present method are discussed in Section 5. Finally, 

conclusions are shown in Section 6. 

 

 

2. A brief of governing equations of Reissner-Mindlin 
plates 

 

In this section, basic equations of Reissner-Mindlin 

plate theory are summarized. Let   be the domain of a 

flat isotropic homogeneous thick plate,   is the boundary 

domain, and h is the thickness. The mid-plane of the plate is 

taken as the reference plane as shown in Fig. 1. The 

displacement field at any point of the plate is expressed as 

   
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where (u, v, w) are components of displacement at a general 

point in a domain. 
0w  is transverse deflection on a plate‟s 

middle surface, and  ,x y   is rotations in x and y 

direction of a middle surface as shown in Fig. 2. 

Accordingly, bending and shear strain   and   are 

respectively written as follows 

 , , , ,

1
,

2
w                 (2) 

where the subscripts   and   range from x to y. 

 

 

 

Fig. 1 A thick plate element with corner nodes showing 

typical nodal degree of freedom 

The total energy   of Reissner-Mindlin plate, based 

on potential energy for bending and shear, is stated as 

follows 

T T T T1 1
d d

2 2
b ext

 

    κ D κ γ D γ  (3) 

where 
ext  is the potential energy of applied loads. 

Material property tensors of bending and shear are 

respectively written as follows 
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where shear modulus  / 2 1G E   . E is Young‟s 

modulus and   is Poisson‟s ratio. Shear correction factor   

is chosen to be 5/6 for the purpose of removal of shear 

locking. In this study, t is constant to homogeneous thick 

plate. 

The problem design domain   is discretized into a 

finite number of quadrilateral isoparametric elements, 

ee
   . The sectional rotations and the transverse mid-

surface displacements are bilinearly interpolated as 

4 4 4

1 1 1
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where  , ,j xi yiw    are nodal point values of variables 

 , ,x yw    with j-th node. The curvature-displacement and 

shear strain-displacement relation are written as, 

respectively 
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By using Eqs. (5)-(7), the stationary condition of 

variational expression Eq. (3) and the plate stiffness-

displacement relationship are obtained as 

 e e

b s K K q F  (8) 

where F is the global load vector. 
e

bK  and 
e

sK  are 

bending and shear stiffness matrix components, 

respectively, as follows 

T Td , de e

b b b s s s    K B DB K B DB  (9) 
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3. Formulations of multi-material topology 
optimization of Reissner-Mindlin plates 

 
3.1 Multiphase topology optimization problem 

 

We consider the minimum compliance based multi-

material topology optimization problem within a design 

domain   discretized by quadrilateral isoparametric finite 

element (Q4). Each subdomain j  (j = 1, 2, ..., n) can be 

materials or void as shown in a design domain schematic of 

multi-material topology optimization as described in Fig. 3. 
m

s  and 
m

v  are the solid domain of material and void 

domain in a multi-material problem, respectively. m denotes 

the number of multi-material. Relative densities of each 

element are design variables   connected into a vector 

α . Following Bendsøe and Sigmund (1999), void is 

considered as a separate material phase. In other words, 

multi-material topology optimization to find the optimal 

material distribution of n number of materials 

corresponding to find n+1 material phases  i i x   at 

each point x . In case of the minimum compliance 

multi-material topology optimization problem, the modified 

SIMP version of linear interpolation is used within the 

elasticity stiffness tensor for multi-material as follows 

 
1

0

1

n
p

i i

i

E E 




  (10) 

where p is penalization factor. 
0

iE  is elastic modulus 

corresponding to phase i-th. 

 

 

 
(a) +y direction 

 
(b) +x direction 

Fig. 2 Cross section view of deformed plate in two 

directions 

 

 

Fig. 3 A design domain schematic for multi-material 

topology optimization 

 

 

