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1. Introduction 
 
Improvements in design and construction have led to 

light and slender structures that have increased 

susceptibility to vibrations. These structures satisfy ultimate 

limit state criteria but have the potential of attracting 

complaints coming from vibrations due to human induced 

loading (HIL) (Hanagan 2005, Moutinho et al. 2011, Lu et 

al. 2012), or due to wind-induced loading (Bortoluzzi et al. 

2015). Passive control using tuned mass dampers (Casado 

et al. 2013) is the most common solution adopted for HIL 

vibration problems (Casciati 2016, Casciati et al. 2017) in 

footbridges, allowing structures to satisfy vibration 

serviceability limits. Semi-active control strategies for HIL 

have been also studied intensively in order to enhance 

control robustness under system changes (Soria et al. 2017, 

Nagarajaiah and Jung, 2014). However, active vibration 

control (AVC) via inertial mass actuators has been shown to 

be more effective to significantly reduce the level of HIL 

vibration response (Casado et al. 2013), being also robust to 

system changes. 

The use of inertial mass actuators to implement AVC is a 

relatively new research area in civil engineering, so a lot of 

obstacles have to be overcome before this field can fully 

mature. These actuators can exert forces in one particular 

direction, which is usually vertical in HIL control 

implementations. However, application of the control force, 

which is similar to adding energy to the structure, can make 

the closed control loop unstable. This instability is mainly  
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due to the fact that the linear and nonlinear model of the 

actuator is not well considered in the controller design 

(Hudson and Reynolds 2012, Teng et al. 2014). Hudson and 

Reynolds (2012), Teng et al. (2014) and Alujevic et al. 

(2014) concludes that the resonance frequency of the 

inertial mass actuator should be as low as practically 

possible in order to simplify the controller design (the 

actuator low-frequency dynamic response can thus be 

avoided). However, a suitable actuator cannot always be 

obtained in practice. 

Different control strategies have been proposed in order 

to mitigate the aforementioned problems. An important 

group of strategies try to implement direct velocity 

feedback control (DVFC). For example, in (Díaz and 

Reynolds 2009), a feed-through term between the structure 

acceleration and actuator force is combined with an ideal 

integration of the modified structure output. Other option, 

which was proposed in (Díaz and Reynolds 2010), is to 

combine an acceleration feedback with a phase-lag 

compensator and a high-pass filter. This controller is like an 

integral action in the bandwidth of interest, which is robust 

to stroke saturation due to the high-pass filter. The stability 

margins of the controller proposed in (Díaz and Reynolds 

2009) is improved in (Díaz et al. 2012a) by an approximate 

inversion of the actuator dynamics, allowing the application 

of integral resonant control theory (Aphale et al. 2007). 

Other control strategies try to custom the actuator 

dynamics. For example, an inner control loop is proposed in 

(Díaz et al. 2012b). Other examples are (Zilletti et al. 2014, 

Zilletti 2016), in which an inerter added to an AVC system 

can reduce the natural frequency of the inertial mass 

actuator, improving the stability of the feedback loop and 

thus its performance. Finally, more complex control 

strategies also have been proposed. For example, the 
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variable gain feedback control strategy (Teng et al. 2014, 

Xu et al. 2014) and time delay control algorithm (Jang et al. 

2015) are analyzed and adopted to make the active mass 

damper (AMD) system more robust and more adaptive to 

excitation intensity variations. Other examples, such as the 

multi-loop vibration controller, disturbance observer 

introduced into an outer-loop DVFC controller and other 

dynamic compensators, are investigated in recent researches 

(Nyawako et al. 2016, Nyawako et al. 2015, Ubaid et al. 

2015). However, these features and new control 

components undoubtedly complicate the practical 

implementation and its likelihood of success. 

Simple and easy to tune control laws are more suitable 

to be implemented in practice than complex ones. Thus, 

works like (Pereira and Aphale 2013) try to propose simple 

design guides when practical issues must be considered. 

Special attention to (Hudson et al. 2016) should be paid for 

AVC of human-induced vibrations. This work considers a 

generalized system and investigates what sort of 

performance can be achieved theoretically by an ideal 

DVFC system. In addition, it considers the added 

complexity of actuator dynamics to demonstrate how this 

degrades the performance from optimal, assuming a fixed 

value of cut-off frequency of the band-pass filter (used to 

implement the DVFC). 

