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1. Introduction 
 
As one of the critical safety components of rail vehicles, 

the bogie frame is the main load-bearing and power 

transmission components. When the vehicle is in service, 

the bogies not only need to withstand loads, but also need to 

pass a variety of forces between the body and the wheel. 

Materials aging, through the evolution and accumulation of 

fatigue damage, is one of the dominate factors to decrease 

the reliability and safety of bogies, whose failure often lead 

to derailments, deaths and injuries. Therefore, fatigue life 

prediction and reliability evaluation are critical for the 

design and maintenance of the bogie frame. For the analysis 

and design of critical components, fatigue life prediction 

and reliability assessment are still challenging tasks despite 

extensive research during the past several decades (Mi et al. 

2018, Li et al. 2018). There is a considerable interest in 

developing an approach to predict the lifetime through 

probabilistic modeling of fatigue, particularly for the critical 

components, such as bogie frame and railway axle, which 

service in harsh environments (Dong 2001, Liu and 

Mahadevan 2005, Richard and Andrew 2007, Li and Guo 

2015, Huang et al. 2017).  

Existing models focus on the deterministic fatigue crack 

growth process. However, the fatigue process of bogie 

frame/components in service is stochastic in nature. The  
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fatigue crack growth is a stochastic process affected by 

uncertainties from many sources. Previous researches 

revealed that the uncertainties can be divided into the 

following groups (Zhang 2000, Sankararaman et al. 2010, 

Mahadevan and Rebba 2006): material properties, structural 

properties, load variation, parameter estimation, and model 

error. The first three categories represent inherent variability 

through random variables, whereas the last two categories 

focus on the uncertainties associated with models and 

parameters selection. How to quantify these uncertainties is 

the key to accurately predict fatigue life. Many researchers 

have worked on uncertainty quantification of some aspects 

of the damage tolerance problems. A systematic analysis 

should incorporate multiple sources and multiple types of 

uncertainty that are inherent in the fatigue crack growth 

modeling procedure; however, such an analysis has not 

been completed. In this paper, major work is to quantify the 

model and the parameters related to the fatigue crack 

growth problem. In addition, stochastic variable amplitude 

loading conditions will be considered and addressed in an 

effort to more realistically represent in-service loading 

conditions. 

Practical engineering materials and structures have 

defects and cracks in nature (Huang and Yang 2008, 

Ghodrati et al. 2011, Xiang et al. 2012, Zheng et al. 2018). 

Cyclic loading can cause defects to nucleate cracks and 

existing cracks to propagate through fatigue processes. A 

problem in the fracture mechanics-based life prediction is to 

determine the initial crack size in the crack growth analysis 

(Sankararaman et al. 2010). A method to solve this problem 
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is assuming the crack length empirically (Makeev et al. 

2007, Cross et al. 2007), and an alternative method is to use 

the results from non-destructive inspection (NDI). To date, 

many non-destructive inspection methods, including X-ray, 

ultrasonic waves, and electric potential drop methods, can 

be employed to detect cracks. Once cracks are detected, 

fracture mechanics methods can be used to determine the 

extended life of the structures or components (Luo and 

Bowen 2003, Sankararaman et al. 2011). Moreover, the data 

obtained from the inspections also can be combined with 

these models to update the reliability during the remaining 

service life by the Bayesian approach. 

Fracture mechanics-based models for crack growth 

analysis have been proposed to predict the performance of 

the component. These models, such as Paris law, Walker 

model, and Forman model, etc. were calibrated from 

experimental tests of coupons. Each model has its own 

advantage in applications. However, there is not a universal 

criterion to decide which model is more suitable. The 

Bayesian theory is presented to quantify uncertainty of 

models and provide a more reasonable choice in decision-

making, which can contribute to minimize the prediction 

errors originating from the unreasonable models. 

The Bayesian approach can potentially provide more 

accurate estimations by combining evidences, such as test 

data with prior knowledge available from theoretical 

analyses and/or previous experimental results, which can 

reduce required tests and save time and resources (Gelman 

et al. 2004, Li et al. 2015). The Bayesian inference is a 

high-efficiency technique that can update a given state of 

knowledge. Some researchers have addressed uncertainty in 

fatigue modeling by Bayesian methods. Mahadevan and 

Rebba (2006) developed the idea of updating failure 

probability based on the information of non-destructive 

inspection (NDI) with the Bayesian approach. Zhao et al. 

(1994) investigated the effect of the uncertainties of 

detection on updating and used the updated reliability index 

in inspection schedule, maintenances and repair decisions. 