According to alternating active phase algorithm, the 

multi-phase topology optimization problem is solved by 

converting multi-phase into p(p − 1)/2 binary phases sub-

problem. Each binary sub-problem is a so-called active 

phase. This solver could be made by modification of the 

binary phase topology optimization algorithm. The 

modifications is carried out by replacing the binary phase 

material properties operator to a corresponding multiphase 

one and modifying structures of admissible design domain 

in the binary phase topology optimization algorithm. Two 

alternating active phase algorithm schemes are proposed by 

Tavakoli and Mohseni (2014). In this study, Gauss-Seidel 

version is considered due to preference of optimality criteria 

with single constraint. In this process of each sub-problem, 

only two phases denote as „a‟ and „b‟ are active at a time 

and the other phases are fixed. Overlaps are not allowed in a 

desired optimal design, thus summation of the densities at 

each point x  should be equal to unity 

1, 1,2,...,ii
i p   . The density summation of two 

active phases at each point x  is then calculated as 

     
 

1

1, ,

1
n

a b i

i i a b

x x x  


 

     (11) 

In each computational cell, the problem can be 

simplified in each binary phase topology optimization 

subproblem by taking the density of active phase „a‟ as the 

only design variable. And then, the density of phase „b‟ (or 

background phase) can be calculated by Eq. (11). 

 

3.2 Optimization model 
 

The general mathematical formulation of structural 

multi-material topology optimization problem (Banh and 

Lee 2018) can be stated as follows 

Tminimize : ( , )
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(12) 

where C is structural compliance. 
i  is the density vector 
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for phase material i-th. 
iV  is the per-material volume 

fraction constraint with i=1:n+1 such that the summation 

should be equal to unity 1ii
V  . K is global stiffness 

matrix, F is global load vector, and U is global 

displacement vector. To avoid singularities in calculation 

processes of topology optimization, the problem is relaxed 

for densities between 0 and 1 by a very small lower bound 

non-zero value 
i . 

 

3.3 Stiffness and sensitivity formulation for Reissner–
Mindlin plates 
 

Substituting Eq. (10) into Eq. (9), the stiffness matrix is 

written as follows. 
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where 
0r

kD  with  ,r b s  are respectively the material 

property matrices of bending and shear corresponding to the 

k-th phase material, including Poisson‟s ratio ν, constant 

thickness t, and nominal elastic modulus 
0
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The sensitivities of objective function C with respect to 

densities for multi-material topology optimization of 

Reissner-Mindlin plates can be written by using the adjoint 

equation (Bendsøe and Kikuchi 1988) as follows 
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where 
rB  with  ,r b s  are respectively strain-

displacement matrix of bending and shear. 
e

a  and 
eU  

are the density of phase „a‟ and the element displacement 

vector of element e-th, respectively.  

In order to ensure existence of solutions to topology 

optimization problem and to avoid the formation of 

checkerboard patterns, a filtering technique on the resulting 

design is proposed (Andreassen et al. 2011). In this study, 

the filtered sensitivity of compliance with respect to density 

of phase „a‟ of element e-th are derived as follows 
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(17) 

where    min mindist , | dist ,eiH r e f N e f r     is a 

convolution operator. 
minr  is the filter radius and

 dist ,e f  is the distance between the center of element e 

and center of element f.  

 

 

4. Computational procedures of the present method 
 

A briefly summarized computational procedures of the 

present multi-material topology optimization is shown in 

Fig. 4. This procedure describes optimality criteria-based 

alternating active-phase algorithm using Gauss-Seidel 

iteration version of multi-material. In addition, multi-

material topology optimization for a thick plate structure by 

using Reissner-Mindlin plate theory is considered. To 

perform finite element analysis, the geometry, material 

properties, and loading and boundary conditions are 

determined. The stiffness matrix K  can be calculated 

through two components 
e

bK  and 
e

sK  by Eq. (7). By 

linear static analysis KU=F, displacements can be obtained. 

By using Eq. (16), the sensitivity analysis of objective with 

respect to element design variables is calculated, and then 

the sensitivity filtering is applied. For the next step, design 

variables of a binary sub-problem are updated, and the 

iterative process continues until the desired optimum 

convergence conditions such as the reach of the minimum 

of compliance or the given number of iterations. 

 

 

Fig. 4 Flowchart of multi-material topology optimization 

procedure for thick plates using alternating active-phase 

algorithm 
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5. Numerical examples  
 

In this section, Reissner-Mindlin thick plate structures 

subjected to a concentrated bending force are treated for 

multiphase topology optimization. The design domain is 

modeled as a square plate finite element (Q4) 40 40  

mesh. The dimension of the structure is 30 30  and the 

plate‟s thickness is constant to be nominal value of 3. The 

magnitude of force F = 200. The problem situation is shown 

in Fig. 5. The penalization factor for interpolating elasticity 

properties of stiffness is equal to 3 for all materials. The 

optimized topology results are investigated for dependency 

degrees of boundary conditions, various materials and 

Poisson‟s ratio. The material is assumed to be isotropic. 