The work presented herein extends the results and 

conclusions of (Hudson et al. 2016) and provides 

interesting and simple design rules for future implementing. 

As in (Hudson et al. 2016), the model is considered as a 

linear second order model (i.e., the model only considered 

the most important vibration mode), where the control 

objective is to design the optimum DVFC in terms of 

maximum damping. It should be noted that it is assumed 

that the fundamental vibration mode is in the bandwidth of 

interests. In other words, it is not necessary to consider a 

HIL model to design the controller. 

 The main contribution of this work is the study of the 

relationships between the maximum damping performance 

as a function of frequency ratios between actuator, structure 

and high-pass filter. In addition, this work also relates the 

actuator stroke and the actuator force with the gain margin 

and actuator damping ratio in order to avoid stroke and 

force saturation. All these theoretical studies are 

summarized into a practical guideline for the selection of a 

proper value of the cut-off frequency of the band-pass filter 

which considers the control performance together with the 

maximum stroke and force of the actuator. In other words, 

this paper concludes that the cut-off frequency of the band-

pass filter must also be considered as a control parameter, 

which can improve the control performance for a certain 

frequency ratio of the fundamental vibration mode of the 

structure to the actuator. 

The practical guidelines together with the assumed 

simplifications are illustrated by showing simulation and 

experimental results. These results are obtained on a full 

scale steel-concrete composite structure (behaves similar to 

a footbridge) with adjustable span, which has a configurable 

fundamental vibration mode. The experimental results also 

shows that the second order model simplification can be 

assumed in practice. 

This paper is organized as follows. Section 2 briefly 

explains the ideal DVFC. In section 3, practical guidelines 

for the design are presented together with a complete 

demonstration of these. Section 4 details the experimental 

work, including the dynamic identification of a full-scale 

laboratory structure, the AVC implementation, and 

frequency response tests. Finally, the main conclusions are 

given in Section 5. 

 

 

2. Ideal velocity feedback control 
 

A simplified scheme for AVC based on velocity 

feedback is shown in Fig. 1. The dynamics of the structure, 

inertial mass actuator and the controller are represented by 

G, GA and C, respectively. 

The structure is assumed as a single degree of freedom 

(SDOF), considering the fundamental vibration mode. Thus, 

the frequency response function (FRF) between the 

acceleration and the force of the bare structure is as follows: 

𝐺(𝑗𝜔) =
(−1/𝑚1)𝜔2

(𝜔1
2−𝜔2) + 𝑗 ⋅ 2𝜉1𝜔1 ⋅ 𝜔

  (1) 

𝜔 being the angular frequency, 𝑚1 , 𝜉1  and 𝜔1  are the 

modal participation factor, damping ratio and natural 

frequency of the fundamental vibration mode, respectively. 

If 𝐺𝐴 = 𝐾𝐴  is constant, i.e., no dynamics from the 

actuator are introduced (ideal actuator), and 𝐶(𝑗𝜔) =
𝐾𝐶/(𝑗𝜔)  is a pure integrator with infinity magnitude 

response at zero frequency, the FRF of the closed loop 

system can be obtained from Fig. 1 as follows 

𝐺𝐶𝐿(𝑗𝜔) =
𝑎

𝑓𝐸

=
(−1/𝑚1)𝜔2

(𝜔1
2−𝜔2) + 𝑗(2𝜉1𝜔1 + 𝐾𝐶𝐾𝐴/𝑚1)𝜔

  (2) 

in which a is the acceleration of the structure and fE is the 

excitation force to the structure. In an ideal DVFC control, 

the added damping to the structure is proportional to KCKA. 

 

 

3. Modified velocity feedback control 
 

3.1 Practical considerations 
 

Ideal DVFC is not implementable since there exists a lot 

of practical issues to be considered, such as the off-set 

values in the accelerometers‟ measurement, actuator low-

frequency response and spillover effect (i.e., instability due 

to non-modeled high frequency dynamics). 

