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1. Introduction 
 
Discrete time signals are a typical type of data acquired 

during the diagnosis of machine health conditions in the 

field of prognostics and health management (PHM). To 

analyze a given signal, most data-driven approaches aim to 

extract important features from a finite length of time 

windows of the given signal and then carry out advanced 

data analytics using techniques such as machine learning or 

statistical data mining (Zhou et al. 2013). From a machine-

learning perspective, a given signal is categorized into 

supervised classification problems for a given labeled time-

series dataset. The common choices for features in the time 

domain are based on certain orders of the signal moment 

and those in the frequency spectrum are based on 

decomposition by harmonic frequency components. In 

many cases, key pieces of information are given in the form 

of time-series data. 

However, in many cases, signals are not obtained by the 

direct measurements of the desired physical quantities of a 

target system. Signals are typically corrupted by various 

noise channels because of environmental factors, innate 

limitations of measurement devices, etc. Furthermore, 

feature extraction from time-series data is not directly 

related to the classification algorithm used. For example,  

                                           

Corresponding author, Professor 

E-mail: seunglee@postech.ac.kr 

 

 

wavelet coefficients may be used as features for a given set 

of time signals. However, the types of mother wavelets are 

often chosen based on domain knowledge, which is 

acquired by applying several machine-learning methods to 

the wavelet coefficients for classification, even in many 

PHM applications. Here, the mother wavelets and the 

classification algorithms are selected separately. Therefore, 

key pieces of information contained in time-series data may 

not be well extracted, and thus, the classification algorithm 

may not be fully compatible with the time-series data for 

the estimation and prediction of machine health conditions 

in PHM problems. 

Smoothing is a typical preprocessing step performed on 

noise-corrupted time-series data by applying low-pass 

filters. Smoothing should be performed carefully so as to 

not remove any key features of signals in high-frequency 

bands. Inappropriate smoothing procedures might wash 

away key pieces of information in signals. For example, the 

application of a low-pass filter might cause the failure of the 

characterization of signal features such as bumps or spikes 

(Donoho 1993). Furthermore, even if signals are 

successfully reconstructed from noise, the feature-searching 

step performed by human experts can introduce serious 

biases into the analysis. Therefore, we believe that features 

from time signals should be extracted in conjunction with a 

classification model to ultimately provide better 

classification performance. 

Among the many signal-processing methodologies 

available for handling time-series data, we focus on the 

discrete wavelet transform (DWT). In this paper, the term 
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“wavelet transform” is used to denote the DWT. Wavelet 

transform shows better signal smoothing performance than 

other traditional methods such as the spline method or the 

low-pass filter in Fourier analysis (Donoho 1994) mainly 

because of its unique structure called “residual fitting”. Also 

its applicability is proven through many discrete time signal 

classification problems (Borghetti et al 2008, Rafiee et al 

2010, Zhang et al 2004, Jung et al 2014). The scheme is 

illustrated in Fig. 1. First, it extracts high-frequency 

components using the mother wavelet and then removes the 

high-frequency components from the original signal. Then, 

it extracts lower-frequency components from the residual 

signal and proceeds to remove them. Although such a 

wavelet transform method is widely used in practice, the 

aforementioned classification performance highly depends 

on the shape of the mother wavelet, which is predefined. 

Therefore, to overcome such limitations, we propose to 

apply such a residual fitting scheme to the convolutional 

neural network (CNN) architecture (Fig. 3). The CNN is 

one of the most famous deep neural network models and is 

the greatest contributing factor to the success of computer 

vision (Matsugu et al. 2003). A neural network or deep 

learning does not require manually engineered well-selected 

features. It contains a complicated learning mechanism that 

facilitates autonomous feature extraction and classification. 

In the wavelet-like CNN, the mother wavelet can be 

considered as the convolutional filter that is to be optimized 

to minimize the classification cost in the framework of the 

deep-learning model. Therefore, more adequate mother 

wavelets (or kernels) can be expected, resulting in better 

classification performance. In the PHM field, studies have 

been conducted to utilize generic CNN models (Janssens et 

al. 2016, Chen et al. 2015, Jeong et al. 2016). However, 

these studies are mostly limited to image data and do not 

carefully account for the unique structures of CNN models 

representing time-series data gathered for machine health 

condition monitoring. 

