
Smart Structures and Systems, Vol. 22, No. 1 (2018) 105-120 

DOI: https://doi.org/10.12989/sss.2018.22.1.105                                                                  105 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sss&subpage=7                                      ISSN: 1738-1584 (Print), 1738-1991 (Online) 

 

1. Introduction 
 

In recent years, remarkable development in engineering 

materials has caused to create new materials such as the 

carbon nanotube reinforcement composites (CNTRCs). 

Carbon nanotubes can be used to reinforce the polymer 

composites (Esawi and Farag 2007). Combination of nano 

tubes and CNTs leads to excellent properties for various 

applications. An investigation on the related references 

indicates that properties of the some materials can improve 

using compounding with CNTs (Amal and Mahmoud 2007). 

It is noted that these improved properties is depending on 

the base materials, type of the CNTs and their distribution 

patterns. Developing of these material properties makes that 

the CNTRCs achieve a wide applications in micro and nano 

systems (Ashrafi and Hubert 2006). Recently, many 

researchers focused on the problems that concern with FG-

CNTRC. For example thermal stresses analysis, linear and 

nonlinear vibration, the dynamic response in thermal 

environments, the nonlinear bending response subjected to  
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transverse loads under thermal environments and other  

problems in this case were studied by some researchers 

(Ghorbanpour Arani et al. 2012, Ansari et al. 2014, 

Ghorbanpour Arani et al. 2015, Mohammadimehr and 

Mostafavifar 2016, Mohammadimehr et al. 2016, Wu et al. 

2016). The thermo mechanical properties of nano-

composites investigated by Fidelus et al. (2005) in detail. 

They assumed nano-composite made from combination of 

epoxy and SWCNTs and multi-walled (MW) CNTs oriented 

randomly. In the other research the static behavior of  FG-

CNTRC plate was studied by Alibeigloo (2014). Li et al. 

(2016) in their investigation developed molecular models 

included Fe atoms. The abrasion rate and friction coefficient 

are examined with sliding the polymer matrix and nano-rod 

on each other in the presence of normal loadings. Formica 

et al. (2010) analyzed the vibration characteristics of 

CNTRC. They used the Eshelby–Mori–Tanaka approach in 

order to simulate continuum model. In according to their 

research, the natural frequencies of the rubber reinforced by 

CNTs enhances up to 500 percent. The response of the FG-

CNTRC beam due to impacting mass was represented by 

Jam et al. (2015). They employed the Timoshenko beam 

theory to indicate the kinematics relations of the beam. 

Shen and Zhang (2010) studied post buckling and thermal 

buckling of the plate reinforced by SWCNTs and exposed 

to temperature change. They concluded that there is no 

initial thermal post buckling strength in plate made of 

CNTRC with intermediate nanotube volume fraction. 

Wattanasakulpong et al. (2013) studied the vibration, 
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bending and buckling in beam made of CNTRC. In their 

work the effects of some parameters such as spring constant 

factors, several aspects of beam and carbon nanotube 

volume fraction were discussed. The vibration of beam 

made of CNTRC with temperature variation and surface-

bonded piezoelectric layers was studied by Rafiee et al. 

(2013). Through a comprehensive parametric study, they 

investigated the influences of the main parameters on the 

linear and nonlinear frequencies. The free vibration and 

bending of the CNTRC sandwich plate based on higher-

order theory were studied by Natarajan et al. (2014). Rafiee 

et al. (2014) carried out an investigation on nonlinear 

stability and resonance response of the imperfect plate made 

of piezoelectric FG-CNTRC subjected to various combined 

electrical and thermal loads. Another research in case of 

nano-composite reinforced by SWCNTs was accomplished 

by Ke et al. (2010) on nonlinear free vibration of the 

Timoshenko beam with considering von Kármán geometric 

nonlinearity. Also according to study that implemented by 

Mohammadimehr et al. (2015), the influences of the various 

pattern of the of SWCNTs as: UD, FG-V, FG-X and FG-O 

on dimensionless natural frequency were studied on the free 

vibration of visco-elastic double-bonded polymeric nano-

composite plate. Researchers have found that application of 

micro/nano-composites in micro/nano electromechanical 

systems leads to important and novel responses to raised 

problem in this context.  

Recently, the influences of the small materials length 

scales parameters were considered by the researchers in 

their investigations in case of the nano and micro structures. 

To have a precision analysis in small structures, it is 

necessary to consider small scales parameters in the 

governing equation of motion of the structures in order to 

model the mechanical or physical properties (Li et al. 2015). 

For example, the continuum mechanics theory that used in 

research concerning with nano/micro systems include 

classical continuum models (Shakeri et al. 2006, Zhang and 

Paulino 2007), nonlocal continuum theory (Simsek and 

Yurtcu 2013, Reddy et al. 2014, Nazemnezhad et al. 2014, 

Ebrahimi and Salari 2015, Kiani 2015, Niknam and 

Aghdam 2015, Pang et al. 2015, Rahmani and Jandaghian 

2015, Salehipour et al. 2015), strain gradient theory (Akgoz 

and Civalek 2013, Tajalli et al. 2013, Gholami et al. 2014, 

Setoodeh and Afrahim 2014), and modified couple stress 

models (Nateghi and Salamat-talab 2013, Akgoz and 

Civalek 2014, Ansari et al. 2014, Jung and Han 2015). 

Based on the nonlocal strain gradient theory, Liew et al. 

(2008) analyzed the wave propagation in a SWCNT and 

obtained results comparing with results achieved by 

molecular dynamics simulations. Some magneto-electro-

thermo-elastic analysis of nano-beams can be observed in 

literature (Arefi et al. 2018, Arefi and Zenkour 2016, Arefi 

and Zenkour 2017a, Zenkour and Arefi 2017). The effect of 

surface elasticity was accounted in the nonlocal formulation 

of nanobeams (Arefi et al. 2018, Arefi 2016, Arefi and 

Zenkour 2017c). Vibration and bending analysis of 

sandwich structures in terms of applied voltage based on 

various lower- and higher-order shear deformation theories 

were studied by Arefi and Zenkour (2017a, b, d, e).  

