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1. Introduction 
 

A gearbox is a critical element found in many 

mechanical systems. As unexpected failure of a gearbox 

could lead to a large amount of economic loss, many studies 

have been conducted to diagnose faults in gearbox systems. 

Saxena et al. (2005) employed Morelet wavelet to extract 

fault-related characteristics using acceleration signals of a 

gear used for helicopters. The wavelet techniques could 

detect the existence of faults under different crack sizes and 

torque levels. Barszcz and Randall (2009) applied a spectral 

kurtosis technique to detect a crack in the gear of wind 

turbines. The method could discover non-Gaussian 

components in the acceleration signals, and thus detect 

faulty symptoms of the signals. Other signals like acoustic 

emission, transmission error, and strain have also been used 

to detect faults of gear systems (Qu et al. 2014, Park et al. 

2016, Yoon et al. 2015). In real-world applications, 

however, external noise and disturbance exist in the 

measured signals, and thus uses of the previously described 

techniques could be limited.  

The Asia Pacific Conference of the Prognostics and 

Health Management Society 2017 (PHMAP 2017) held a 

data challenge, named the PHMAP 2017 Data Challenge, to  
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address issues surrounding fault diagnosis and prognosis for 

motor-driven gearboxes in pulverizers. The pulverizers 

selected are used to grind coal for boilers in the steam 

generating power cycle. The main purpose of the challenge 

was to identify (1) the replacement date of the motor-driven 

gearboxes and (2) the faulty components in the motor-

driven gearboxes of the pulverizers. In the challenge, the 

gearboxes were exposed to significant noise and 

disturbance because the collected data from the motor-

driven gearboxes came from actual operating conditions.  

Previous approaches to reduce the effects from noise 

and disturbance in diagnosis and prognosis of gearboxes 

were mainly based on time synchronous averaging (TSA) 

techniques. First, the TSA technique for gears was 

developed using small sizes of rectangular window 

functions to isolate vibration signals from the individual 

gear (McFadden 1991). Later, the rectangular windows 

were revised into Hann windows to remove discontinuity of 

the isolated signals (McFadden 1994). In addition, the TSA 

techniques were improved by using autocorrelation analysis 

to define the window functions (Ha et al. 2016). However, 

previous TSA-based techniques require angular information 

that is collected from encoders. Therefore, the techniques 

involve additional devices and signal processing 

procedures. 

In this challenge, team SHRMer attempted to extract 

fault-related features of the motor-driven gearboxes under 

external noise and disturbance using only vibration signals 

without angular information. From the features, the team 
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predicted the replacement date and the faulty components. 

The replacement date can be thought of as the same as the 

failure date for the purposes of this challenge. To address 

these issues, this paper is organized as follows. In Section 2, 

we explain the given challenge problem and data sets. Next, 

Section 3 provides the analysis results from the given data 

to reveal the fault-related characteristics of the gearboxes. 

Then, in Section 4, the failure dates of the pulverizers and 

the faulty components are predicted by using the fault 

features. After discussing the results in Section 5, Section 6 

concludes this paper with a summary and some suggestions 

for future work. 

 
 

2. Problem and data sets 
 

The problem of the PHMAP 2017 Data Challenge is 

described in Section 2.1. Then, the details of the released 

data sets and the scoring process are presented in Sections 

2.2 and 2.3, respectively. 

 
2.1 Problem definition 

 

The committee of the PHMAP 2017 Data Challenge 

provided training data sets (Pulverizers C, D, and F), test 

data sets (Pulverizers A, B, and E), and failure data sets 

(Failure 1 and 2). Each data set is composed of acceleration, 

velocity and displacement data. Training and test data sets 

were irregularly collected for about 2 years, and failure data 

sets were collected at two instances of 81 and 1 day(s) 

earlier (Failure 1 and 2, respectively) than the gearbox 

failure. The ranges of measurement dates are shown in 

Table 1. The participants in the challenge were asked to 

predict (1) the replacement date (i.e., failure date) and (2) 

the faulty component among the motor-driven gearbox 

components shown in Fig. 1 for the test data sets (i.e., 

Pulverizers A, B, and E). 