The proposed wavelet-like CNN model has two 

advantages. First, it directly approximates mother wavelets 

or kernels for signals, whereas the wavelet transform uses a 

rather predefined form of the mother wavelet regardless of 

the characteristics of signals and classification problems. 

Second, it automatically deciphers the abstracted features 

via a deep-learning model. 

The rest of the paper is organized as follows. In Section 

2, we briefly discuss the residual fitting of the wavelet 

transform and CNN models. This section provides a unified 

view of the CNN and the wavelet transform. Then, in 

Section 3, we expand the concept described in the previous 

section to the wavelet-like CNN in detail for time-series 

data classification. In Section 4, we present a validation of 

our proposed approach, conducted using vibration signals 

for rotating machinery. 

 

 

2. Residual fitting 
 

Residuals are defined as the differences between the 

observation data and the fit to the observation data. 

Residual fitting is the scheme for fitting the residuals step 

by step. In general, the wavelet transform carries out 

residual fitting by gradually fitting residuals with two main 

components: filters and convolution operators. At first, 

corrupted signals are convoluted with a large sized filter to 

extract low frequency component. Since the large size filter 

corresponds to a long -time resolution, we denote it by long 

time module. Then the extracted low frequency component 

is removed from the corrupted signal and the same 

procedure is conducted with a smaller sized filter.  

The general structure of the wavelet transform is 

depicted in Fig. 1, where the filters are predefined mother 

wavelets and the operator is a linear convolutional operator. 

The module structure of the wavelet transform is depicted 

in Fig. 2. Our study is to improve the wavelet transform by 

specifying each time module in more adaptive way. 

The configuration can be improved by assuming that the 

nonlinear convolutional operator H and the filter iK  are 

free to be optimized according to the problem setting. 

Under this assumption, the problem is categorized into 

CNN models using the residual fitting scheme. Because the 

proposed CNN model follows the same scheme as the 

wavelet transform, we call it the “wavelet-like CNN” 

model. 
 

 

3. Structure of wavelet-like CNN model 
 

In this section, we address the technical problems 

encountered when realizing our concepts and then propose a 

new deep neural network model based on a basic CNN 

structure. 
 

 

 

Fig. 1 Residual fitting in wavelet transform 
 

 

 

Fig. 2 Module structure of wavelet transform 
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3.1 CNN model 
 

CNN models are known as one of the biologically 

inspired models and have been widely used for image 

pattern recognition problems such as handwritten digit 

recognition and face recognition (Matsugu et al. 2003). In 

image recognition, a CNN model consists of multiple layers 

of small parameters, and the model collects information 

about the parameters to obtain better representations of the 

original image (Korekado et al. 2003). A basic CNN 

architecture includes pairs of convolutional subsampling 

layers (LeCun et al. 1989). The last subsampling layers are 

fully connected, and the output vector classifies the input 

using max pooling between the overall values of the 

activation function. This hierarchical organization helps to 

autonomously extract appropriate features in image 

classification tasks without prior domain knowledge. When 

dealing with the variability of two-dimensional (2D) shapes, 

CNN-oriented models typically outperform other models 

(LeCun et al. 1989) because the convolutional operator 

effectively carries spatial information. 

The application of CNN-oriented models to one-

dimensional (1D) time-series data is not justified. However, 

we believe that such an application can be justified if a 

sufficient sampling frequency rate is used. A sufficient 

sampling frequency rate retains the temporal correlation 

that exists among discrete sampled points in original 

continuous time signals. In this scenario, a convolutional 

layer can learn temporal information in the same manner as 

it learns 2D spatial information in an image classification 

problem. 

It has been empirically proven that a CNN model learns 

about convolutional filters, which effectively characterize 

image segments such as object edges (Zeiler and Fergus 

2014). For 1D time signals, Cui et al. (2016) suggests the 

use of a multiscale CNN for time-series classification. A 

previous study (Chase et al. 2014) convolves each 

preselected feature and realizes a bagging model by 

processing concatenated convolved preselected features in 

fully connected layers. 
In our experiment, we classify two types of vibration 

signals. Cross entropy, which is a typical choice for a loss 

function when dealing with a classification problem, is 

defined by 

( , ) ( ) log ( )
x

L p q p x q x   (1) 

where p and q are the true label and the predicted 

probability, respectively. It is interpreted as the sum of the 

information entropy of our predicted probability log ( )q x  

for the given labels ( )q x . 