 

Comprehensive investigation on literature mentioned 

above indicates that there is no published work about free 

damping and nonlinear free and forced vibration of the 

sandwich nano-beam with face-sheets made of FG-CNTRC 

resting on Visco-Pasternak elastic foundation in electro-

thermal environment. The present analysis is performed 

based on nonlocal strain gradient theory, von Karman 

nonlinearity and Hamilton's principle. The influence of 

some significant parameters such as small scales parameter, 

electrical and thermal loads and various patterns of FG-

CNTRC are discussed on the nonlinear free and forced 

vibration characteristics of the sandwich nano-beam in 

detail. 

 

 

2. Sandwich nano-beams with face-sheets made of 
the FG-CNTRC 

 

The structure of sandwich nano-beam with face-sheets 

made of the FG-CNTRC is represented in Fig. 1. Regarding 

to this figure, it is assumed that core of the beam and matrix 

of the face-sheets are made of viscoelastic piezoelectric 

materials. CNTs aligned along thickness direction according 

to three patterns namely 𝐹𝐺(𝐴𝑉), 𝐹𝐺(𝑉𝐴)and 𝑈𝐷. 

In different published study, properties of CNTRCs 

calculated using the Mori–Tanaka scheme or with 

employing others rule of mixtures that in present 

investigation the simple rule of mixtures with correction 

factors is applied (Natarajan et al. 2014, Ghorbanpour Arani 

et al. 2016). According to the rule of mixture, the properties 

of the materials made of the CNTRC (Young’s modulus 

(𝐸𝑟𝑐), expansion coefficient (𝛼𝑟𝑐), visco-elastic coefficient 

(𝜏𝑑
𝑟𝑐) and density (𝜌𝑟𝑐) of the reinforced composite) are 

expressed by (Rafiee et al. 2014) 
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Fig. 1 Sandwich nano-beam with CNTRC face-sheets 
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In which, 𝜂1 , 𝐸11
𝐶𝑁 , 𝛼11

𝐶𝑁 , 𝜏𝑑
𝐶𝑁  and 𝜌11

𝐶𝑁  are the CNT 

efficiency parameter, the Young’s modulus, the expansion 

coefficient, the visco-elastic coefficient and density of the 

CNTs, respectively and 𝐸𝑚 , 𝛼𝑚 , 𝜏𝑑
𝑚  and 𝜌𝑚  are the 

matrix properties. Furthermore,  𝑉𝐶𝑁 and 𝑉𝑚 are volume 

fractions of the CNTs and matrix that related by 𝑉𝐶𝑁 +
 𝑉𝑚 = 1 (Shen and Zhang 2012). The CNTs distributed and 

aligned along the thickness direction of the top and bottom 

face-sheets according to following formulations 
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Where 𝑉𝐶𝑁
𝑡  and 𝑉𝐶𝑁

𝑏  represent the volume fractions of 

the CNTs in top and bottom face-sheets, respectively and 

also 𝑉𝐶𝑁
∗  can be calculated as 
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(3) 

In above equation, 𝑤𝐶𝑁 characterize the mass fraction 

of the CNTs. 

 

3. Formulation 
 

3.1 Equation of motion 
 

The displacement field for Euler-Bernoulli beam is 

defined as 
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(4) 

In which, 𝑢̅  and 𝑤̅  are axial and transverse 

displacement components, 𝑢0  and  𝑤0  are axial and 

transverse displacements of mid-surface. The strain-

displacement relation based on nonlinear Von-Karman 

relation considering the thermal strain is expressed as 
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In which, ∆𝑇 is the increment of temperature from the 

initial temperature (𝑇0 ) that is equal to  ∆𝑇 = 𝑇 − 𝑇0 . 

Regarding to the Kelvin–Voigt viscoelastic damping model, 

the strain-stress relation for reinforcement composite face-

sheets is defined as (Li et al. 2015) 
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 (6) 

Considering the applied voltage on piezoelectric core 

layer, the strain-stress relation of the core is specified as 
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In which 𝑑31is the piezoelectric strain constant (Liew et 

al. 2003). Because of the small value of thickness of the 

piezoelectric core, the relation between electric field and 

applied voltage is expressed as (Liew et al. 2003, Rafiee et 

al. 2013) 
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(8) 

The procedure extracted above phrase is represented in 

Appendix A1 in detail. In Eq. (8)  ℎ𝑐  and 𝑉(𝑡̅)  are 

thickness of the piezoelectric core and applied voltage in 𝑧̅ 
direction of the core, respectively. In general, the properties 

associated with the core and face-sheets represent with 𝑐 

and 𝑟𝑐  superscripts, respectively. In order to derive the 

governing equation of motion, the Hamilton's principle is 

employed as follow 
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Where 𝛿𝑈, 𝛿𝑇 and 𝛿𝑊 are the density of the strain 

energy, the kinetic energy, and the work done by external 

forces, respectively. The virtual strain energy 𝛿𝑈  is 

calculated as 
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Virtual kinetic energy is represented as 
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The virtual work done by the external forces is written 

as 
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(12) 

Where F and Q are the axial force and transverse force 

per unit length respectively, and 𝑁0  is the axial 

compressive or pretension force. Substitution of Eqs. (4) 

and (5) into Eqs. (10)-(12) and consequently into Eq. (9), 

yields the governing equations of motions as 
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Where, 𝑁𝑥̅  and 𝑀𝑥̅  symbolize force and moment 

resultants, respectively. Due to changing the density along 

the z direction, two parameters m0 and 𝑚2 are calculated 

as 
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And 𝑁𝑥̅ and 𝑀𝑥̅ are expressed as 
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In according to nonlocal strain gradient theory (Li and 