Cross et al. (2007) used Bayesian inference to estimate 

parameters underlying crack growth behavior. 

Sankararaman et al. (2009, 2011) established dynamic 

Bayesian networks for model parameter estimation and 

calculated Bayes factors to quantify model uncertainty. 

Zheng and Ellingwood (1998) incorporated a time-

dependent noise term to the fatigue crack growth model to 

deal with a wide-band load process and considered the 

interaction of corrosion and fatigue/fracture damage, and 

used the outcome of NDI to update the distribution of crack 

size. Fatemi and Yang (1998) gave a survey of the state of 

the art for cumulative fatigue damage and life prediction 

theories of homogenous materials. Chiachío et al. (2015) 

proposed a stochastic model for damage evolution and used 

a Bayesian model selection framework to account for model 

uncertainty. 

The rest of the paper is organized as follows: Section 2 

discusses the crack growth models and sources of 

uncertainty. In Section 3, the Bayesian inference is 

explained in the view of updating distribution of fatigue life 

based on the inspection data. In Section 4, the proposed 

methods are demonstrated for fatigue analysis of bogies. 

Finally, the conclusions are drawn in Section 5. 

 

 

2. Fatigue crack growth modeling and reliability 
analysis 

 

Fatigue cracks generally appear on the surface of 

material or at large inclusions, resulting from high stresses, 

surface roughness, fretting, corrosion, etc. Fatigue crack 

growth on a macroscopic level usually occurs perpendicular 

to the main or principal stress, which is dependent on the 

material parameters, the material thickness, and the 

orientation of the crack relative to principal material 

directions. Furthermore, the crack growth is dominated by 

the cyclic stress amplitude, the mean stress and the 

environment. 
Linear elastic fracture mechanics assumes that all 

structures contain flaws. Cracks grow from the initial size 

0a  to the critical size ac. Fatigue crack propagation occurs 

as a result of cyclic loading conditions with cracks growing 

a given increment )a(  in a given number of loading 

cycles )N( . When the crack size reaches a critical level, 

the crack growth becomes unstable and failure occurs. 

According to linear elastic fracture mechanics, the plastic 

deformation near the crack tip is controlled by the stress 

intensity factor range, and can provide the small scale 

yielding condition applicably. Various deterministic fatigue 

crack growth rate functions have been proposed in the 

literature. The functions can be represented by a general 

form (Sankararaman et al. 2010, Mahadevan and Rebba 

2006, Zhou et al. 2017, Huang et al. 2014) 

max th

( )
( , , , , , , )

da t
f K K K R S a

dt
   (1) 

where a  is the crack length, ( )a t  is the crack length at 

time t , K  is the stress intensity factor range, maxK  is 

the spectrum peak stress intensity factor, S  is the fatigue 

strength, or stress amplitude, or peak stress level in the 

loading spectrum, ( )da t dt  is crack growth per cycle and 

max( , , , , , )f K K R S a  is a non-negative function. 

Throughout decades of investigation, numerous fatigue 

models have been proposed, such as Paris model, Walker 

model, Forman model, and generalized Forman model, are 

commonly used (Weertman 1966, Zhang and Mahadevan 

2000, Sankararaman et al. 2010). 
Paris model 

( )nda
C K

dN
 

 
(2) 

Walker model 

( ) 1n mda
C K - R

dN
  （ ）

 
(3) 

Forman model 
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( )

(1 )

n

C

da K
C

dN R K K




 
 

(4) 

Generalized Forman model 
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(5) 

where C, n, m are the material constants, R is the stress ratio, 

thK  is the crack threshold, Kc is the plane stress fracture 

toughness of material dependent on the thickness of 

structures. f0 is the fatigue crack opening function, which 

can be determined as 

open

0

max

2 3

0 1 2 3

0 1

max( , ) 0
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where 

0
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3 0 12 1A A A  
 

where 0  is the plane stress/strain constraint factor, and 

0S   is the ratio of maximum stress to the flow stress. 