 

 

Fig. 1 General scheme of AVC 
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The inertial mass actuator model used in this paper is an 

APS Dynamics model 400 electrodynamic actuator, whose 

FRF can be written as (Preumont 2011) 

𝐺𝐴(𝑗𝜔) =
−𝐾𝐴𝜔2

(𝜔𝐴
2−𝜔2) + 𝑗 ⋅ 2𝜉𝐴𝜔𝐴 ⋅ 𝜔

  (3) 

in which 𝜉𝐴, 𝜔𝐴 are the damping ratio and frequency of 

the actuator respectively. A real signal acquired from 

accelerometers has off-set. Then, the ideal integrator must 

be replaced by a band-pass filter (i.e., a combination of an 

ideal integration and a high-pass filter) in order to obtain the 

velocity from acceleration. In addition, a low-pass filter 

may be required to guarantee the finite gain property of the 

control loop at high frequencies, avoiding spillover 

problems (Griggs et al. 2007). The FRF of both filters can 

be written together as follows (Hudson et al. 2016) 

𝐶(𝑗𝜔) =
𝑗𝐾𝐶𝜔

(𝜔𝐻𝑃
2 − 𝜔2) + 𝑗 ⋅ 2𝜔/√2 ⋅ 𝜔𝐻𝑃

⋅
𝜔𝐿𝑃

2

(𝜔𝐿𝑃
2 − 𝜔2) + 𝑗 ⋅ 2𝜔/√2 ⋅ 𝜔𝐿𝑃

  
(4) 

in which the cut-off frequency of the second order 

Butterworth band-pass and low-pass filters are 𝜔𝐻𝑃  and 

𝜔𝐿𝑃 , respectively. The band-pass filter mitigates the 

problem resulted from the signal low-frequency 

components, alleviating the actuator stroke saturation 

problem. In addition, the low-pass filter can reduce the 

high-frequency gain in order to guarantee the stability of the 

system. 

 
3.2 Non-dimensional study 
 

The objective of this section is to show the best 

attenuation level that can be achieved with the control 

scheme of Fig. 1 as a function of the ratio of the actuator 

frequency to the structure natural frequency. This is defined 

as 𝑟𝐴 = 𝜔𝐴/𝜔1, and the ratio of the cut-off frequency of the 

lossy integrator (or band-pass filter) to the structure natural 

frequency, defined as 𝑟𝐻𝑃 = 𝜔𝐻𝑃/𝜔1. In addition, the value 

of the stroke and force gains (i.e., the magnitude of the 

transfer functions (TFs) between d and fE and between fC 

and fE, respectively) are analyzed. This analysis shows that 

there is a tradeoff between the attenuation performance and 

the maximum stroke and force values. 

First of all, the non-dimensional FRF of the structure 

defined in Eq. (1) is defined as follows 

𝐺(𝑗�̂�) =
(−1/𝑚1)�̂�2

(1 − �̂�2) + 𝑗 ⋅ 2𝜉1 ⋅ �̂�
  (5) 

�̂� being equal to 𝜔/𝜔1. If �̂� and rA are considered, the 

non-dimensional FRF of the actuator defined in Eq. (3) is as 

follows 

𝐺𝐴(𝑗�̂�) =
−𝐾𝐴�̂�2

(𝑟𝐴
2 − �̂�2) + 𝑗 ⋅ 2𝜉𝐴𝑟𝐴 ⋅ �̂�

 (6) 

The mass displacement can be obtained by integrating 

twice the mass acceleration, which is obtained by dividing 

the force by mA. Thus, the FRF between the actuator mass 

(mA) displacement and the control signal is as follows 

𝐺𝑑(𝑗�̂�) =
𝐺𝐴(𝑗�̂�)

𝑚𝐴�̂�2
 (7) 

Finally, the non-dimensional FRF of the controller 

defined in Eq. (4) is as follows 

𝐶(𝑗�̂�) =
𝑗𝐾𝐶�̂�

(𝑟𝐻𝑃
2 − �̂�2) + 𝑗 ⋅ 2𝑟𝐻𝑃/√2 ⋅ �̂�

⋅
𝑟𝐿𝑃

2

(𝑟𝐿𝑃
2 − �̂�2) + 𝑗 ⋅ 2𝑟𝐿𝑃/√2 ⋅ �̂�

  
(8) 

𝑟𝐿𝑃 being equal to 𝜔𝐿𝑃/𝜔1. 