Hu 2016), the constitutive relation between stress and strain 

are expressed as 
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In above equation, 𝑡𝑥𝑥 is the stress, 𝛻2 = 𝜕2/𝜕𝑥̅2 is 

the Laplacian operator, 𝑒̅0𝑎̅  represents the nonlocal 

parameters and 𝑙𝑚̅ characterize the strain gradient length 

scale parameter to incorporate the small scale 

characteristics of the micro/nano structures in the governing 

equation of motion. In present investigation, the explicit 

form of the last equation can be rewritten as follows 
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The force and moment resultants using Eqs. (15)-(17) 

are expressed as the following 
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Where superscripts 𝑃  and 𝑇  represent thermal and 

electrical loads and 𝑀𝑇 , 𝑀𝑃, 𝑅̅68 and 𝑅̅79 are calculated as 
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It is noted that, 𝐴𝑥𝑥 and 𝐷𝑥𝑥 are the extensional and 

bending coefficients, respectively can be obtained as 
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(20) 

If the second derivatives of the 𝑁𝑥̅  and 𝑀𝑥̅ from Eq. 

(13) are substituted into Eq. (18), respectively, we will have 

following stress resultants 
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To obtain the equations of motion, Eq. (21) should be 

substituted into Eq. (13). Therefore, two following coupled 

equations are obtained 
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(22) 

By neglecting the axial inertia and axial force from the 

first relation in Eq. (22) and implemented some simple 

manipulations, the force resultant 𝑁𝑥̅ can be expressed as 
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 (23) 

Thus replacing above equation for 𝑁𝑥̅  in the second 

relation of Eq. (22), the equation of motion for a sandwich 

nano-beam with FG-CNTRC face-sheets based the nonlocal 

strain gradient theory yields as 
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(24) 

 

3.2 External load 
 
Effects of environment on the beam are simulated as 

Visco Pasternak foundation. Therefore the influence of the 

embedded environment is expressed as (Kanani et al. 2014)  
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(25) 

In which,  𝐾𝑤 , 𝐾𝑠 , 𝐾𝑛𝑙  and 𝐶𝑑̅  are Winkler stiffness 

coefficient, Pasternak shearing coefficient, nonlinear 

stiffness coefficient and viscos coefficient of the 

environment, respectively. In other hand, Maxwell's 

equation is expressed as 
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(26) 

In above equations, ℎ̅  is the disturbing vectors of 

magnetic field, 𝐽 ̅ presents the current density, 𝑒̅ represents 

the strength vectors of electric field and 𝑈 characterizes 

the vector of displacement. In addition, ∇ demonstrates the 

Hamilton arithmetic operators where calculates as the 

form  ∇=
𝜕

𝜕𝑥
𝑖̅ +

𝜕

𝜕𝑥
𝑗̅ +

𝜕

𝜕𝑥
𝑘̅ . The magnetic permeability is 

indicated by  𝜂 . Herein, the longitudinal magnetic field 

vector applying on the carbon nanotube is specified 

as 𝐻  =  (𝐻𝑥̅, 0,0). If the displacement vector is defined as 

U = U (u, v, w) hence 
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Therefore, the components of the Lorentz force in 𝑥̅, 𝑦̅ 

and 𝑧̅ directions are specified by the following form 
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According to the defined displacement field in Eq. (3) 

and with attention to Eq. (28), only Lorentz force which 

applied on the carbon nano-tube embedded in sandwich 

nano-beam is specified as 
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(29) 

Substituting Eqs. (26), (27), (31) into Eq. (25) leads to 

governing equations of nonlinear vibration as 
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By defining following variables 
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The final dimensionless equation of motion is obtained 

as 

4

0 0 0
0

0

4 2 4 2 4

0

22 2 2

68 79
68 79

0 0

22

0

, , , , , , ,

, , , ,

, , , ,

m
m

xx

w s nl d
w s nl d

xx xx xx xx

xx xx
xx xx

xx xx xx xx

xx
xx

xx

w l e a m Lx t
x w l ea t T

L h L L T D

K L K L K L h C L
K K K C

D D D T D

A L D R L R Lh
A D R R

D L D T D T D

A L h
A

T D L




     

   

 
    

 

 
  

 

 (32) 

 

 

4. Non-linear vibration analysis 
 
4.1 Free vibration 
 
In order to nonlinear free vibration analysis and 

studying the nonlinear vibration behaviors, Eq. (32) with 

considering mid plane stretching and pre-tension is 

rewritten as 
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(33) 

To solve equation of motion, decomposition Galerkin 

method is used to convert nonlinear partial differential 

equation (PDE) to nonlinear ordinary differential equation 

(ODE) (Ahmadian et al. 2009, Pirbodaghi et al. 2009, 

Asghari et al. 2010). For this aim, the solution of the Eq. 

(32) is assumed as 

     ,w x t w x q t
 

(34) 

 

In Eq. (34), 𝑞(𝑡) is the time dependent amplitude for 

nonlinear vibration of the beam and 𝑤(𝑥) is assumed the 

linear fundamental vibration mode to satisfy boundary 

conditions. Then, substitution of Eq. (34) into Eq. (33) and 

using the decomposition Galerkin’s method, the governing 

nonlinear ordinary differential equation of motion is 

obtained as 
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 (35) 

Where, coefficients presented in Eq. (40) are calculated 

by decomposition Galerkin method appeared in Appendix 

A2. The initial conditions for Eq. (40) are expressed as 

   00 , 0 0q a q 
 (36) 

To solve Eq. (35), MTS method is employed with 

considering its initial condition represented in Eq. (36). 