 

2.2 Description of the data sets 
 

The measured data has 4,096 points with different time 

lengths of 2 or 0.533 seconds. This results in different 

sampling rates of about 2,048 or 7,680 Hz, respectively. 

Each measurement was collected from four different points 

of the pulverizer, Case-1, Case-2, MTR-I_B and MTR-

O_B, as shown in Fig. 2. 

 
 

Table 1 Date range of the data set 

Data Pulverizer 
Date Range 

(YYYY/MM/DD) 

Test 

A 2011/06/14-2012/07/31 

B 2011/09/08-2013/06/12 

E 2011/06/14-2013/07/31 

Training 

C 2011/06/14-2013/06/12 

D 2011/06/14-2013/06/12 

F 2011/06/14-2013/06/12 

Failure 

Failure 1 
No information 

(81 days before failure) 

Failure 2 
No information 

(1 day before failure) 

 

Fig. 1 Detailed components of a motor-driven gearbox in a 

pulverizer (“PHMAP 2017 Data Challenge”, 2017) 

 

 

Fig. 2 Measuring points for the data set (“PHMAP 2017 

Data Challenge”, 2017) 
 

 

Table 2 Number of gear teeth 

Component Number of teeth 
Spiral bevel gear A 15 

Spiral bevel gear B 58 

Sun gear 15 

Planetary gear 33 

Internal gear 84 

 

 

The number of teeth in each gear in the motor-driven 

gearbox is shown in Table 2, which results in gear ratios of 

3.87 and 6.6 at the bevel gear pair and the planetary gear, 

respectively. Therefore, the total transmission ratio of the 

system is about 25 times, which reduces the rotating motor 

speed of 887 rpm to a mill speed 35.1 rpm. Detailed 

information of the pulverizer system is shown in Table 3. 

The given data sets include two different operation modes 

of the pulverizer: idle and loading modes. Idle mode data 

show relatively low amplitude of vibration; whereas, 

loading mode data show irregular vibration with high 

amplitude due to high loads from grinding coal. The 

detailed analysis about the idle and loading modes are given 

in Section 3. 
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Table 3 Gearbox specifications 

Weight 120 ton 

Motor speed 887 rpm (=14.8 Hz) 

Mill speed 35.1 rpm (=0.59 Hz) 

Bearing Sleeve type 

Power 448kW 
 

2.3 Scoring process 
 

In the challenge, a scoring function was defined as 

follows 

Scoring function

= √𝑤1 × 𝑒𝑟𝑟𝑜𝑟1
𝑎 + 𝑤2 × 𝑒𝑟𝑟𝑜𝑟2

𝑏 + 𝑤3 × 𝑒𝑟𝑟𝑜𝑟3
𝑐 (1) 

where error1, error2, and error3 are the differences between 

the predicted failure dates and the actual failure dates; and 

w1, w2, and w3 are weighting factors. Weighting factors are 

0.7 for a correct answer or 1.0 for a wrong answer for the 

faulty component of the gearbox. The exponent indices a, b, 

and c are constants predefined for each team. 

 

 

3. Data analysis 
 

This section analyzes the characteristic behaviors of the 

Failure 1 and 2 data compared to normal data measured 

from the training data sets. In Section 3.1, first, we observe 

normal and fault data in the time-domain. Then, in Sections 

3.2 and 3.3, the normal and fault data are investigated in the 

frequency domain with sampling rates of 7,680 and 2,048 

Hz because data from different sampling rates could give 

distinct fault characteristics. Next, pulverizers are classified 

into two groups according to their responses to impact 

loadings; this is described in Section 3.4. 

 

3.1 Normal and fault signals in the time-domain 
 

Mao and Zhang (2013) found that most failures in 

motor-driven gearboxes in pulverizers were found at a high-

speed gear. In the challenge, therefore, the acceleration 

signals were used for extracting fault features, as 

acceleration signals were known to be more efficient in 

detecting faults of high speed components (Verbruggen, 

2003, Shen et al. 2014). In addition, the acceleration signals 

from gearbox Case-1 were used because the location was 

attached to the high-speed shaft and the location was near 

the bearing case where accelerometers are usually attached 

for the purpose of condition monitoring (Caselitz et al. 

1999, Jung and Koh 2014, Zhu et al. 2010). 