Young‟s modulus and volume fraction parameters for each 

material is presented in Table. 1, where the indicators r, b, g 

and bl denote red, blue, green and black colors, 

respectively. Note that Young‟s modulus and volume 

fraction of void are respectively selected 1v kk v
V V


   

for all examples. 

 

5.1 Topology results of single material Reissner–
Mindlin plates 

 
5.1.1 Dependency of boundary condition 
At first, optimized topology design results are 

investigated for different support conditions, i.e., fully 

clamped (C-C-C-C), fully simply supported (S-S-S-S) and 

mixed boundary conditions (C-S-C-S, C-F-C-F, here F: 

free) by using single material. Poisson‟s ratio of 0.3 is used. 

Figs. 6-9 clearly demonstrate boundary conditions and 

 

 

Fig. 5 Flowchart of multi-material topology optimization 

procedure for thick plates using alternating active-phase 

algorithm 

 

 

 

Fig. 6 Optimized topology results for thick plates (C-C-C-

C) with single material and Poisson‟s ratio of 0.3 

 

 

 

Fig. 7 Optimized topology results for thick plates (S-S-S-S) 

with single material and Poisson‟s ratio of 0.3 

 

 

 

Fig. 8 Optimized topology results for thick plates (C-S-C-S) 

with single material and Poisson‟s ratio of 0.3 

 

 

 

Fig. 9 Optimized topology results for thick plates (C-F-C-F) 

with single material and Poisson‟s ratio of 0.3 

Table 1 Multi-material properties 

Material properties 
Number of materials 

(a) One            (b) Two         (c) Three            (d) Four            

Young‟s modulus  
0

rE = 2e5 
0

rE  = 2e5, 
0

bE  = 4e5 

0

rE = 2e5, 0

bE = 4e5  

0

gE = 8e5 

0

rE = 2e5, 0

bE = 4e5 

0

gE = 4e5, 
0

blE = 1e6 

Volume fraction (30%) rV = 30% 
rV = 10%, 

bV = 20% 
rV = 5%, 

bV = 10% 

gV = 15% 

rV = 3%, 
bV = 7% 

gV = 9%, 
blV = 11% 

Volume fraction (50%) rV = 50% 
rV = 20%, 

bV = 30% 
  

Volume fraction (70%) rV = 70% 
rV = 30%, 

bV = 40%     
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Fig. 10 Optimized topology results for thick plates (S-S-

S-S) with single material and Poisson‟s ratio of 0.6 

 

 

 

Fig. 11 Optimized topology results for thick plates (C-S-C-

S) with single material and Poisson‟s ratio of 0.6 

 

 

volume fraction result in different optimal topologies of 

single material Reissner-Mindlin plates. Fig. 12 presents 

convergence histories of objective function in case different 

boundary conditions.  

 

5.1.2 Dependency of Poisson’s ratio 
The effect of Poisson‟s ratio is considered on optimal 

single material Mindlin plates. Two boundary condition 

cases S-S-S-S and C-S-C-S are applied. Figs. 10 and 11 

depicts optimal topologies for two cases of Poisson‟s ratio 

values those ratios equal to 2, particularly, they are 0.3 and 

0.6. Compared with optimal results of Poisson‟s ratios in 

Figs. 7 and 8, these results differ considerably. Fig. 13 

shows the convergence histories of objective function in 

case different Poisson‟s ratio. As can be seen, optimal 

topologies of Reissner–Mindlin plates depend on material 

properties such as Poisson‟s ratio.  

 

5.2 Topology results of two materials Reissner–
Mindlin plates 

 
5.2.1 Dependency of boundary condition 
Similar to single material examples, four boundary 

condition cases are investigated. Poisson's ratio of 0.3 is 

used. The final optimal designs is shown in Figs. 14-17. In 

this example, stiff materials are used. Compared to single 

material case, the most different optimal topology is 

obtained in case fully simply supported boundaries (Figs. 