According to aforementioned method, the response is 

assumed as 3rd order uniform expansion of multiple 

independent variables or time scales. Based on the 

following expressions, solution considered for Eq. (35) is 

assumed as (Nayfeh and Mook 2008) 
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Where, ε is a measure of the amplitude of the motion 

(Hossieni et al. 2014). For this case, the independent time 

variables are introduced as 
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nT n  
 (38) 

In which, 𝑇0 = 𝜏 is fast time scale and slow time scales 

are defined as 𝑇𝑛 = 𝜖𝑛𝜏, n ≥ 1. Fast time scale determines 

the main oscillatory behavior of the system (El-Borgi et al. 

2015). By substituting Eq. (37) into Eq. (35), the system of 

linear equations based on the orders of ε is derived 
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Where, D0, D1 and D2 defines 

derivatives  
𝜕

𝜕𝑇0
,
𝜕

𝜕𝑇1
 and 

𝜕

𝜕𝑇2
, and  𝐷0
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𝜕2

𝜕𝑇0
2, 

𝜕2

𝜕𝑇1
2 and 

𝜕2

𝜕𝑇2
2, respectively. Nayfeh and Mook 

analyzed ordinary differential equation with cubic and 

quadratic nonlinearities using the MTS method (Nayfeh and 

Mook 2008). After some simple manipulation, the closed 

form expression for the nonlinear frequency of the structure 

ignored the damping terms is calculated as follows 
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(40) 

And also the first approximation for time dependent 

amplitude of the nonlinear damping vibration yields as 
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4.2 Forced vibration 
 
In order to accomplish this analysis, the pretension force 

is assumed to vary with time as 

   0 0 cosN t N t 
 (42) 

In which, Ω is the frequency of the pretention. Based 

on Eq. (40) the time dependent equation is expressed as 

           

   

3

11 12 0 2 3

2

4 0

q t A q t A N t q t A q t A q t

A q t q t

    


 (43) 

Where new coefficients 𝐴11and 𝐴12 are represented in 

the Appendix A2. By substituting Eq. (37) into Eq. (42), the 

system of linear equations based on the orders of ε will is 

derived 

 12

1 2

0 1 11 1

2 2

0 2 11 2 1 0 0

3 2

2 0 0 0

0

0 4 0 0 0

( )

:  0

:  2A N

D q A q

D q A q D D q

A D q A q A D q

t

q





 

    

 

 (44) 

According to solution procedure, primarily the first 

equation must be solve. Therefore, the solve of the 

aforementioned equation is achieved as 

   0 1 11 0expq B T A T cc 
 

(45) 

Where, 𝐵(𝑇1) is an unknown complex function of 𝑇1 

and cc denotes the complex conjugate of the preceding 

terms. Then Eq. (45) is replaced in the second relation of 

Eq. (44). The primary resonance is occurred when the 

frequency of excitation Ω is getting close to the linear 

frequency of the system ω0 i.e., Ω ≈  ω0. This relation is 

described by the following equation 

0   
 (46) 

Wherein 𝜎 is a detuning parameter and 𝜔0 = √𝐴11. In 

order to eliminate secular terms from 𝑞1 after substituting 

Eq. (45) into the second relation of Eq. (44), coefficient of 

eiωT0 must be equal to zero. Therefore following equation is 

obtained 

 
     

   

   

21
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1

2

4 11 1 1

12

0 1 1

2

exp 0
2

B T
i A A i A B T A B T B T

T

A i A B T B T

A
N B T i T

 
    

 





 (47) 

Considering 𝐵(𝑇1) in polar form as 

     1

1 1

1

2

i T
B T a T e


  (48) 

And substituting it into Eq. (47) yields 

3

2 11 12 0 4 11
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

 (49) 

The point which 
𝜕𝑎

𝜕𝑇1
=  0 and 

𝜕𝛾

𝜕𝑇1
=  0 corresponds to 

the singular point of the system and shows the steady-state 

motion of the system. After some manipulation, the steady 

state frequency response equation is expressed as 

 

2

2

2 11 4 11

22

11 3 12 0
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4

2

1

2

A A A A a
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 
  

 

 
  

 

 (50) 

 

 

5. Numerical results and discussion 
 
5.1 Validation of the results 
 
In this section, numerical results are presented for both 

nonlinear free and forced vibrations of the sandwich nano-

beam with CNTRC face-sheets. The material properties and 

geometrical specifications of the beam are presented in 

Table 1. Herein, to justify the accuracy of the present issue, 

the results obtained in this research are compared with 

existing results of literature using ODE-45 method. Shown 

in Fig. 2 is the comparison between MTS method and 

numerical results obtained by ODE-45 method. According 

to these figures it is deduced that the current method has 

capability to evaluate the nonlinear time responses with 

acceptable accuracy. Another comparison is carried out to 

verify the reliability of the present formula and present 

solutions. For this aim, dimensionless natural frequency for 

a sandwich nano-beam with FG-CNTRC face-sheets is 

compared with results obtained from exact solution or 

reference (Gheshlaghi and Hasheminejad 2011). Table 2 

presents the natural frequency of a sandwich nano-beam as 

a function of non-dimensional initial condition 𝑎0 and also 

shows the comparison between the present results and 

analytical results. 

It is necessary noted that based on the scientific 

principles of nonlinear vibrations, increasing the initial 

amplitude of initial conditions causes the nonlinear natural 

frequency of nonlinear vibration to increase. The semi 

analytical methods such as MTS method can’t well take 

into account the effects of aforementioned phenomenon in 

the final solution for natural frequency. Therefore, regarding 

to results presented in Table 2, it can be concluded that 

increasing the initial amplitude causes the difference 

between the results obtained by the analytical method and 

the semi-analytical method to increase. 
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Fig. 2 Dimensionless Deflection of a. simply supported 

and b. clamped-clamped beam versus Dimensionless 

time (time-response) 
 

 

5.2 Nonlinear free damping vibration  
 
Considering Eq. (41) it can be concluded that unlike to 

the time response of the linear damping vibration, in the 

nonlinear damping vibration, the nonlinear damping 

frequency is a function of the initial condition (𝑎0) and the 

coefficient of damping (𝐶𝑑). Table 3 shows that increasing 

the damping coefficient of Visco-elastic foundation leads to 

an important rise in the time periods. Furthermore, it leads 

to decrease of the nonlinear damping frequency of the 

vibration. Regard to the obtained results presented in Table. 