According to elastic fracture mechanics, the stress 

intensity factor K  is the product of both functions 

concerning stress S and crack size a 

( ) ( )K X S Y a
 

(7) 

where a)a()a(Y  , )a(  is the geometry 

correction function of fatigue crack. From Eq. (7), the mean 

and range of stress intensity factor are 

m m( ) ( )K X S Y a
 

(8) 

 

 max min max min( ) ( )K K K X S X S Y a

X Y a

     

 

（ ）

   = （ ）  

(9) 

In the case of considering the correction of plastic zone 

near crack tip, X(S) can be obtained as 

2

under plane stress 

( )
1 ( )

1/ 2  
=

(1 2 ) / 2 ,

state

under plane strain state 

s

S
X S

S

v
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












，     

 

(10) 

where s  is the yield limit,   is the material constant, 

and v  is the Poisson ratio. Since a fatigue stress cycle is 

defined by two stress components of amplitude Sa and mean 

Sm, and Smax = Sa + Sm, Smin = Sm – Sa, then 

   

max min

a m m a

2 2

a m s m a s

( )- ( )

= -

1 1

X X S X S

S S S S

S S S S   

 

 

           

(11) 

Substituting Eq. (11) into Eq. (9), Eq. (9) can be 

rewritten as 

   

a m m a

2 2

a m s m a s

={ - } ( )

1 1

S S S S
K Y a

S S S S   

 


           

(12) 

From the above descriptions, several empirical fatigue 

models are investigated to describe typical crack growth 

behavior in metals in the present literature. Each model has 

its own advantage in applications. The Paris model is most 

commonly used in fatigue analysis for its simplicity. But it 

only considers the intermediate region of crack growth and 

assumes that the crack growth rate depends on the stress-

intensity range only (Paris 1964). According to Soares and 

Garbatov (1999), for a particular problem, in principle only 

one model is the suitable one. However, there is not a 

universal criterion to decide which model is more suitable. 

The Bayesian theory is presented to quantify uncertainty of 

models. Edwards (1984), Soares and Garbatov (1999) 

employed the Bayesian approach to describe a random 

variable by taking several competing probability 

distribution types into consideration. As to the reliability 

estimation problem, this paper shows that the Bayesian 

framework can not only consider multiple competing 

distribution types and multiple possible sets of parameters 

within each distribution, but can also simultaneously 

consider multiple competing limit state formulations or it 

possibly appropriate for the same problem.  

Integrating Eq. (1) with respect to crack size from a1 to 

a2 corresponding to the number of stress cycles N1 and N2, 

we have 

2

1

2

1

max

2 1

1

( , , , , )

( )

a

a

N
m m

N

da
f K K R S a

CS dN CS N N


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

 ，
 

(13) 

where 
mS  is the mean stress range, and it can be evaluated 

as 

0
( )

a
m m

sS S f S dS   
(14) 

where fs(S) is the probability density function (PDF) of the 

stress range parameter S. Assuming that the stress range 

follows a Rayleigh distribution, which is used to describe 

the parts, and the components are subjected unstable cyclic 

stress. The mean stress effect can be represented as follows 

 02 ( 1)
2

m
m m m

S S  
 

(15) 
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where    is the Gamma function and 0S  is a statistical 

parameter. Based on Eqs. (13) and (15), the fatigue crack 

propagation life can be determined. 

The fatigue damage accumulation function represented 

by Eq. (1) can be alternatively expressed as (Zhang and 

Mahadevan 2000) 

2

1
2 1

max

1
( , )

( , , , , )

a

a
a a da

f K K R S a
 


 

(16) 

Since Eq. (16) is a monotonically increasing function of 

the crack size, the limit state function represented by Eq. 

(17) can be rewritten as 

0 0( ) ( , ) ( )m

c cg z a a CS N N  
 

(17) 

Eq. (17) states that the initial size 0a  of crack has 

propagated to a critical size ca  from 0thN  to thcN  

stress cycle. 

The corresponding failure probability can be calculated 

as 

( ( ) 0) ( )fp p g z     
 

(18) 

where   is the reliability index. The goal of a reliability-

based fatigue analysis procedure is to keep the reliability 

index above a reassigned value during the service life of the 

bogies. 

 

 

3. Bayesian description and updating of model 
 

As mentioned above, numerous crack growth rate 

empirical models have been proposed within the literature 

(e.g., Paris, Walk, Foreman, etc.), which contains different 

parameters obtained by experimental tests, and few models 

can be applied universally to all fatigue crack growth 

problems. Every model has its own limitations and 

uncertainties; and cannot demonstrate which one is better 

than others (Zhang 2000, Sankararaman et al. 2010, 

Mahadevan and Rebba 2006, Cross and Makeev 2007). A 

Bayesian model is proposed to account for uncertainty of 

various sources. Bayesian inference estimates the degree of 

belief in a hypothesis based on the collected evidence. 