Fig. 3 shows acceleration signals of normal training data 

of Pulverizer C from the idle and loading states (from 

2011/06/14 and 2011/09/14); and Failure 1 and 2 data 

measured from gearbox Case-1. In addition, RMS values of 

the signals are marked. All signals are 0.533-second-long 

data. As can be seen in Fig. 3, the RMS values are more 

than four times larger in a loading state than in an idle state, 

as more loads were transmitted in grinding the coal. 

However, some impulse signals, which could be evidence 

of faults in the gear system (McDonald et al. 2012), were 

observed near 0.2 and 0.5 seconds even in a normal idle 

state. Moreover, normal loading data also have larger 

amplitudes than fault data which were also measured from 

loading states. This finding is contradictory to the fact that 

data from a more degraded gear should have larger RMS 

values (Lebold et al. 2000). 

Therefore, we were able to conclude that the pulverizer 

systems given in this challenge experienced significant 

noise and disturbance. In this setting, previously developed 

well-known approaches like wavelet and spectral kurtosis 

could not be applied. 

 

3.2 Fault features using data from the higher 
sampling rates 

 

In Sections 3.2 and 3.3, the acceleration signals from 

normal and faulty pulverizers are compared in the 

frequency domain. In Section 3.2, first, the comparisons 

were made using the higher sampling rate data (i.e., 7,680 

Hz with 0.533 seconds). It is known that faults of a gearbox 

will excite the resonance frequency of the system, which is 

usually located higher than mesh frequency harmonics (Li 

et al. 2016). Therefore, the higher sampling rate made it 

possible to observe the data in the wider frequency ranges, 

where fault symptoms could appear. 

Fig. 4 shows acceleration signals in the frequency 

domain between 2,500 and 3,500 Hz in idle and normal 

loading states; and from Failure 1 and 2 states using the 

same data in Fig. 3. In the Fig. 4, the largest amplitude 

values in each state are also marked. We observed that the 

largest amplitudes in Failure 1 and 2 states are 0.0576 and 

0.0932 in the given frequency ranges, while the largest 

amplitudes in normal idle and normal loading states are 

0.0268 and 0.0295. The amplitude shows similar values 

regardless of whether the pulverizers are in idle or loading 

states, as shown in Figs. 4(a) and 4(b). 

 

 

 

Fig. 3 Time-domain acceleration signals and their 

corresponding RMS values in (a) normal-idle state, (b) 

normal-loading state, (c) Failure 1, and (d) Failure 2 
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Fig. 4 Frequency-domain acceleration signals with the 

higher sampling rates (7,680 Hz) between 2,500 and 3,500 

Hz and their corresponding maximum amplitudes in (a) 

normal idle state, (b) normal loading state, (c) Failure 1, and 

(d) Failure 2 

 

 

In addition, the amplitude shows larger values in Failure 2 

(1 day before failure) than in Failure 1 (81 days before 

failure). From these observations, it is apparent that the 

energy in the high frequency range (2,500-3,500 Hz) 

increases as the system degrades. The RMS values for each 

states are 0.0057, 0.0094, 0.0120, and 0.0124, respectively. 

From these results, we could know that the characteristics 

were not affected by loading states or disturbance. 

 

3.3 Fault features using data from the lower sampling 
rates 

 

In Section 3.3, we compare the acceleration signals of 

the normal and faulty pulverizers in the frequency domain 

using the lower sampling rate data (i.e., 2,048 Hz with 2 

seconds). Although the lower sampling rate could restrict 

the available frequency range, the longer measurement time 

provided a higher resolution of frequency, which makes it 

possible to observe more detailed frequency-domain 

behavior. 

Fig. 5 shows acceleration signals in the frequency 

domain between 0 and 1,200 Hz from the idle and normal 

loading states; and Failure 1 and 2 states using the data 

from the same date in Figure 3, but with a different 

sampling rate. As can be seen in Figure 5, the frequency 

ranges are limited to 1,024 Hz. However, we could observe 

that periodical peaks appear in Failures 1 and 2, especially 

between 400 and 600 Hz. 