15(b) and 15(c)). The distribution of materials in these cases 

is concentrated at corners. It means that the influence, when 

more materials are used, is dramatic. Fig. 20 presents the 

convergence histories of objective function for two 

materials in case different boundary conditions. As can be 

seen, similar to single material, the converged compliance 

in C-C-C-C always takes higher than those of the rest cases 

of boundary conditions. 

 

 

 

Fig. 12 Convergence histories of objective function in 

Section 5 with volume fraction of 0.3 and Poisson‟s ratio of 

0.3 

 

 

 

Fig. 13 Convergence histories of objective function in 

Section 5 for a fully simply supported boundary condition 

case 

 

 

 

Fig. 14 Optimized topology results for thick plates (C-C-C-

C) with two materials and Poisson‟s ratio of 0.3 
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Fig. 15 Optimized topology results for thick plates (S-S-S-

S) with two materials and Poisson‟s ratio of 0.3 

 
 

 

Fig. 16 Optimized topology results for thick plates (C-S-C-

S) with two materials and Poisson‟s ratio of 0.3 

 
 

 

Fig. 17 Optimized topology results for thick plates (C-F-C-

F) with two materials and Poisson‟s ratio of 0.3 

 
 

 

Fig. 18 Optimized topology results for thick plates (S-S-S-

S) with two materials and Poisson‟s ratio of 0.6 

 
 

5.2.2 Dependency of Poisson’s ratio 
The effect of Poisson‟s ratio on Mindlin plates with two 

boundary condition cases such as S-S-S-S and C-S-C-S by 

using two materials is shown in Figs. 18 and 19. They 

depict the optimum topology for Poisson‟s ratio of 0.6. In 

comparisons with optimal results of Poisson‟s ratio of 0.3 in 

Figs. 15 and 16, differences of topologies are much larger, 

in particular, in the fully simply supported case. Fig. 21 

shows the convergence histories of objective function in 

case different Poisson‟s ratios. 
 
 

 

Fig. 19 Optimized topology results for thick plates (C-S-C-

S) with two materials and Poisson‟s ratio of 0.6 

 
 

 

Fig. 20 Convergence histories of objective function in 

Section 5 with total volume fraction of 0.3 and Poisson‟s 

ratio of 0.3 

 
 

 

Fig. 21 Convergence histories of objective function in 

Section 5 for a S-S-S-S boundary condition case 

 
 

5.3 Topology results of three to four materials 
Reissner–Mindlin plates 

 
A fully clamped plate with four cases of material is 

considered for topology optimization. Optimal results are 

shown in Fig. 22 with volume fraction of 0.3 and Poisson‟s  
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ratio of 0.3. As can be seen, stiff materials are automatically 

assigned within strong stress concentration regions such as 

loading point and clamped boundary areas. In this example, 

applied loading areas have more influence on stiff material 

assignment than that of clamped boundary areas. Fig. 23 

describes convergence histories of objective function 

(compliance) and intermediate topologies at several 

iterations of four material cases. Within the same amount of 

total material, multi-material can produce stiffer structure 

than single material.  

 
 
6. Conclusions 

 

This study presents a novel numerical results by using 

topology optimization for smart plate-like-structures based 

on Reissner-Mindlin plate theory by using multiple 

materials. Adjoint sensitivity formulations for both 

multiphase material densities and Reissner-Mindlin plates 

of bending  

 

 

 

 

and shear behaviors are developed to apply to the presence 

of topology optimization method. Numerical applications 

verify multi-material optimal topologies depending on 

boundary conditions, Poisson‟s ratio, and the number of 

materials according to Reissner-Mindlin plates. Moreover, 

this study shown that multi-material topology optimization 

method by using one or two additional stiff materials not 

only saves areas of initial structures but also gets higher 

stiffness than single material structures. 
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Fig. 22 Optimized topology results for thick plates (C-C-C-C) with from one to four materials with volume fraction of 0.3 

and Poisson‟s ratio of 0.3 

 

Fig. 23 Convergence histories of objective function in Section 5 with total volume fraction of 0.3 and Poisson‟s ratio of 

0.3 (C-C-C-C) 
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