 

3.2 Nonlinear convolution 
 

In general, a convolution operator H is defined as 

 ( )H x f k x b    (2) 

If the activation function f is assumed to be an identity 

map (linear convolution), it averages the local values of a 

discrete time signal weighted by a parameter k , which is a 

commonly used smoother. Successive application of the 

linear convolutional operator with varying parameters k 

results in wavelet transform. However, assuming the 

activation function f to be nonlinear is more advantageous 

than assuming it to be linear. It has been proven that outlier 

values attributed to a heavy-tailed distribution are better 

treated by the nonlinear processing of signals than by linear 

processing (Donoho 1993). Successive application of the 

nonlinear convolutional operator with varying parameters k 

results in the wavelet-like CNN. In this study, we set f to an 

exponential linear unit (ELU) so that the continuity in the 

input vibration signal is not affected. 

 

3.3 Multiresolution network and residual network 
 

Wavelet transformation is a multiresolution analysis. It 

shrinks the width of a mother wavelet by half for each 

residual fitting step. Consequently, it analyzes the signals in 

a diverse spectrum. The wavelet-like CNN model adopts 

the same strategy by halving the length of the convolutional 

filter. After the input signal is processed through the 

convolutional layer, the residual is passed to the next 

convolutional layer with a half-length convolutional filter, 

as illustrated in Fig. 3.  

 

 

 

Fig. 3 An architecture of the proposed wavelet-like CNN 

 

 

 

Fig. 4 The module structure 
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(a) 

 
(b) 

 
(c) 

Fig. 5 Vibration data for each mode 

 

 

In practice, not all convolutional filter sizes (
( )/ 2  where 1,2,jN i  ) need to be defined to prevent the 

model from overfitting the data. The structure is combined 

with the wavelet-like CNN. The model for the triple-

resolution analysis is illustrated in Fig. 3 where FC layer 

means fully-connected layer. The module in the structure is 

illustrated in Fig. 4. 

 

3.4 Multichannel convolution layer 
 
In image data, the variability of 2D shapes is 

complicatedly entangled in data. Therefore, it is very 

difficult to learn important features in the images using a 

single convolutional filter. Therefore, typical CNN-oriented 

models for image classification problems use multiple 

convolutional filters to catch a variety of features residing 

in images. We term this process as “multichannel” analysis 

to emphasize the fact that images are processed through 

various “channels” of filters. Usually multiple 

convolutional filters are represented by a single tensor as 

follows 

N M N M Kk R k R      (3) 

where K denotes the number of convolutional filters and N and 

M denotes height and width of convolutional filters 

respectively. Similarly, the wavelet-like CNN also uses 

multiple convolutional filters to learn various features residing 

in time signals; in the present case, N = 1. Because we have 

multiple convolutional layers for each time resolution, we use 

multiple convolutional filters for each time resolution. 

 
 
4. Experiment 

 
4.1 Data 
 

We acquire and store signals from three malfunction 

modes of rotor vibrations: (1) normal as a baseline, (2) 

misalignment, and (3) unbalance. The typical time-series 

signals of these modes are illustrated in Figs. 5(a)-5(c), 

respectively. Note that we do not align the phases of 

vibration data although phase information can be picked up 

by the Keyphasor probe embedded in the RK 4 Rotor Kit. 

Because the main goal of this research is to construct a 

model for signal classification rather than reconstruct or 

smoothen the original signals, this goal is made clear in the 

validation process by generalizing the input signals to the 

maximum extent possible. This generalization can be 

partially achieved by not synchronizing the phase of each 

signal. 

Every signal has a length of 820 points. Because a single 

revolution of the rotor is represented by approximately 410 

discrete points, by doubling the length, we assume that the 

semantics of a single revolution can be contained in discrete 

samples with a length of 820 points, independent of the 

noise generated by discretization. 
 

4.2 Evaluation measure 

 

We choose five evaluation measures: micro AUC (where 

AUC is the area under the curve), macro AUC, micro F1 

score, macro F1 score, and accuracy. Because the problem 

pertains to multilabel classification, some variations of the 

AUC and the F1 score are measured. The detailed theories 

have been described in previous papers (Chase et al. 2014, 

Lipton et al. 2015). All the measures are evaluated based on 

10 stratified folds. The measures are briefly described in 

Table 1. 