Bayes (1763) formulated the degree of belief according to 

the identity in conditional probability. Some researchers 

have addressed uncertainty in fatigue modeling in 

accordance with Bayesian methods, mostly focused on 

crack propagation in metals. Soares and Garbatov (1999) 

demonstrated that the use of all available information 

through the Bayesian prediction shows a much smaller 

variability than that of individual model. Depending on how 

the various models are weighted, different final values will 

be obtained but their range of variation is much smaller than 

that in the case of individual predictions. Edwards (1984) 

also used the Bayesian approach to research a structural 

system subjected to dynamic loadings that could be 

described by a normal, a lognormal or a Weibull 

distribution. Note that the Bayesian approach is an effective 

way to deal with small sample problems. Due to the data 

insufficiency and uncertainty of prediction models, it is 

unreasonable to predict the fatigue damage with a 

deterministic model.  

Thus, in situations where physical, model and statistical 

uncertainties are equal importance, an intuitively appealing 

and more logical approach would be to use a “weighted 

average” of all possible models, and they sets within each 

model (Rebba 2005). The method to describe and update 

these uncertainties is formulated as follows. 

Consider a fatigue crack growth model 

1
max

1
( , )

( , , , , )

ca

a
N da f a

F K K R S a
 


 

(19) 

where the input variable ca  is the critical crack size, the 

output variable N  is fatigue life to the final crack size,   

is the vector of model parameters. 

Suppose there are a set of models of the fatigue crack 

propagation M1, M2,…Mk. If each model is possible 

candidates, the Bayesian probability of event D, which 

incorporates both parameter and model uncertainty denoted 

by 

 
1

( ) ( ) ( , )

i

K

i i i i i i

i

P D p M p D M f M d


  


 
 

(20) 

where ( )ip M  refers to the model uncertainty, and is the 

prior probability assigned to model i . 

 
T

1 2 3, , , ,i i i i in      refers to the vector of distribution 

parameters within the model iM , which includes the initial 

flaw size, geometry, loading, residual stress, and material 

properties. 

P(Hi) is the prior probability of model 

( )= ( ) ( )i i i iP H P M p M
 

(21) 

After getting an inspection of fatigue crack length da, 

the posterior probabilities are then given by Bayes theorem, 

we have 

 

 

 
1

( )= ( ) ,

( ) ( )
              =

( ) ( , )

i a i a i i a

a i i i i

m

i i i i i i

i

P H d P M d f M d

p d H f M P M

P M p x M f M d





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





  
 

(22) 

The posterior probability of model Mi is obtained by 

integrating )M(f ii  

 

 
1

( ) ( )
( )=

( ) ( , )

i a i i i i

i a m

i a i i i i i

i

P M p d H f M d
P M d

P M p d M f M d





 

  


 

 



 
 

(23) 

Then the posterior distribution of i  in model iM  is 

given by Eq. (24) 

 
 ( )

, =
( ) ( )

a i i i

i i a

a i i i i

p d H f M
f M d

p d H f M d





 




 

(24) 
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It can be seen from Eq. (24) that the parameter updating 

in model iM  is independent of ( )ip M , and is updated in 

the same way when only the model Mi is assigned to the 

problem. 

Furthermore, Bayesian expectation of any event E  

related to Hi can be derived based on the posterior model 

probability and parameter distribution. 

1

( ) ( ) ( ) ( , )
M

i a i i i i a i

i

P E P M d p E H f M d d


 


 
 

(25) 

According to the above analysis, the Bayesian method 

can combine multiple mechanical models and statistical 

models, and it gives a more reasonable, comprehensive 

method for reliability prediction. 

During the lifetime of bogies, periodic nondestructive 

inspections (NDI) are essential and important for fatigue 

damage evaluation, scheduling maintenance and repair. 

Every NDI method has its own characteristics. For a 

particular NDI technique, several factors are expected to 

affect inspection results, including modeling effects, human 

factors and inspection factors. All these factors add 

uncertainties to the inspection outcomes, and need to be 

considered explicitly in every mathematical model. The 

additional uncertainty needs to be incorporated in every 

mathematical model. Defining da  as the crack 

detectability for a particular NDI, the results of an 

inspection belongs to one of the following cases: (1) no 

crack detection; (2) crack detection without measurement; 

and (3) crack detection with measured crack size A (Zhang 

and Mahadevan 2000, Mahadevan and Rebba 2006). The 

Bayesian updating method is used in this study. This is 

briefly discussed below in the three inspection events. 