To highlight these periodicities in the frequency domain, 

we adopted a cepstrum technique, which is defined as “the 

power spectrum of the logarithm of the power spectrum” 

(Bogert et al. 1963). The technique has been used for fault 

diagnosis of gearboxes due to its ability to detect modulated 

sideband components equally spaced in the frequency 

domain (Randall 2016). Fig. 6 shows the cepstrum analysis 

results using the same data in Fig. 5. The data were  

 

Fig. 5 Frequency-domain acceleration signals with the 

lower sampling rates (2,048 Hz) between 0 and 1,200 Hz in 

(a) normal idle state, (b) normal loading state, (c) Failure 1, 

and (d) Failure 2 

 

 

represented in the „quefrency domain‟, which is an anagram 

of the frequency domain. The unit in the quefrency domain 

is time, and the value in the quefrency domain indicates the 

period of the components in the frequency domain. We 

marked the amplitudes when quefrencies are 0.068 seconds, 

which is the inverse of the high speed shaft frequency, 14.8 

Hz. 

In Fig. 6, we noticed that the values in Failure 1 and 2 

show 0.167 and 0.286, which are larger than the values in 

idle and normal loading states, 0.079 and 0.096 respectively. 

In addition, the amplitudes increased gradually from Failure 

1 to Failure 2, and idle and loading states could not affect 

the values more significantly than the existence of faults. 

From these observations, we determined that the amplitude 

of the quefrency at the highest shaft speed could 

differentiate faulty gearboxes from normal ones while 

representing the degree of degradation of the gearbox. 

 

3.4 Pulverizer classification based on responses to 
impact loadings 

 

In Section 3.4, we describe how the testing pulverizers 

were classified into two groups based on their responses to 

impact loadings. The responses are the criteria to which one 

of the characteristics extracted in Sections 3.2 and 3.3 is 

applied. 

Fig. 7 shows the time-domain and frequency-domain 

signals of Pulverizer A on 2012/05/18 and 2012/01/18. The 

obvious fault-like signals are shown as periodic impulses in 

time-domain signals in Fig. 7(a), and as excitation in high 

frequency zones in frequency-domain signals in Fig. 7(b). 

The impact signals are more significant when compared 

with data from 2012/01/18 in Figs. 7(c) and 7(d). As faults 

did not exist in the given measurement period, we could 

conclude that impact loadings out of the pulverizer systems 

affected the system, and made fault-like signals on the date 

2012/5/18. Fig. 8 shows the largest amplitudes between 
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2,500 and 3,500 Hz during the given periods for Pulverizers 

A, B, and E. The dotted and solid red lines are the values 

from Failure 1 and 2. Then, the shaded areas indicate the 

periods around 2012/05/18 when impact loadings affected 

the system. As can be seen, the largest amplitudes of 

Pulverizer A show a sharp increase on 2012/05/18. The 

largest amplitudes of Pulverizer B also show an increase on 

2012/05/18. On the other hand, the largest amplitudes 

decrease on 2012/05/18 for Pulverizer E, which indicates 

that the pulverizer is not sensitive to the impact loadings. In 

addition, the values from Pulverizer E do not increase 

gradually, while the ones from Pulverizers A and B increase 

in the given period. 

 

 

 

Fig. 6 Quefrency-domain acceleration signals with lower 

sampling rates between 0 and 1 second and their 

corresponding amplitudes of the period for the high-

speed shaft in (a) normal-idle state, (b) normal-loading 

state, (c) Failure 1, and (d) Failure 2 

 

 

 

 

Fig. 7 Acceleration signals from Pulverizer A (a) in the 

time domain at 2012/05/18, (b) in the frequency domain at 

2012/05/18, (c) in the time domain at 2012/01/18, and (d) 

in the frequency domain at 2012/01/18 

 

 

Fig. 8 Maximum amplitude in the higher frequency zone 

for testing pulverizers (Pulverizers A, B, and E) with 

Failure 1 and 2 data 

 

 

As can be seen, each pulverizer had different behaviors 

as a result of impact loadings. Especially, the responses of 

Pulverizer E were not significantly affected by the impact 

loadings compared to Pulverizers A and B. As a result, we 

could conclude that Pulverizer E had a different 

characteristic response to impact loadings than did 

Pulverizers A and B.  