The attenuation performance is defined in terms of 

infinity norm (i.e., the maximum of the FRF-magnitude) 

reduction, which can be written as follows 

Attenuation (dB) = −20 log10

‖𝐺𝑎,𝑓𝐸
‖

∞

‖𝐺‖∞

 (9) 

in which ‖𝐺𝑎,𝑓𝐸
‖

∞
 and ‖𝐺‖∞  are the 𝐻∞  norm of the 

closed-loop and open-loop systems, respectively. The value 

of ‖𝐺‖∞ can be considered, when the flexible structure 

has a small damping ratio, as follows (Ogata 2010) 

‖𝐺‖∞ =
1/𝑚1

2𝜉1√1 − 𝜉1
2

≅
1

2𝜉1𝑚1

 (10) 

Then, if Eqs. (5), (6) and (8) are considered, the closed-loop 

system FRF is obtained as follows 

𝐺𝑎,𝑓𝐸
(𝑗�̂�) =

𝐺(𝑗�̂�)

1 + 𝐺(𝑗�̂�) ⋅ 𝐺𝐴(𝑗�̂�) ⋅ 𝐶(𝑗�̂�)

=
−(�̂�2/𝑚1) ⋅ 𝐷𝐺𝐴

(𝑗�̂�) ⋅ 𝐷𝐶(𝑗�̂�)

𝐷𝐺(𝑗�̂�) ⋅ 𝐷𝐺𝐴
(𝑗�̂�) ⋅ 𝐷𝐶(𝑗�̂�) + 𝑗�̂�5𝐾𝐶

 
(11) 

in which the normalized control gain is 𝐾𝐶 = (𝑟𝐿𝑃
2 𝐾𝐴𝐾𝐶)/

𝑚1 and the variables 𝐷𝐺(𝑗�̂�), 𝐷𝐺𝐴
(𝑗�̂�) and 𝐷𝐶(𝑗�̂�) are, 

respectively, the denominators of Eqs. (5), (6) and (8). Then, 

if Eqs. (10) and (11) are considered, the attenuation level 

defined in Eq. (9) becomes 

Attenuation (dB)

= −20 log10 ‖
−(2𝜉1�̂�2)𝐷𝐺𝐴

(𝑗�̂�) ⋅ 𝐷𝐶(𝑗�̂�)

𝐷𝐺(𝑗�̂�) ⋅ 𝐷𝐺𝐴
(𝑗�̂�) ⋅ 𝐷𝐶(𝑗�̂�) + 𝑗�̂�5𝐾𝐶

‖

∞

 (12) 

The controller design consists of maximizing Eq. (12) 

for given values of 𝑟𝐿𝑃, 𝑟𝐻𝑃 and gain margin of the closed-

loop system. Each design is obtained by calculating the 

optimum value of 𝐾𝐶  with the scalar bounded nonlinear 

function minimization fminbnd of MATLAB. The boundary 

conditions used in fminbnd are 𝐾𝐶 = 0 and 𝐾𝐶  equal to 

the gain margin of 𝐺(𝑗�̂�)𝐺𝐴(𝑗�̂�)𝐶(𝑗�̂�)/𝐾𝐶  (see Eq. (12)), 

which is obtained by margin command of MATLAB, 

divided by the given gain margin value. 

Fig. 2 shows the attenuation level defined in Eq. (12) 

when 𝜉𝐴 = 0.3. The upper limit value of 𝐾𝐶  is equal to the 

gain margin of 𝐺(𝑗�̂�)𝐺𝐴(𝑗�̂�)𝐶(𝑗�̂�)/�̂�𝐶  divided by one (0 

dB gain margin), two (6 dB gain margin) and four (12 dB  
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gain margin). Note that there is set of values of 𝑟𝐻𝑃 and 𝑟𝐴 

for which the maximum damping performance is achieved 

(approximately equal to -32 dB). Then, there are values of 

𝑟𝐴 for which the attenuation performance is deteriorated 

(i.e., the maximum damping is not achieved). The range of 

values of 𝑟𝐴 is smaller when the gain margin restriction is 

increased, a significant attenuation can be obtained for the 

three gain margin restriction examples. Thus, if an 

attenuation level of 20 dB is considered as a very good 

control performance in AVC applications, this can be 

obtained when 𝑟𝐴 < 0.7 for a gain margin of 6 dB and 

when 𝑟𝐴 < 0.6 for a gain margin of 12 dB. 