Case I : No crack detection 

This implies that the actual crack size ai at the time of 

inspection (corresponding to Ni stress cycles) is smaller 

than the minimum detectable crack size ad  for a given 

inspection technique. The event D can be expressed as 

0 0( , ) ( ) 0m

d dI a a CS N N  -
 

(26) 

Using the Bayesian approach, the model weight and 

probability distribution of the jth random variable xj, i 

associated with the model i are updated as 

1

( ) ( )
( )

( ) ( )

i i

i k

i i

i

P M P I
P M D

P M P I







0

0

 

(27) 

 

,

, ,

,

( 0 ( ))
( ( ( ) 0))

( )j i

j i j i i

X j i

i

p X x P I
F x P g z

P I

 
 

 0
 

(28) 

According to the posterior model weights and parameter 

probability distribution, the failure probability can be 

updated by Eq. (28). However, the failure probability can be 

updated alternatively in accordance with the posterior 

model weight )DM(P i  as 

,

1

( 0 0)
( )

( 0)

k
k k

f up k

i k

P g I
P P M D

P I

 





 

(29) 

Case II: Crack detected but size not measured 

The event of crack detection without size measurement 

can be similarly represented as 

0 0D= ( ) ( , ) 0m

d dI CS N N a a   -
 

(30) 

Since this inspection event is complementary to that of 

no crack detection, Eq. (28) can still be used to update the 

probability of failure. 

Case III: Crack detection with crack size ad 

Assuming that a crack of size ad is measured during an 

inspection, the event DA can be expressed as 

0 0D ( ) ( , ) 0m

A d dCS N N a a  - =
 

(31) 

The updated probability of failure can be shown to be 

1 0 0

,

1
0 0

( 0 ( ) ( , ) 0)

( ) ( )

( ) ( , )

mi
d dk

d
f up i d d

mii
d d

d

P
g CS N N a a

a
P P M D a A

P
CS N N a a

a






   


 


    


0

 

(32) 

 

 

The updated reliability can be employed to make 

decisions about what to do after the NDI. Possible 

alternatives include doing nothing, rescheduling the next 

inspection to an earlier date, or repairing/replacing the 

damaged element. If the updated reliability is considerably 

higher than the target reliability, the bogies can be seen as 

safety. 

 

 

4. Case study 
 

The previous sections discussed and quantified the 

proposed methodology. A practical fatigue analysis problem 

for bogies is employed to illustrate the advantages and 

efficiency of the proposed approach. For simplicity, we only 

consider two comprehensive models, i.e., Walker and 

Foreman (Paris 1964, Foreman 1967, Lv et al. 2015).  

Bogies are one of the main parts of trains, which carry 

both static loads due to the body weight, and dynamic loads 

resulting from the rail surface roughness and imperfect 

wheels. Bogie frames are always subjected to dynamic 

random loads and other fatigue phenomena. The bogie 

frame is adopted by welded structure, the main framework 

architecture is H-shaped in the horizontal plane, which is 

composed of two box-shaped side sills. The overall 

composition of the box beam welding, and the central 

concave belly of the fish box structure composed of a spring 

seat side beam welding, basic brake mounts, anti-roll 

torsion bar seat, etc., the cavity has a thickness of 10mm 

stiffener plate. Box beam structure for the central opening, 

and the transverse beam welding has ended with stopper 

seat, traction rod seat, motor bracket, gearbox bracket and 

secondary lateral damper seat and so on. 

The load history was obtained from strain measurements 

on a bogie frame. A three-dimensional finite element model  
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of a simplified bogie frame was developed for stress 

analysis, as shown in Fig. 1. According to the framework 

structure and analysis of static strength, fatigue crack tends 

to happen on 13 major parts that endure larger stress. Table 

1 shows the calculation results of mean stress and dynamic 

stress amplitude in critical stress areas. We can find that the 

most critical area is the welded joint of longitudinal beams 

and beams, with the maximum stress is 79.5MPa. Therefore, 

we should focus on the study of welded joint of longitudinal 

beams and beams. 

To perform reliability analysis of welded joint of 

longitudinal beams and beams, the uncertainty of the basic 

random variables in the reliability limit state function 

associated with the crack models must be quantified. Since 

the crack growth rate is very high near the critical crack size, 

the effect of the critical size ac  on the fatigue is rather 

small compared with other random variables involved in the 

entire fatigue damage process. 

 

 

Fig. 1 The FEM model of the bogie frame 

 

 

Therefore, in this study ca  can be considered as a 

deterministic parameter for simplicity. For illustrative 

purposes, ca  is considered to be 0.8mm for welded joint 

of longitudinal beams and beams. Then the initial crack size, 

geometry parameter, load process and material properties 

are shown in Table 2. 