 

 

4. Failure date and component prediction 
 

In the previous section, two fault characteristics were 

revealed, and testing pulverizers were classified into two 

groups based on responses to impact loadings. In Sections 

4.1, 4.2, and 4.3, the failure dates are predicted based on 

physics and data analytics from Section 3. In addition, in 

Section 4.4, we will discuss the way to predict the faulty 

components.  

4.1 Trends of the fault features in each pulverizer 
 
In this section, two fault features are extracted from 

testing Pulverizers A, B, and E in the given periods. As 

explained in Section 3, the amplitudes in the high frequency 

zones got larger for Pulverizers A and B using higher 

sampling rates. Therefore, RMS values in the higher 

frequency zones (HRMS) were calculated to characterize 

the faulty behaviors in Pulverizers A and B. Then, the 

amplitudes of periods for the high-speed shaft in the 

quefrency domain (QAHSS) were calculated from Pulverizer 

E. The trends of the calculated features are shown in Fig. 9. 

In extracting the features, the data around 2012/05/18 were 

not included, because the data from around this date could 

be deteriorated due to impact loadings out of the system. In 

the figure, the increases of the features could be observed in 

the last part of the extracted data, although significant 

changes were not observed in the first part. 

Fig. 10 shows the behaviors of the two features, HRMS 

and QAHSS, extracted from Pulverizers C, D, and F (training 

data). As the training pulverizers are under normal 

degradation, the extracted features showed similar values 

and did not show significant changes along the given 

periods. 

 

4.2 Weighted regression 
 
Regression analysis is widely used to predict fault dates 

a

b

c

d

0.167

0.286

0.096

0.079

0 0.2 0.4 0.6
-4

-2

0

2

4

A
m

p
.

Time (s)

0 0.2 0.4 0.6
-4

-2

0

2

4

A
m

p
.

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

Freq. (Hz)

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

2
0
1
2
 /

 0
5
 /

 1
8

2
0
1
2
 /

 0
1
 /

 1
8

a b

c d

Failure 2

Failure 1

189



 

Jungho Park, Byungjoo Jeon, Jongmin Park, Jinshi Cui, Myungyon Kim and Byeng D. Youn 

using the sensory signals (Hu et al. 2015). Many regression 

techniques have been developed to make parametric or non-

parametric models between input and output data (Wei et al. 

2015). Among various regression estimation methodologies, 

this paper implements a weighted regression technique in 

consideration of imbalance in the given data (Liu and Zio 

2017). 

 

 

 

Fig. 9 Trends of the fault features in the test data set: (a) 

RMS in the higher frequency zone (HRMS) for 

Pulverizer A, (b) HRMS for Pulverizer B, and (c) 

amplitudes of the high-speed shaft period in the 

quefrency domain (QAHSS) for Pulverizer E 

 

 

 

Fig. 10 Trends of the fault features for the training 

pulverizers (Pulverizers C, D, and F): (a) HRMS and (b) 

QAHSS 

 

 

 

Fig. 11 Overview of the prediction of the failure date: (a) 

feature extraction, (b) weighted regression, and (c) 

failure date prediction 

 

 

The previous studies have limitations that if data of low-

level degradation states cover a long period, the regression 

process may overfit the data in the first part of the period. 

Therefore, to overcome the limitation, conventional 

regression techniques are replaced by the following 

optimization problem (Liu et al. 2017) 

Minimize𝛼,𝛽𝑊 =  
1

𝑁
∑ 𝑑𝑖(𝑓(𝑥𝑖) − 𝑦𝑖)2

𝑁

𝑖=1
 

subject to 𝑓(𝑥𝑖) = 𝛼 × exp (𝛽𝑥𝑖) 

(2) 

where 𝑑𝑖 is the weight to compensate for the imbalance of 

data importance, (𝑥𝑖 , 𝑦𝑖) are the training data points, and 

𝛼 and 𝛽 are the unknown parameters of the exponential 

model to optimize, respectively. The pulverizer data given 

by the PHMAP 2017 Data Challenge is highly imbalanced 

since it has only two failure-related data (Failure 1 and 2).  

In addition, the fault features does not increase significantly 

in the first part as can be seen in Fig. 9. Thus, weighted 

regression was used to compensate and make the result of 

the regression model more reasonable. 