 

 

 

 

 

 

If a 20 dB attenuation level can be achieved, the next 

question should be what the most convenient 

implementation is. In order to illustrate this issue, the stroke 

and force gain are also plotted. The FRF between the 

actuator stroke and the excitation can be defined as follows 

𝐺𝑑,𝑓𝐸
(𝑗�̂�) =

−𝑗�̂�3𝐾𝐶/𝑚𝐴

𝐷𝐺(𝑗�̂�) ⋅ 𝐷𝐺𝐴
(𝑗�̂�) ⋅ 𝐷𝐶(𝑗�̂�) + 𝑗�̂�5𝐾𝐶

 (13) 

Fig. 3 shows the stroke gain defined as follows 

Stroke Gain (dB) = 20 log10‖𝐺𝑑,𝑓𝐸
(𝑗�̂�)‖

∞
 (14) 

 

   
(a) 0 dB (b) 6 dB (c) 12 dB 

Fig. 2 Attenuation (dB) when the actuator damping is equal to 0.3, and the upper limit of 𝐾𝐶  guarantees a minimum gain 

margin 

   
(a) 0 dB (b) 6 dB (c) 12 dB 

Fig. 3 Stroke gain (dB) when the actuator damping is equal to 0.3, and the upper limit of 𝐾𝐶  guarantees a minimum gain 

margin 

  
(a) 0 dB (b) 12 dB 

Fig. 4 Influence of rHP on the attenuation (dB) when the actuator damping is equal to 0.3, rA = 0.4, and the upper limit of 

𝐾𝐶  guarantees a minimum gain margin. 
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assuming the following actuator parameters: 𝑚𝐴 = 1 and 

𝜉𝐴 = 0.3. Note that the value of 𝑚𝐴 = 1 is not relevant to  

show that the actuator stroke gain: i) is reduced when the 

gain margin is increased, which could be obvious since the 

damping performance is deteriorated, and ii) depends on 

rHP, having its minimum value around 𝑟𝐻𝑃 = 0.4 for small 

values of rA. 

This is better illustrated in Figs. 4 and 5, where the 

attenuation and the stroke FRF are plotted for 𝜉𝐴 = 0.3 

and 𝑟𝐴 = 0.4. Note that for a gain margin equal to 0 dB, the 

increment of rHP reduces the actuator stroke gain, and the 

most important fact is that the maximum actuator  

 

 

 

 

 

 

 

displacement occurs at the frequency close to the natural 

frequency of the structure (𝑟𝐻𝑃 = 0.4). This is because the 

closed-loop poles of the actuator have small damping ratios 

when rHP is not high enough, which might cause problems 

if there is a perturbation close to actuator frequency. In 

addition, the problem of stroke gain is less important when 

the gain margin is 12 dB, where the actuator displacement 

is approximately constant in the bandwidth of interest (Fig. 

5(b)). However, although the damping performance 

(attenuation close to 20 dB) is worse than 0 dB-gain margin 

case, it will impart significant damping for practical 

implementation. 

 

  
(a) 0 dB (b) 12 dB 

Fig. 5 Influence of rHP on the stroke gain (dB) when the actuator damping is equal to 0.3, rA = 0.4, and the upper limit of 

𝐾𝐶  guarantees a minimum gain margin 

   
(a) 0 dB (b) 6 dB (c) 12 dB 

Fig. 6 Force gain (dB) when the actuator damping is equal to 0.3, and the upper limit of 𝐾𝐶  guarantees a minimum gain 

margin 

  
(a) 0 dB (b) 12 dB 

Fig. 7 Influence of rHP on the force gain (dB) when the actuator damping is equal to 0.3, rA = 0.4, and the upper limit of 

𝐾𝐶  guarantees a minimum gain margin 
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The actuator force gain should be also studied. The FRF 

between the actuator force and excitation force can be 

defined as follows 

𝐺𝑓𝐶,𝑓𝐸
(𝑗�̂�) =

𝑗�̂�5𝐾𝐶

𝐷𝐺(𝑗�̂�) ⋅ 𝐷𝐺𝐴
(𝑗�̂�) ⋅ 𝐷𝐶(𝑗�̂�) + 𝑗�̂�5𝐾𝐶

 (15) 

Fig. 6 shows the force gain defined as follows 

Force Gain (dB) = 20 log10‖𝐺𝑓𝐶,𝑓𝐸
(𝑗�̂�)‖

∞
 (16) 

in which 𝜉𝐴 = 0.3. It can be observed that force is reduced 

in an interval of 𝑟𝐴  when the gain margin is increased 

(around 𝑟𝐴=0.4). However, this issue is better illustrated in 

Fig. 7, where it can be seen that the control force focuses on 

the natural frequency of the structure. It explains why an 

attenuation performance around 20 dB can be obtained with 

a gain margin of 12 dB. Therefore, the conclusion of this  

study, from the practical implementation point of view, is 

that a proper gain margin should: i) improve the relative 

stability of the system, ii) optimize the actuator behavior 

into the natural frequency of the structure, and iii) the 

damping performance is kept into the advisable levels. In 

addition, it also shows that a small value of rHP is not 

always recommended since it increases the stroke gain and 

does not focus on the natural frequency of the structure. 