 

4.3 Comparison 
 

We compare the evaluation measures obtained using 

several models. The models are typically categorized into 

two groups: feature-based machine-learning models and 

deep-learning models. 

To benchmark different classifiers for feature-based 

models, we use logistic regression and the support vector 

machine (SVM) with linear and nonlinear radial basis 

function (RBF) kernels. 
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Variation is achieved by changing the regularization 

parameter C. For deep-learning models, we benchmark the 

multilayer perceptron (MLP) and a recently suggested deep-

learning model using the discrete wavelet coefficient (Jaber 

and Bicker 2016). We use nine levels of wavelet 

coefficients, as suggested by Jaber and Bicker (2016) 

because it is the finest decomposition level that we can 

achieve using signals with a length of 820 points (
9 102 820 2  ). The finest decomposition is recommended 

when a very low frequency band is investigated, which is 

25 Hz in our case (Jaber and Bicker 2016). We choose 

Daubechies’ second-order wavelet for analyzing vibration 

data, as recommended by Jaber and Bicker (2016). We 

name this model as the “wavelet coefficient ANN.” 

The comparison results are illustrated in Table 2. In 

general, linear models show low evaluation measure values, 

whereas nonlinear models show relatively high evaluation 

measure values. 

 

 

 

Furthermore, deep-learning models show better 

performance than feature-based ones. It is worth mentioning 

that the SVM with the RBF kernel based on principal 

component analysis (PCA) shows better evaluation 

measures than those based on wavelet coefficients. We 

argue that this difference occurs because of the high 

variance generated by the higher dimensions of the wavelet 

coefficients. Among all the models, our model shows the 

best performance. 

 

4.4 Evaluation 
 

Qualitative evaluation should be carried out to evaluate 

the relevance of the features found by our model. Namely, 

we should most  importantly check whether  the 

convolutional filter conveys key information of the rotor 

dynamics. The convolutional filters of each convolution 

layer are illustrated in Figure 6. To appreciate the meaning 

of the filters, we observe the frequency response of the  

Table 1 Evaluation measures 

Evaluation measure Description 

Accuracy Calculate the accuracy classification score. 

Micro AUC 
Compute the AUC from prediction scores. Calculate metrics globally by considering 

each element of the label indicator matrix as a label. 

Macro AUC 
Calculate the AUC for each label, and find their unweighted mean. This does not take 

label imbalance into account. 

Micro F1 score 

The F1 score can be interpreted as a weighted average of the precision and the recall; 

an F1 score reaches its best value at 1 and worst value at 0. Calculate metrics globally 

by counting the total true positives, false negatives, and false positives. 

Macro F1 score 
Calculate the F1 score for each label, and find their unweighted mean. This does not 

take label imbalance into account. 

Table 2 Model comparison 

Category Model Micro AUC Macro AUC Micro F1 score Macro F1 score Accuracy 

Logistic regression 

(PCA) 
Mean 2.63 2.62 2.53 3.34 2.67 

SVM with linear 

kernel 

C = 0.1 0.6100 0.5556 0.4800 0.3405 0.4800 

C = 1 0.6150 0.5602 0.4867 0.3447 0.4867 

C = 10 0.6100 0.5556 0.4800 0.3405 0.4800 

SVM with RBF 

kernel (PCA) 

C = 0.1 0.8250 0.7546 0.7667 0.5729 0.7667 

C = 1 0.8650 0.8000 0.8200 0.6660 0.8200 

C = 10 0.8900 0.8435 0.8533 0.7723 0.8533 

Logistic regression 

(wavelet) 
 0.5500 0.5000 0.4000 0.2950 0.4000 

SVM with linear 

kernel 

(wavelet) 

C = 0.1 0.6200 0.5648 0.4933 0.3512 0.4933 

C = 1 0.6100 0.5556 0.4800 0.3425 0.4800 

C = 10 0.6300 0.5741 0.5067 0.3723 0.5067 

SVM with RBF 

kernel 

(wavelet) 