4, the nonlinear damping frequency of the sandwich nano-

beam associated to the first time period is increased by 

increasing the strain gradient parameter (𝑙𝑚). In other hand, 

increase of the nonlocal parameter (𝑒𝑎) leads to decrease of 

the nonlinear damping frequency of the sandwich nano-

beam. 

The effects of the Winkler coefficient (𝐾𝑤), the visco-

elastic coefficient (𝜏𝑐𝑛) and the applied voltage (𝑉) on 

the nonlinear damping frequency are presented in table 5. 

According to these results, increase of the Winkler 

coefficient increases nonlinear damping frequency while 

nonlinear frequency is decreased by increase of Visco-

elastic coefficient of the CNTs and the applied voltage.  

 

 

 

 

 

 

 

 

 

 

Regard to results of Table 6, enhancing ΔT and 𝑁0 have 

the same effect on nonlinear damping frequency. One can 

conclude that increase of the aforementioned parameters 

leads to decrease of nonlinear damping frequency. In 

addition, increase of shearing coefficient of the elastic 

foundation leads to increase of the nonlinear damping 

frequency. 

The presented results in Table. 7 show influences of the 

various pattern of CNTs on nonlinear frequency. It can be 

concluded that AV pattern has a higher frequency with 

respect to other patterns and also according to these results 

the nonlinear damping frequency is enhanced by increase of 

the nonlinear stiffness of the elastic foundation and 

longitudinal magnetic field. 

 

 

Table 2 The comparison between obtained results in present 

work and results of exact solution in Ref.  (Gheshlaghi and 

Hasheminejad 2011) 

Dimensionles

s Initial 

Amplitude 

(𝑎0) 

Dimensionless 

nonlinear 

frequency (exact 

solution Ref. 

Gheshlaghi and 

Hasheminejad 

2011) 

Dimensionless 

nonlinear 

frequency  

(semi analytical 

solution  

(present work)) 

Error 

(%) 

0.02 20.809 20.809 0.00 

0.04 20.812 20.811 0.00 

0.06 20.816 20.814 0.01 

0.08 20.823 20.819 0.02 

0.1 20.831 20.825 0.03 

0.12 20.841 20.833 0.04 

0.14 20.852 20.841 0.05 

0.16 20.866 20.852 0.07 

0.18 20.881 20.863 0.09 

0.2 20.898 20.876 0.11 

 

 

Table 3 The effect of the damping coefficient on nonlinear 

time periods 

𝐶𝑑 Time Period (1) Time Period (2) Time Period (3) 

4.50 0.3016 0.3019 0.3019 

6.75 0.3017 0.3019 0.302 

8.99 0.3018 0.3019 0.302 
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Semianalytical Method (present study)

Numerical Method (Runge Kutta 4 th order)

Table 1 The material and geometrical properties of the constituent material of the sandwich FG beam 

(Rafiee et al. 2013) 

materials Yang modules (Gp) 
Expansion 

coefficient(1/𝐶𝑜) 
Length(nm) Height(nm) 𝑑31 

piezoelectric 63 0.9e(-6) 
20*H 100 

2.54e(-10) 

CNT 5.65e+3 3.4584e(-6) - 

112



 

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets… 

Table 4 The effects of the nonlocal and strain gradient 

parameters on nonlinear damping frequency 

Dimensionless Nonlinear Damping Frequency (𝑒𝑎= 0.06) 

Mode number 1 2 3 4 5 

𝑙𝑚=  0.01 22.89 28.35 62.85 111.06 166.64 

𝑙𝑚=  0.02 22.90 28.63 64.13 114.48 173.92 

𝑙𝑚=  0.03 22.91 29.10 66.19 119.97 185.42 

𝑙𝑚=  0.04 22.92 29.75 68.99 127.26 200.42 

𝑙𝑚=  0.05 22.94 30.56 72.41 136.06 218.20 

Dimensionless Nonlinear Damping Frequency (𝑒𝑎 = 0.08) 

Mode number 1 2 3 4 5 

𝑙𝑚=  0.01 22.84 26.11 54.59 93.23 136.27 

𝑙𝑚  0.02 22.84 26.39 55.82 96.41 142.78 

𝑙𝑚=  0.03 22.85 26.86 57.82 101.48 153.01 

𝑙𝑚=  0.04 22.87 27.49 60.50 108.19 166.28 

𝑙𝑚=  0.05 22.88 28.29 63.78 116.24 181.93 

Dimensionless Nonlinear Damping Frequency (𝑒𝑎 = 0.1) 

Mode number 1 2 3 4 5 

𝑙𝑚=  0.01 22.77 23.52 45.90 76.44 110.15 

𝑙𝑚=  0.02 22.78 23.80 47.11 79.46 116.11 

𝑙𝑚=  0.03 22.79 24.27 49.07 84.24 125.43 

𝑙𝑚=  0.04 22.80 24.90 51.69 90.51 137.42 

𝑙𝑚=  0.05 22.82 25.69 54.88 97.99 151.45 

 

 

Table 5 The effects of  𝐾𝑤 , 𝜏𝑐𝑛  and 𝑉  on nonlinear 

frequency 

Dimensionless Nonlinear Damping Frequency (V = 0.5) 