Finally, it is shown herein the influence of the actuator 

damping into the damping performance. Fig. 8 shows the 

attenuation (dB) when the actuator damping is equal to 0.7.  

 

 

 

 

It can be seen that the influence of actuator damping 

deteriorates the attenuation performance for high  
values of rA as compared with Fig. 2. Therefore, the 

increment of actuator damping may be not advisable if rA is 

sufficiently high. 
 

3.3 Design guidelines 
 
Based on the above non-dimensional study, the 

following design process is proposed: 

(i) Identify the structure and actuator dynamics. 

(ii) Calculate the value of rA. 

(iii) If 𝑟𝐴 ≤ 0.6, fix a gain margin of 12 dB in order to 

obtain the control gain for a set of values rHP between 0.1 

and 0.4. 

(iv) Test the control gain for rHP = 0.4 under the most 

unfavorable perturbation in order to check the maximum 

level of vibration and actuator mass displacement. 

(v) If the maximum actuator mass displacement is small 

enough (i.e., sufficiently safe), the value of rHP = 0.4 can be 

reduced. 

(vi) If the maximum vibration level is not achieved, 

repeat (iii)-(v) for a smaller gain margin. 

Note that it is not convenient to reduce the gain margin 

below 6 dB since the closed-loop system might be unstable 

due to the unmodeled dynamics. 

 
 

   
(a) 0 dB (b) 6 dB (c) 12 dB 

Fig. 8 Attenuation (dB) when the actuator damping is equal to 0.7, and the upper limit of 𝐾𝐶  guarantees a minimum gain 

margin 

 

Fig. 9 Experimental setup configurations 
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4. Experimental implementation 
 

To illustrate the viability of design guidelines for a 

modified velocity feedback, experimental tests are carried 

out on a light-weight structure (shown in Fig. 9). This is a 

steel-concrete composite slab, with a dimension of 5.8 m × 

1.8 m and a maximum depth of only 14 cm. The structure is 

simply supported and behaves similar to a pedestrian 

bridge. The supports can be moved to change the 

fundamental vibration mode frequency of the structure. 

 The experiment is carried out with two APS Dynamics 

electrodynamic actuators: one is to excite vibration of the 

structure (model 144), and the other is to control the 

vibration (model 400). They are placed at almost the same 

point (i.e., at the midpoint of the mid span (Fig. 10). 

First of all, the experimental identification of the 

structure is carried out by measuring the force exerted by 

the actuator and the acceleration of the structure. The 

excitation (vertical forces) is configured as a chirp signal 

from 0 Hz to 30 Hz with a duration of 1800 seconds. In Fig. 

11(a), it can be seen the comparison between the FRF 

measured and the identified model of two different 

configurations. Configuration 1 has 𝑚1 = 1400 𝑘𝑔 , 

𝜔1 = 2𝜋 ⋅ 5.5 𝑟𝑎𝑑/𝑠 and 𝜉1 = 0.01; configuration 2 has 

𝑚1 = 1400 𝑘𝑔 , 𝜔1 = 2𝜋 ⋅ 6.6 𝑟𝑎𝑑/𝑠  and 𝜉1 = 0.01 . In 

addition, using the aforementioned chirp signal, by 

estimating the TF between actuator force (acceleration of 

the actuator multiplied by mA) and the chirp signal, the 

identified modal parameters of APS Dynamics model 400 

electrodynamic actuator are obtained (see Fig. 11(b)): 

𝜔𝐴 = 2𝜋 ⋅ 2.7 𝑟𝑎𝑑/𝑠 , 𝜉𝐴 = 0.25 , 𝐾𝐴 = 230 𝑁/𝑉  and 

𝜖 = 14. The term 𝜖 models the high-frequency dynamics 

of the actuator, which can be represented as follows: 

𝐺𝐴(𝑗𝜔) =
−𝐾𝐴𝜔2

−𝜔2 + 2𝑗𝜉𝐴𝑟𝐴𝜔1𝜔 + 𝑟𝐴
2𝜔1

2 +
⋅

2𝜋𝜖

𝑗𝜔 + 2𝜋𝜖
 (17) 

in which rA is equal to 0.41 and 0.49 for configuration 1 and 

2, respectively. 