C = 0.1 0.6200 0.5648 0.4933 0.3512 0.4933 

C = 1 0.6200 0.5648 0.4933 0.3512 0.4933 

C = 10 0.6200 0.5648 0.4933 0.3512 0.4933 

MLP 

Layer size =  

[100, 50] 
0.9674 0.9225 0.9333 0.9180 0.9333 

Layer size = 

 [200, 100] 
0.9275 0.8410 0.9467 0.9333 0.9467 

Wavelet 

coefficient 

ANN 

 0.9564 0.9531 0.8667 0.8442 0.8667 

Our model 
Kernel size = 

[100, 200, 400] 
0.9986 0.9985 0.9933 0.9917 0.9933 
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filters (Fig. 7). The red dashed lines represent the 1X and 

2X frequencies of the rotor. Long-time filters function like a 

typical low-pass filter because they multiply each frequency 

component with a certain decaying factor. They especially 

emphasize the 1X component. Middle-time filters catch the 

1X component of the signal, whereas short-time filters 

catch the 2X component of the signal. The observations are 

consistent with the mechanical property that the 

abnormality of the rotor is typically articulated by variations 

in the 1X and 2X frequency components. Furthermore, the 

results are sound in the sense that the 1X component is 

characterized by relatively longer-time filters (i.e., long- 

and middle-time filters), whereas the 2X component is 

characterized by short-time filters. 

Fig. 7 indicates that most of the denoising is carried out 

by the long-time filters. One explanation is the direct 

connection of the long-time convolution layer with raw 

signals. Nevertheless, the results suggest that the first 

convolution step does not possess the intended property 

(i.e., long-time resolution analysis). Rather, it smoothens  

 

 

signals in advance and proceeds with its analysis using the 

subsequent middle- and short-time convolutional layers. 

The process resembles the manner in which the wavelet 

transform (DWT) works in that the high-frequency 

components are removed before the signals are convolved 

with the wavelet of the next level. However, the CNN does 

not require the subsampling of signals to follow Nyquist’s 

rule. Fig. 6 shows the redundancy among the filters. The 

figure indicates that the data do not require more than a 

single convolutional filter. Rather than distorting 

information, the channels tend to unify different types of 

behavior within the filters, resulting in a self-regularization 

effect. Such a regularization effect of convolutional filters is 

often reported in practice. 

During an optimization process, the best evaluation 

measures are achieved relatively earlier, whereas cross 

entropy does not reach optimality. This phenomenon 

suggests that our model has a “feature-learning phase. Fig. 

8 shows the resultant convolutional filters when all the 

evaluation measures are more than 0.98 but cross  

 

 

 
Fig. 6 Convolutional filters 
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entropy is not fully optimized. The spiky shapes found in 

the filters visually represent the process of the features 

being searched. 

Fig. 9 shows how the wavelet-like CNN activates its 

neurons while classifying vibration data. CONV1, CONV2, 

and CONV3 are the convolutional operations in the long-, 

middle-, and short-time modules, respectively. Because 

each module consists of two convolutional layers (Figure 

4), each module gives two outputs. The actual outputs are 

CONV1_2, CONV2_2, and CONV3_2. CONV1_2 shows 

the moderate smoothing step for the original data. The 

subsequent outputs CONV2_2 and CONV3_2 show the 1X 

and 2X frequency activation because CONV2_2 is activated 

at the 1X component more strongly (red), whereas 

CONV3_2 is activated more frequently. These results 

coincide with the results of our analysis shown in Figs. 6-8. 

A summary of the entire activation process is presented in 

Fig. 10. 

 

 

5. Conclusions 

 

Our goals are to (1) combine smoothing and 

classification procedures into a single CNN structure, (2) 

achieve high accuracy, and (3) evaluate how well the 

proposed model learns features from time-series data. 

Validation results based on rotor vibration data suggest that  

 

 

these goals are moderately achieved; the proposed 

evaluation measures show better performance than both off-

the-shelf feature-based models and the deep-learning 

models recently proposed in the PHM field. 

The novelty of our study lies in integrating the “residual 

fitting” mechanism of wavelet shrinkage into the 

convolutional neural network structure. Consequently, the 

wavelet-like CNN architecture combines signal 

reconstruction and classification procedures into a single 

model; these procedures are currently carried out 

exhaustively based on expert knowledge. 
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Fig. 7 Frequency spectrum of convolutional filters 
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Fig. 8 Convolutional filters when cross entropy is not fully optimized 

 
 

 

Fig. 9 Entire activation process 
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