𝜏𝑐𝑛 0.0005 0.001 0.0016 0.0021 0.0026 

𝐾𝑤 = 686.5 20.8690 20.8682 20.8673 20.8665 20.8656 

𝐾𝑤= 772.4 22.8362 22.8355 22.8349 22.8342 22.8335 

𝐾𝑤= 858.2 24.6468 24.6463 24.6457 24.6451 24.6446 

𝐾𝑤= 944.0 26.3332 26.3327 26.3322 26.3317 26.3313 

𝐾𝑤= 1029.8 27.9178 27.9174 27.9170 27.9166 27.9162 

Dimensionless Nonlinear Damping Frequency (V = 0.3) 

𝜏𝑐𝑛 0.0005 0.001 0.0016 0.0021 0.0026 

𝐾𝑤= 686.5 24.3184 24.3181 24.3177 24.3174 24.3171 

𝐾𝑤= 772.4 26.026 26.0258 26.0255 26.0252 26.025 

𝐾𝑤= 858.2 27.6282 27.628 27.6278 27.6276 27.6274 

𝐾𝑤= 944.0 29.1425 29.1423 29.1422 29.142 29.1418 

𝐾𝑤= 1029.8 30.5818 30.5817 30.5816 30.5814 30.5813 

Dimensionless Nonlinear Damping Frequency (V = 0.1) 

𝜏𝑐𝑛 0.0005 0.001 0.0016 0.0021 0.0026 

𝐾𝑤= 686.5 27.3356 27.3356 27.3357 27.3357 27.3357 

𝐾𝑤= 772.4 28.8652 28.8653 28.8653 28.8653 28.8654 

𝐾𝑤= 858.2 30.3177 30.3178 30.3178 30.3179 30.3179 

𝐾𝑤= 944.0 31.7037 31.7038 31.7039 31.7039 31.704 

𝐾𝑤= 1029.8 33.0316 33.0317 33.0318 33.0318 33.0319 

 

Table 6 The effects of the 𝐾𝑠, 𝑁0 and ∆𝑇 on nonlinear 

frequency 

Dimensionless Nonlinear Damping Frequency (𝑇 − 𝑇0  =  100) 

𝑁0 0.25 0.49 0.74 0.99 1.23 

𝐾𝑠= 0.9851 27.0221 26.977 26.9318 26.8866 26.8413 

𝐾𝑠= 1.9701 27.2017 27.1569 27.112 27.0671 27.0221 

𝐾𝑠= 2.9552 27.3801 27.3356 27.2911 27.2464 27.2017 

𝐾𝑠= 3.9402 27.5574 27.5132 27.4689 27.4246 27.3801 

𝐾𝑠= 4.9253 27.7335 27.6896 27.6456 27.6015 27.5574 

Dimensionless Nonlinear Damping Frequency (𝑇 − 𝑇0  =  200) 

𝑁0 0.25 0.49 0.74 0.99 1.23 

𝐾𝑠= 0.9851 26.9336 26.8884 26.8431 26.7977 26.7522 

𝐾𝑠= 1.9701 27.1138 27.0689 27.0239 26.9788 26.9336 

𝐾𝑠= 2.9552 27.2928 27.2482 27.2035 27.1587 27.1138 

𝐾𝑠= 3.9402 27.4706 27.4263 27.3819 27.3374 27.2928 

𝐾𝑠= 4.9253 27.6473 27.6033 27.5591 27.5149 27.4706 

Dimensionless Nonlinear Damping Frequency (𝑇 − 𝑇0  =  300) 

𝑁0 0.25 0.49 0.74 0.99 1.23 

𝐾𝑠= 0.9851 26.8449 26.7995 26.754 26.7085 26.6628 

𝐾𝑠= 1.9701 27.0256 26.9806 26.9354 26.8902 26.8449 

𝐾𝑠= 2.9552 27.2052 27.1604 27.1156 27.0706 27.0256 

𝐾𝑠= 3.9402 27.3836 27.3391 27.2946 27.2499 27.2052 

𝐾𝑠= 4.9253 27.5609 27.5167 27.4724 27.428 27.3836 

 

 

Table 7 The effects of the 𝐾𝑛𝑙, 𝐻𝑥 and various pattern of 

CNTs on nonlinear frequency 

Dimensionless Nonlinear Damping Frequency (VA pattern) 

𝐾𝑛𝑙 25 49 74 99 124 

𝐻𝑥 = 0.1485 26.6212 26.6309 26.6405 26.6502 26.6598 

𝐻𝑥 = 0.5939 26.7038 26.7134 26.723 26.7327 26.7423 

𝐻𝑥= 1.3362 26.8409 26.8505 26.86 26.8696 26.8792 

𝐻𝑥= 2.3755 27.0316 27.0411 27.0506 27.0602 27.0697 

𝐻𝑥= 3.7117 27.2749 27.2843 27.2937 27.3032 27.3126 

Dimensionless Nonlinear Damping Frequency (UU pattern) 

𝐾𝑛𝑙 25 49 74 99 124 

𝐻𝑥= 0.1485 22.7464 22.7543 22.7621 22.7700 22.7779 

𝐻𝑥= 0.5939 22.8136 22.8214 22.8292 22.8371 22.8449 

𝐻𝑥= 1.3362 22.9250 22.9328 22.9406 22.9484 22.9562 

𝐻𝑥= 2.3755 23.0802 23.0879 23.0957 23.1034 23.1112 

𝐻𝑥= 3.7117 23.2781 23.2858 23.2935 23.3012 23.3089 

Dimensionless Nonlinear Damping Frequency (AV pattern) 

𝐾𝑛𝑙 25 49 74 99 124 

𝐻𝑥= 0.1485 30.0563 30.0676 30.0790 30.0903 30.1016 

𝐻𝑥= 0.5939 30.1526 30.1638 30.1751 30.1864 30.1977 

𝐻𝑥= 1.3362 30.3122 30.3235 30.3347 30.3459 30.3572 

𝐻𝑥= 2.3755 30.5344 30.5456 30.5567 30.5679 30.5790 

𝐻𝑥= 3.7117 30.8177 30.8287 30.8398 30.8509 30.8619 
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In order to represent the difference between linear and 

non-linear frequency, the obtained results in table 8 

represent the natural damping frequency for two linear and 

non-linear states of a beam with the same material and 

geometry properties in two states. Regarding to the results, 

it can be concluded that the non-linear frequency of the FG 

sandwich beam is larger than linear frequency for all 𝐾𝑤  

and 𝑁0 values. 