This dynamics must be inverted (i.e., compensated) to 

apply the theory described in Section 3.2. Thus, the Eq. (8) 

is changed by the following 

𝐶𝜖(𝑗�̂�) = 𝐶(𝑗𝜔) ⋅
𝑗�̂� + 2𝜋𝜖/𝜔1

2𝜋𝜖
 (18) 

Then, the practical guidelines of Section 3.3 are followed, 

where rLP = 10 and a gain margin of 12 dB are considered 

for configuration 1. Four different values of rHP are taken 

into account in order to show the differences between them 

in terms of attenuation. Fig. 12(a) shows the simulation 

FRFs corresponding to the values 

of 𝑟𝐻𝑃 ∈ *0.1, 0.2, 0.3, 0.4+ . Fig. 12(b) shows the 

comparison between experimental and simulated results 

when rHP = 0.2. It should be remarked that an attenuation of 

20 dB can be achieved with a gain margin of 12 dB. Finally, 

it should be noted that the maximum stroke was kept below 

2.8 cm when a chirp signal from 2 Hz to 9 Hz with a 

duration of 600 seconds was used as excitation. Then, a 

gain margin of 12 dB might be used. 

 
 

The same optimal design, where rLP = 10 and a gain 

margin of 6 dB are taken into account for configuration 2. 

Four different values of rHP are considered in order to show 

the differences between them in terms of attenuation. Figure 

13(a) shows the simulated FRFs corresponding to the values 

of 𝑟𝐻𝑃 ∈ *0.1, 0.2, 0.3, 0.4+ . Fig. 13(b) shows the 

comparison between experimental and simulation results 

when rHP = 0.4. It should be remarked that an attenuation of 

26 dB can be achieved with a gain margin of 6 dB. Finally, 

it should be noted that the maximum stroke was kept below 

2.7 cm when a chirp signal from 2 Hz to 9 Hz in duration of 

600 seconds was used as excitation. 
 
 

5. Conclusions 
 

This works studies the practical considerations to 

implement DVFC of vertical vibrations in pedestrian-bridge 

crossing. First of all, this work assumes the simplification 

of a second order system in order to show the maximum 

damping that can be imparted by a DVFC implemented 

with a real inertial mass actuator. The non-dimensional 

study shows that the maximum damping can be achieved 

when actuator natural frequency and the low cut-off 

frequency of the band-pass filter, which is used to 

implement the DVFC, are small enough. In addition, the 

frequency ratios are within a more restricted range when a 

higher gain margin is guaranteed. Secondly, the gain of the 

TFs that relates the force and stroke of the actuator with the 

excitation force are studied to show the influences of the 

aforementioned frequency ratios on the risk of force and 

stroke saturation. Thirdly, a practical guideline to design the 

band-pass filter for implementing DVFC is proposed. 

Fourthly, the model simplification, the design conclusions 

and a practical guideline are validated experimentally by 

implementing DVFC examples in a real light-weight steel-

concrete composite structure (behaves similar to a 

footbridge). It is shown that for a civil structure with a 

fundamental vibration mode, the bandwidth of the filter and 

the gain margin of the controller are important design 

parameters to obtain a very good vibration attenuation 

performance, which is usually considered greater than or 

equal to 20 dB.  

 
 

 

Fig. 10 Experimental SISO AVC implementation 
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(a) structure configurations (b) controller actuator 

Fig. 11 Experimental identifications 

  
(a) FRFs of the closed-loop system in simulation when rA = 

0.49 and gain margin equal to 12 dB 

(b) comparison between experimental and simulation 

results when rHP = 0.2 

Fig. 12 Experimental configuration 1 

  
(a) FRFs of the closed-loop system in simulation when rA = 

0.41 and gain margin equal to 6 dB 

(b) comparison between experimental and simulation 

results when rHP = 0.4 

Fig. 13 Experimental configuration 2. 
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