Suppose that the welded joint of longitudinal beams and 

beams has been inspected at about N=500,000 and three 

inspection results are considered respectively: no crack 

detection; crack size ad =0.15 mm  is detected; crack size 

ad =0.35 mm is detected. According to Eqs. (29) and (32), 

the model weights and failure probability corresponding to 

the number of cycles are updated. The updated failure 

probabilities for the three cases are also plotted in Fig. 2, 

along with prior failure probability. 
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Fig. 2 Update failure probability with different 

inspection results 

Table 1 Synthesis of the results mean stress/dynamic stress amplitude on the bogies 

Part name No. Location Average stress 
Dynamic stress 

amplitude 
Materials area 

Beam and 

side beams 

connecting 

area 

1 Within a support beam and side sill beam weld 

connection 
47.4 64.3 Weld 

2 Beams and side beams connecting welds 66.4 51.6 Weld 

3 Cover plate with the support of the beam connecting 

the beams and side beams under three side beams 

connecting welds Department 

116.1 58.5 Weld 

Side sill 

area 

4 Positioning seat upright plate portion of the opening 

arc bends 
28.4 60.1 Base metal 

5 Positioning seat cover is connected with the lower 

side beam welds 
67.6 47.6 Weld 

6 Under positioning seat cover parts connected with 

the vertical plate welds 
76.1 53.5 Weld 

7 Anti-snake-seat legislature damper plate 0 51.0 Base metal 

8 Anti-snake damper seat and side sill outer webs 

connecting portion 
33.8 28.4 Base metal 

Beam 

area 

9 Brake bracket vertical plate 0 55.8 Base metal 

10 Brake bracket and beam connection area 25.4 37.4 Weld 

11 Anti-roll torsion bar seat ribs 0 78.1 Base metal 

12 Longitudinal beams and beam weld connection 41.8 79.5 Weld 

13 Gearbox boom stand upright plate 0 60.3 Base metal 
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Table 2 Statistical characteristics of variables 

Variable Distribution Mean COV 

C  Lognormal -61.556 10  0.59 

n  Normal 3.15 0.12 
m  Normal 2.971 0.016 

ca  Constant 0.8mm _ 

1a  Lognormal 0.035mm 0.008 

thK  Normal 354 MPa mm  24.6 

CK  Normal 1934 MPa mm  124.3 

S  Normal 41.8 MPa  27.5 

 

 

Table 3 Update of model weight after inspection 

 
Before 

inspection 

No crack 

detected 
ad =0.15 mm ad =0.35 mm 

P(M1)  

(Walker) 
0.5 0.5 0.432 0.391 

P(M2)  

(Foreman) 
0.5 0.5 0.568 0.609 

 

 

It can be observed that the updated failure probability is 

smaller than the prior one in the case of no crack detection, 

which means that the structure is more reliable than 

estimated previously. The failure probability increases when 

a crack is detected. The larger the detected crack is, the 

higher the probability of structural failure is. 

Table 3 shows the update of model weights through 

inspection. When no crack is detected, model weights 

almost have no change. It also indicates that the weight of 

the Foreman model increases with the growth of the 

measured crack. This is also an expected result since 

comparatively the walker model is more conservative than 

the Foreman model. 

 
 
5. Conclusions 

 

In this paper, a Bayesian approach is proven to have the 

potential to provide more accurate estimations by 

combining evidence, such as test data with prior knowledge 

available. Several sources of uncertainty-physical variability, 

data uncertainty and modeling uncertainty are included in 

fatigue reliability analysis. The Bayesian model is proposed 

to involve various uncertainties in predicting fatigue 

damage of bogies, which combines multiple physical 

models and statistical models, and gives a more reasonable, 

comprehensive prediction of reliability. Bogies fatigue is a 

complex phenomenon affected by many uncertainties. A 

Bayesian model is presented to consider various 

uncertainties in predicting fatigue damage for bogies. With 

the application of modern nondestructive inspection 

techniques, the fatigue flaws can be detected for bogie 

structures, and fatigue reliability can be updated by 

Bayesian theorem with inspection data. Three contributions 

in the paper are: 

(1) The analyses on the crack growth models and 

sources of uncertainty for bogies are given. 

(2) A Bayesian model is used to account for uncertainty 

of various sources in predicting fatigue damage of structural 

components. 

(3) The Bayesian inference is explained in the view of 

updating distribution of fatigue life using inspection data. 
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