In order to illustrate the effects of considering 𝐾𝑤 and 

𝐾𝑠 coefficients as simultaneously, the non-linear damping 

frequency are calculated and presented in Fig. 3 with 

respect to 𝐾𝑤  for various 𝐾𝑠 coefficients. According to 

these results it can be concluded that considering 𝐾𝑤 and 

𝐾𝑠 coefficients as have the significant effects on non-linear 

damping frequency. In the other hand, regarding to the 

presented results in Fig. 3 it can be seen, increasing 𝐾𝑤 

and 𝐾𝑠  coefficients causes the non-linear damping 

frequency to increase. 

 

5.3 The nonlinear forced vibration results 
 
The influence of parameters of visco-elastic foundation 

on the frequency–response of sandwich nano-beam is 

presented in Fig. 4. It can be observed that the frequency– 

response curves bend to right due to nonlinear hardening  

 

phenomenon. According to this figure, it can be concluded 

that the degree of the bending right is basically consistent 

for different viscosity coefficients (𝐶𝑑) and also influence of 

it on the hardening nonlinearity phenomenon is not 

remarkable. Furthermore, enhancing the viscoelastic 

damping coefficient leads to the resonance region makes 

narrow whilst it is approximately constant with variation of 

the other visco-elastic foundation parameters. Moreover, 

due to the nonlinearity of the analysis, the jump 

phenomenon coming from abrupt increase or decrease of 

the amplitude of the response by changing the foundation 

parameters is revealed in the figure. 

Fig. 5 illustrates the effect of the pretension amplitude 

(𝑁0), applied voltage (𝑉), various pattern of CNTs in face-

sheets and magnetic field intensity (𝐻𝑥) on the frequency 

response of simply-supported sandwich nano-beam. 

According to this figure, the hardening phenomena 

decreases with increasing the magnetic field intensity and 

therefore the jump phenomenon is more significant for the 

sandwich nano-beams with lower magnetic field intensity. 

This is due to increase of magnetic field intensity that 

reduces the stiffness of sandwich nano-beams. Furthermore, 

change of aforementioned parameter makes that the 

bifurcation point varies. 

 

Table 8 The effects of the non-linearity terms on damping frequency 

Dimensionless Linear Damping Frequency 

   0.2463 0.4925 0.7388 0.9851 1.2313 1.4776 1.7239 1.9701 2.2164 2.4627 

   =171.6 7.4864 7.322 7.1539 6.9817 6.8051 6.6238 6.4374 6.2455 6.0475 5.8427 

  =343.3 15.0981 15.0173 14.936 14.8543 14.7721 14.6895 14.6064 14.5228 14.4387 14.3542 

  =514.9 19.9964 19.9355 19.8743 19.813 19.7515 19.6897 19.6278 19.5657 19.5034 19.4409 

  =686.5 23.9116 23.8606 23.8095 23.7584 23.7071 23.6557 23.6042 23.5526 23.5008 23.449 

  =858.2 27.2703 27.2256 27.1809 27.1361 27.0912 27.0462 27.0012 26.956 26.9108 26.8656 

  =1029.8 30.2585 30.2182 30.1779 30.1375 30.0971 30.0567 30.0161 29.9756 29.9349 29.8942 

  =1201.5 32.977 32.94 32.9031 32.866 32.829 32.7919 32.7547 32.7176 32.6803 32.6431 

  =1373.1 35.4878 35.4535 35.4192 35.3848 35.3504 35.3159 35.2814 35.2469 35.2124 35.1778 

  =1544.7 37.8324 37.8002 37.768 37.7358 37.7035 37.6712 37.6389 37.6065 37.5741 37.5417 

  =1716.4 40.0399 40.0095 39.9791 39.9486 39.9181 39.8876 39.8571 39.8266 39.796 39.7654 

Dimensionless Non-linear Damping Frequency 

   0.2463 0.4925 0.7388 0.9851 1.2313 1.4776 1.7239 1.9701 2.2164 2.4627 

  =171.6 7.6266 7.4645 7.2987 7.129 6.9551 6.7767 6.5933 6.4046 6.2101 6.0091 

  =343.3 15.1786 15.0981 15.0172 14.9359 14.8541 14.7719 14.6892 14.606 14.5224 14.4382 

  =514.9 20.0596 19.9988 19.9378 19.8766 19.8153 19.7537 19.692 19.63 19.5679 19.5056 

  =686.5 23.9654 23.9145 23.8636 23.8125 23.7613 23.71 23.6586 23.6071 23.5555 23.5037 

  =858.2 27.3181 27.2735 27.2288 27.184 27.1392 27.0943 27.0494 27.0043 26.9592 26.914 

  =1029.8 30.3019 30.2617 30.2214 30.1811 30.1408 30.1004 30.0599 30.0194 29.9788 29.9382 

  =1201.5 33.0171 32.9802 32.9433 32.9063 32.8693 32.8322 32.7951 32.758 32.7208 32.6836 

  =1373.1 35.5253 35.491 35.4567 35.4224 35.388 35.3536 35.3191 35.2847 35.2501 35.2156 

  =1544.7 37.8677 37.8356 37.8034 37.7712 37.7389 37.7067 37.6744 37.6421 37.6097 37.5773 

  =1716.4 40.0735 40.0431 40.0127 39.9822 39.9518 39.9213 39.8908 39.8603 39.8297 39.7991 
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Regard to Fig. 5, it can be concluded that increasing the 

pretension leads to increase of resonance region and 

consequently the point of nonlinear bifurcation 

phenomenon is changed. The influence of applied voltage 

on nonlinear frequency response is increase of the nonlinear 

hardening phenomenon as possibility of the jump 

phenomenon enhances. According to results of Fig. 5, the 

AV pattern has a frequency response with more obvious 

hardening phenomenon respect to other pattern. 