 

4.3 Procedures for prediction of failure date 
 
Using the weighted regression algorithm, failure dates 

were predicted for each testing pulverizer. Fig. 11 shows the 

procedures used to predict failure dates using the fault 

features. First, the fault features were extracted from 

acceleration signals of pulverizers measured at gearbox 

Case-I, as shown in Fig. 11(a). The features were extracted 

according to their responses to impact loadings, as 

described in Section 3.4. Then, the feature values from 

pulverizers of Failure 1 and 2 (81 and 1 day(s) before 
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failure) with a distance of 80 days were added after the 

testing data. The feature values from failure data are marked 

as red triangles in Fig. 11(b). The goodness-of-fit (GoF) 

values were calculated using the weighted regression while 

moving the failure features incrementally starting from the 

last testing data. Then, the location of the failure data and 

regression curve was determined when the GoF value was 

at its maximum, as shown in Fig. 11(c). Finally, the failure 

date was predicted using the Failure 1 and 2 data. 

 

4.4 Component failure prediction 
 
The faulty component in Pulverizer E was predicted to 

be Spiral bevel gear A, because peaks of quefrency 

component in Pulverizer E were coincident with the high 

shaft component. For prediction of the faulty components in 

Pulverizers A and B, the high frequency components, in 

which characteristic behaviors appeared, were investigated. 

Fig. 12 shows the high frequency components between 

2,800 and 3,200 Hz in Pulverizers A and B. As can be seen, 

the modulated frequency components with 14.8 Hz also 

appeared, which implied that the high-speed shaft could 

behave under faulty states. Therefore, the faulty 

components in Pulverizers A and B were also predicted to 

be Spiral bevel gear A. 

 

 

5. Results and discussion 
 

Table 4 shows the predicted failure dates and 

components; and actual replacement dates and components 

for the testing Pulverizers A, B, and E. Some of the 

limitations in the challenge problem could affect the 

accuracy of the failure prediction method. One of them 

would be the sparsity of data available for the measurement 

period. The data measurements were not performed 

regularly, and the longest gap was about 3 months. 

 

 

 

Fig. 12 The behaviors of the high-frequency components 

in (a) Pulverizer A and (b) Pulverizer B 

 

 

Table 4 predicted failure dates and components; and actual 

replacement dates and components for the testing 

Pulverizers A, B, and E 

 
Predicted failure date, 

and component 

Actual replacement 

date, and component 

A 
2012/12/14,  

bevel gear A 

2012/09/25,  

bevel gear A 

B 
2013/12/14,  

bevel gear A 

2014/07/21,  

bevel gear A 

E 
2013/12/17,  

bevel gear A 

2013/12/09,  

bevel gear B 

 

 

Therefore, it was not clear to observe continuous 

degradation of the system. In addition, the overall data 

length was short. In a wind turbine system, vibration signals 

collected for 10 minutes with 20 kHz are used for condition 

monitoring (Feng et al. 2011). The short data length, along 

with a low sampling rate, could reduce accuracy of the 

extracted features (Jung et al. 2017). Moreover, the actual 

replacement dates of the gearboxes could not represent 

failures of the components. Therefore, these discrepancies 

between replacements and failures could also affect the 

accuracy of the results. 

 

 

6. Conclusions 
 

This paper addresses the prediction method for a failure 

date prediction of motor-driven gearboxes in pulverizer 

systems. For that purpose, two fault-related features, HRMS 

and QAHSS were extracted using frequency response on the 

high frequency zones and periodical frequency components. 

Next, the two features were applied to each pulverizer based 

on frequency response on the impact loadings. Then, a 

weighted regression algorithm was used with the extracted 

features to compensate for the imbalance in the degradation 

data. In addition, predictions for the faulty components 

were performed based on the modulated behaviors of 

vibration data in the frequency domain. The prediction 

results led to the team achieving the highest score in the 

PHMAP 2017 Data Challenge. However, team SHRMer 

expects that the accuracy of the prediction method can be 

improved if the data could be measured more frequently. In 

addition, a longer measurement time would enhance the 

reliability of the calculated features. Finally, more details 

about system configuration and operating conditions could 

make it possible to extract fault features with more physical 

meanings. 
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