The influences of the nonlocal and strain gradient 

parameters on nonlinear frequency response are 

investigated in Fig. 6. It is concluded that aforementioned 

parameters have no effect on location of the point occurred 

nonlinear bifurcation phenomenon. 

 

 

  

  

Fig. 4 The effect of parameters related to visco-elastic 

foundation on the frequency response 

 

 

 

 

  

  

Fig. 5 The effect of the pretension, applied voltage, various 

pattern of CNTs in face-sheets and magnetic field intensity 

on the frequency response 
 

 

  

Fig. 6 The effect of the nonlocal (𝑒𝑎) and strain gradient 

(𝑙𝑚) parameters on the frequency response 

 

 

Fig. 3 the effects of the considering 𝐾𝑤 and 𝐾𝑠 coefficients simultaneously on non-linear damping frequency 
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Fig. 7 The effect of the magnetic field intensity, applied 

voltage, slenderness ratio and detuning parameter on the 

force response 
 

 

In addition, increasing these parameters causes that the 

nonlinear hardening phenomenon becomes more obvious of 

course according to figure the effects of the strain gradient 

parameter is more than the nonlocal parameter. 

The nonlinear force response of the sandwich nano-

beam with FG-CNTRC face-sheet is represented in Fig. 7. 

According to this figure it is concluded that the point of 

jump phenomenon is varied by changing the magnetic field 

intensity (𝐻𝑥), applied voltage (𝑉), slenderness ratio (𝐿/ℎ) 

and detuning parameter (𝜎). Regard to this figure, the force 

response can be converted to a safe force response 

(removing the nonlinear jump phenomenon from force 

response) by changing aforementioned parameters. For 

example according to this figure, increase of the slender 

ratio causes the force response converted to a safe force 

response diagram. 

 

 

6. Conclusions 
 

Analysis of the nonlinear free damping and parametric 

forced vibration of sandwich nano-beams with FG-CNTs 

face-sheets was implemented in this paper. The Euler–

Bernoulli beam theory and Von-Karman nonlinear relations 

were used for this analysis. The mid-plan stretching and 

pretension was considered in equations of motion and also 

the nonlocal strain gradient theory to involve the nonlocal 

and strain gradient parameters. The equations of motion 

were solved by the semi analytical method (Multiple Times 

Scale) and the time, frequency and force response for 

nonlinear free and forced vibration were derived. The 

effects of some parameters such as length scale parameters, 

different distribution pattern of CNTs in face-sheets, 

parameters of Visco-Pasternak foundation, visco-elastic 

coefficients of the piezoelectric matrix and CNTs, different 

patterns of CNTs along the face-sheets, applied voltage, 

longitudinal magnetic field and other important parameters 

in designing and controlling the nonlinear damping 

vibration and phase velocity were studied in detail. The 

most important results of this study are presented as:   

1. Volume fraction of the CNTs in face-sheets can strongly 

change nonlinear damping frequency of the sandwich 

nano-beam. The numerical results indicate that 

distribution patterns of CNTs have significant influence 

on the nonlinear damping frequency as the FG-AV 

possesses a more frequency value respect to other 

patterns. Aforementioned result was justified in the 

nonlinear frequency response results as regarding to the 

results the FG-AV pattern have a lower the response 

amplitude in comparison with other CNTs patterns. 

2. The small scale parameters have significant effects on the 

nonlinear damping frequency of the nano-beam with FG-

CNTRC face sheets. It can be observed that, increasing 

the nonlocal parameter will reduce the nonlinear damping 

frequency. Unlike to nonlocal parameter, increment of the 

strain gradient parameter leads to enhance in the 

nonlinear damping frequency. This results was validated 

in the nonlinear frequency response of the nano-beam, 

correctly.  

3. Investigation on the effect of parameters of Visco-

Pasternak foundation on the nonlinear frequency 

response of the sandwich nano-beam leads to important 

conclusions. The hardening phenomenon became clearer 

with raising the nonlinear stiffness coefficient (𝐾𝑛𝑙) of 

the visco-Pasternak foundation and hardening property 

reduces by increase of the Winkler (𝐾𝑤) and shearing 

(𝐾𝑠) coefficients. In addition aforementioned parameters 

approximately have no effect on the point occurred the 

nonlinear bifurcation. According to obtained results, it 

concluded that the degree of the bending right is basically 

consistent for different viscosity coefficients of the visco-

elastic foundation. 

According to obtained results, the applied voltage, 

longitudinal magnetic field and increment temperature have 

important influences on nonlinear damping frequency and 

phase velocity. Increasing the increment temperature and 

applied voltage leads to decreasing phase velocity and 

nonlinear damping frequency, also they will enhance with 

increasing longitudinal magnetic field. 
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Abbreviation 

 

 

Table 8 Abbreviation 

FG functionally graded 

CNTs carbon nanotubes 

PDE partial differential equation 

ODE ordinary differential equation 

MTS Multiple Times Scale 

UD uniform distribution 

SWCNT single-walled carbon nanotube 

CFs carbon fibers 

CNTRCs carbon nanotube-reinforced composites 

MEMS micro-electro-mechanical systems 

NEMS nano-electro-mechanical systems 

MLPG meshless local Petrov–Galerkin 
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